Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (3): 454-468.doi: 10.3864/j.issn.0578-1752.2024.03.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Progress on Genetic Transformation of Sorghum

HAN LiJie1(), CAI HongWei2()   

  1. 1 Hebei Open University, Shijiazhuang 050080
    2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193
  • Received:2023-07-05 Accepted:2023-08-11 Online:2024-02-01 Published:2024-02-05

Abstract:

Sorghum is the fifth largest grain crop in the world and can be used for food, feed, brewing and bioenergy. Sorghum genetic transformation technology is an essential and important tool in the research of sorghum functional genomics and can also serve as an important complement to traditional breeding methods. In this review, we summarize the research progress of sorghum transformation in recent years, analyze the problems in sorghum genetic transformation and propose strategic solutions to them in order to provide a reference for further improvement of sorghum genetic transformation technology. By summarizing more than 50 literatures on sorghum tissue culture and genetic transformation in recent years, we introduced the current research status of sorghum genotypes, explant sources, and regeneration system construction for genetic transformation, and compared the advantages and disadvantages of four commonly used methods for sorghum genetic transformation: electroporation, pollen-mediated transformation, particle bombardment and Agrobacterium-mediated transformation, summarized the effects of the main components of genetic transformation vectors, including promoters, target genes, selective marker genes and reporter genes, on transformation efficiency, explained the current application status of sorghum genetic transformation, analyzed the main bottleneck problemns in sorghum genetic transformation technology, and studied countermeasures. Sorghum genotypes have a significant influence on tissue culture and P898012 and Tx430 are the most widely used. Gene bombardment and Agrobacterium-mediated transformation are the most commonly used methods for sorghum genetic transformation, and the advantages of Agrobacterium-mediated transformation are gradually emerging. In vector construction, CaMV35S and ubi1 are the most commonly used promoters, and antibiotic resistance genes (nptII, hpt), herbicide resistance genes (bar), and nutrient assimilation genes are the three commonly used selection markers. With the development of sorghum genetic transformation technology and CRISPR/Cas9-mediated gene editing technology, some genes with important agronomic traits have been successfully transferred into sorghum. However, strong genotype dependence, long tissue culture cycle, and poor genetic transformation stability are the main bottlenecks that limit the genetic transformation of sorghum. By introducing morphogenesis regulatory factors, somatic cell generation can be directly performed, which shortens the tissue culture cycle, improves the transformation efficiency, and expands the source of explants. This has become a major breakthrough in sorghum genetic transformation technology. The use of morphogenesis regulatory factors and adoption of cut-dip-budding (CDB) delivery system can further improve the sorghum genetic transformation technology. Combined with the application of CRISPR/Cas9 gene editing technology, they will surely provide an important technical basis for the sorghum molecular breeding and gene function identification.

Key words: sorghum, transformation technology, regenerative system, transformation method, vector

Table 1

The research progress of sorghum genetic transformation"

转化方法
Transformation method
基因型
Genotype
外植体
Explant
载体
Vector
选择标记
Selectable marker
启动子
Promoter
筛选剂及筛选压
Screening agent and screening pressure
报告基因
Report gene
转基因检测
Transgenic detection
转化效率
Transformation efficiency (%)
参考文献
References
电穿孔法
Electroporation
- 原生质体
Protoplast
p35SCAT/
pCopa-CAT
- CaMV35S copia
promoter of
Drosophila
氯霉素
Chloramphenicol
- Scintillation counting - [30]
电穿孔法
Electroporation
NK300 原生质体
Protoplast
pBI221.1 nptⅡ CaMV35S 100 mg·L-1卡那霉素
Kanamycin
GUS Gel blot hybridization - [31]
电穿孔法
Electroporation
Sorghum vulgare (cv
Grazer)
细胞悬浮液
Cell suspension
pBC1/pNGI nptⅡ/hpt adh1/CaMV35S 500 mg·L-1卡那霉素Kanamycin/50 mg·L-1
潮霉素Hygromycin
GUS GUS assay/
Gel blot hybridization
- [32]
花粉管通道法
Pollen-mediated transformation
TX622B 花柱
Style
- nptⅡ - 100 mg·L-1卡那霉素
Kanamycin
- 丝黑穗病鉴定/聚丙烯酰氨凝胶电泳
Head smut disease detection/
polyacrylamide gel
electrophoresis
6.80 [33]
花粉管通道法
Pollen-mediated transformation
A(2)V4A/A(2)V4B 花粉
Pollen
pBI121 nptⅡ CaMV35S 卡那霉素
Kanamycin
GUS PCR/Southern blot - [34]
基因枪法
Particle bombardment
P898012 幼胚
Immature embryo
pPHP620/
pPHP687
bar CaMV35S 3 mg·L-1 bialophos GUS Southern blot/GUS assay 0.29 [7]
基因枪法
Particle bombardment
SRN39 幼穗
Immature infloresences
pPHP620 bar CaMV35S 3 mg·L-1 bialophos GUS Southern blot/GUS assay 2.61 [35]
基因枪法
Particle bombardment
Tx430 幼胚
Immature embryo
- bar CaMV35S 1-2 mg·L-1 basta - Southern blot/Western blot/
PCR
0.09 [36]
基因枪法
Particle bombardment
M35-1/SA281/QL41/P898012 幼胚
Immature embryo
pAHC20 bar ubi1/act1/
CaMV35S
2 mg·L-1 bialophos GFP Southern blot/荧光显微镜
Southern blot/Fluorescence
microscope
1.00 [9]
基因枪法
Particle bombardment
RTx430 幼胚
Immature embryo
pAHC20/
pAct1-D
bar ubi1/act1 5 mg·L-1 PPT GUS Southern blot/GUS assay 0.18 [37]
基因枪法
Particle bombardment
Tx430/C401/
CO25
幼胚
Immature embryo
pPZP200/
pUC18
hpt ubi1/CaMV35S/HBT/act1/adh1 - GUS/GFP 荧光显微镜/GUS assay
Fluorescence microscope/
GUS assay
- [5]
基因枪法
Particle bombardment
恢复系
Restorer line
5-27/115
幼穗
Immature infloresences
pKUB hpt - 20 mg·L-1潮霉素
Hygromycin
GUS PCR/Southern blot/
GUS assay
- [38]
基因枪法
Particle bombardment
214856 幼胚/芽尖
Immature embryo/Shoot tip
pAct1-D/
pAHC25
nptⅡ ubi1/adh1/act1D/
CaMV35S
25-100 mg·L-1遗传霉素Geneticin GUS PCR/Southern blot/
GUS assay
1.30 [39]
基因枪法
Particle bombardment
BTx623 芽尖
Shoot tip
pJS108/
pmpiC1cry1Ac
bar mpiC1 1-2.05 mg·L-1 basta GUS PCR/Southern blot/
GUS assay
1.50 [28]
基因枪法
Particle bombardment
32个品种
Varieties
幼胚
Immature embryo
pPH1687 hpt ubi1 40 mg·L-1潮霉素
Hygromycin
LUC Southern blot/荧光素酶测定
Southern blot/Luciferase
camera assay
0.09 [40]
基因枪法
Particle bombardment
P898012 幼胚
Immature embryo
pAHC25/
pNOV3604
bar/pmi ubi1 9 g·L-1甘露糖
Mannose+12 g·L-1
麦芽糖Maltose
GUS PCR/Southern blot 0.77 [41]
基因枪法
Particle bombardment
Tx430 幼胚
Immature embryo
pUKN/pGEM-Ubi-gfp nptⅡ ubi1 30 mg·L-1遗传霉素
Geneticin(G418)
GFP PCR/Southern blot/荧光显微镜 PCR/Southern blot/
Fluorescence microscope
20.70 [6]
基因枪法
Particle bombardment
Hiro1 成熟胚
Mature embryo
pCAMBIA1301/p35S::SbGW2-GFP hpt ubi/CaMV35S 10 mg·L-1 潮霉素
Hygromycin
GFP PCR/荧光显微镜
PCR/Fluorescence microscope
12.31 [42]
基因枪法
Particle bombardment
Tx430 幼胚
Immature embryo
pBSV003 nptⅡ ubi1 25-35 mg·L-1遗传霉素
Geneticin(G418)
GUS PCR/GUS assay 27.20-46.60 [23]
基因枪法
Particle bombardment
IS4698 成熟胚
Mature embryo
pMD18T-UBI-NPTII/pMD18T-UBI-GUS nptⅡ ubi1 30 mg·L-1遗传霉素
Geneticin(G418)
GUS PCR/GUS assay 13.33 [43]
农杆菌介导法
Agrobacterium-mediated transformation LBA4404
P898012/
PHI391
幼胚
Immature embryo
pSB1/pSB11 bar ubi1 5 mg·L-1 PPT GUS Southern blot 2.10 [8]
农杆菌介导法
Agrobacterium-mediated transformation
EHA105/EHA101/AGL1
Tx430/C401/
Wheatland
幼胚/叶子
Immature embryo/Leaf
pPZP200/
pUC18
- ubi1/CaMV35S/
HBT/act1/adh1
- GUS/GFP 荧光显微镜/GUS assay
Fluorescence microscope/
GUS assay
- [5]
农杆菌介导法
Agrobacterium-mediated transformation LBA4404
P898012 幼胚
Immature embryo
pTOK233 hpt CaMV35S 15 mg·L-1潮霉素
Hygromycin
GUS Southern blot/GUS assay 0.80-3.50 [20]
农杆菌介导法
Agrobacterium-mediated transformation EHA101
C401/
Pioneer8505
幼胚
Immature embryo
pPZP201 pmi ubi1 1%-2%甘露糖
Mannose
GFP Southern blot/Western blot/荧光显微镜
Southern blot/Western blot/
Fluorescence microscope
2.88-3.30 [44]
农杆菌介导法
Agrobacterium-mediated transformation
EHA101
Tx430/C401/
Pioneer8505
幼胚
Immature embryo
pPZP201 - ubi1 - GFP Southern blot/Western blot/荧光显微镜
Southern blot/Western blot/
Fluorescence microscope
1.00-3.00 [45]
农杆菌介导法
Agrobacterium-mediated transformation NTL4
Tx430/C2-97 幼胚
Immature embryo
pPTN290 nptⅡ ubi1 10 mg·L-1遗传霉素
Geneticin/20 mg·L-1
巴龙霉素Paromomycin
GUS Southern blot/GUS assay 0.30-4.50 [21]
农杆菌介导法
Agrobacterium-mediated transformation LBA4404
Sensako 85/
1191
幼胚
Immature embryo
pCAMBIA1301 hpt CaMV35S 5 mg·L-1潮霉素
Hygromycin
GUS Southern blot/GUS assay 5.00 [25]
农杆菌介导法
Agrobacterium-mediated transformation
EHA101/LBA4404
P898012/Tx430/296B/C401 幼胚
Immature embryo
pPZP201 pmi ubi1 1%-2%甘露糖
Mannose
GFP PCR/Western blot/荧光显微镜 PCR/Western blot/
Fluorescence microscope
8.30 [46]
农杆菌介导法
Agrobacterium-mediated transformation
EHA105
恢复系
Restorer line
115/5-27/9198/R011
保持系
Maintainer line
ICS21B/21B
幼穗
Immature infloresences
pKUB hpt CaMV35S/
ubi1
50 mg·L-1潮霉素
Hygromycin
GUS RT-PCR/Southern blot/
Western blot
1.90 [10]
农杆菌介导法
Agrobacterium-mediated transformation EHA101
P898012 幼胚
Immature embryo
pZY102/pZY101
-TC2/pZY101-SKRS
bar CaMV35S/
CZ19B1
2.5 mg·L-1草铵膦
Glufosinate-ammonium
- PCR/Southern blot 0.40-0.70 [47]
农杆菌介导法
Agrobacterium-mediated transformation
LBA4404/EHA105
CO25/
TNS586
幼胚
Immature embryo
pMKURF2/
pCAMBIAG11/
pCAMBIARC7
bar/hpt ubi1 1-2 mg·L-1 bialophos/
10-25 mg·L-1潮霉素
Hygromycin
GUS Western blot 1.60-2.70 [48]
农杆菌介导法
Agrobacterium-mediated transformation
LBA4404
M 35-1 成熟胚/幼苗/叶基/幼穗
Mature embryo/Young
seedling/Leaf base/
Immature infloresences
pKU352NA hpt ubi1 20 mg·L-1潮霉素
Hygromycin
SGFPS65T Inverse PCR 4.28 [17]
农杆菌介导法
Agrobacterium-mediated transformation NTL4
P898012/
RTX430
幼胚
Immature embryo
pCAMBIA1305.2/pCAM-Ubi-gus hpt ubi1 20 mg·L-1潮霉素
Hygromycin
GUS PCR/Southern blot 2.40 [24]
农杆菌介导法
Agrobacterium-mediated transformation LBA4404
APK1 芽尖
Shoot tip
pCAMBIA1305.1 hpt CaMV35S 5 mg·L-1潮霉素
Hygromycin
GUS PCR/Southern blot 1.20-3.90 [49]
农杆菌介导法
Agrobacterium-mediated transformation
LBA4404/AGL1
TX430 幼胚
Immature embryo
pSB1/pSB11 moPAT/
pmi
ubi1 5-10 mg·L-1 PPT/
12.5 g·L-1
甘露糖Mannose
DSRED qPCR 10.00-33.00 [22]
农杆菌介导法
Agrobacterium-mediated transformation
AGL1/EHA101/GV3101
P898012 幼胚
Immature embryo
pZY102/
pFGC5941/
pFGC161
bar MAS/ubi1/
CaMV35S
2.5 mg·L-1草铵膦
Glufosinate-ammonium
GUS PCR/Southern blot 14.00 [50]
农杆菌介导法
Agrobacterium-mediated transformation EHA105
U68/Tx623B 成熟胚
Mature embryo
pCAMBIA1305.1
/pCUbi1390
hpt ubi1 - GFP PCR/Western blot 4.00 [29]
农杆菌介导法
Agrobacterium-mediated transformation EHA105
P898012 幼胚
Immature embryo
PHP78891 - ubi1 - GFP PCR/Southern blot 6.20 [14]
农杆菌介导法
Agrobacterium-mediated transformation
LBA4404 Thy-
Tx430/Macia/
Malisor84-7/
Tegemeo
幼胚
Immature embryo
pPHP38332/
pPHP78152/
pPHP78233/
pPHP81561/
pPHP70444
pmi/nptⅡ/
PTXD
ubi1 12.5 g·L-1甘露糖
Mannose/250 mg·L-1
遗传霉素Geneticin
(G418)/300 mg·L-1 Phi
YFP qPCR 6.00-29.00 [13]
农杆菌介导法
Agrobacterium-mediated transformation GV2260
Tx430 幼胚
Immature embryo
pEKH2 hpt CaMV35S 15 mg·L-1潮霉素
Hygromycin
GUS PCR/Southern blot 1.90 [51]
农杆菌介导法
Agrobacterium-mediated transformation AGL1/EHA101
P898012/
Btx623
幼胚
Immature embryo
PHP78891 - ubi1/Rab17/
Nos
- GFP 荧光显微镜
Fluorescence microscope
- [15]
农杆菌介导法
Agrobacterium-mediated transformation EHA105
BTx623 幼胚
Immature embryo
pMDC32-
35S-GFP
hpt CaMV35S 2-5 mg·L-1潮霉素
Hygromycin
GFP PCR/RT-PCR/荧光显微镜
PCR/RT-PCR/Fluorescence microscope
0.73 [12]
农杆菌介导法
Agrobacterium-mediated transformation LBA4404
Tx430/
Tx2737
幼穗/芽尖
Immature infloresences/
Shoot tip
pBI121 nptⅡ CaMV35S 50-100 mg·L-1
卡那霉素Kanamycin
GUS PCR/GUS assay 4.20-14.30 [11]
农杆菌介导法
Agrobacterium-mediated transformation LBA4404 Thy-
Tx430/Tx623/
Tx2752/Macia/
Malisor 84-7/
Tegemeo
幼胚
Immature embryo
pPHP79066/
pPHP81814
Hra/nptⅡ Pltp/Axig1 250 mg·L-1遗传霉素
Geneticin (G418)
ZS-
YELLOW1
荧光显微镜
Fluorescence microscope
17.10-69.70 [16]
农杆菌介导法
Agrobacterium-mediated transformation
LBA4404 TD Thy-
Tx430 叶片
Leaf
PHP96037 Hra ubi1/Nos - - - 35.00-37.00 [18]
[1]
韩立杰, 才宏伟. 高粱粒重遗传研究进展. 生物技术通报, 2019, 35(5): 15-27.

doi: 10.13560/j.cnki.biotech.bull.1985.2019-0105
HAN L J, CAI H W. Progress on genetic research of sorghum grain weight. Biotechnology Bulletin, 2019, 35(5): 15-27. (in Chinese)
[2]
PATERSON A H, BOWERS J E, BRUGGMANN R, DUBCHAK I, GRIMWOOD J, GUNDLACH H, HABERER G, HELLSTEN U, MITROS T, POLIAKOV A, SCHMUTZ J, SPANNAGL M, TANG H B, WANG X Y, WICKER T, BHARTI A K, CHAPMAN J, FELTUS F A, GOWIK U, GRIGORIEV I V, LYONS E, MAHER C A, MARTIS M, NARECHANIA A, OTILLAR R P, PENNING B W, SALAMOV A A, WANG Y, ZHANG L F, CARPITA N C, FREELING M, GINGLE A R, HASH C T, KELLER B, KLEIN P, KRESOVICH S, MCCANN M C, MING R, PETERSON D G, RAHMAN M, WARE D, WESTHOFF P, MAYER K F X, MESSING J, ROKHSAR D S. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457(7229): 551-556.

doi: 10.1038/nature07723
[3]
倪先林, 赵甘霖, 刘天朋, 张长伟, 陈国民, 胡炯凌, 丁国祥. 高粱重要抗性性状的基因定位研究进展. 福建农业学报, 2012, 27(6): 652-660.
NI X L, ZHAO G L, LIU T P, ZHANG C W, CHEN G M, HU J L, DING G X. Advances in Sorghum resistance gene mapping. Fujian Journal of Agricultural Sciences, 2012, 27(6): 652-660. (in Chinese)
[4]
GIRIJASHANKAR V, SWATHISREE V. Genetic transformation of Sorghum bicolor. Physiology and Molecular Biology of Plants, 2009, 15(4): 287-302.

doi: 10.1007/s12298-009-0033-7
[5]
JEOUNG J M, KRISHNAVENI S, MUTHUKRISHNAN S, TRICK H N, LIANG G H. Optimization of sorghum transformation parameters using genes for green fluorescent protein and β-glucuronidase as visual markers. Hereditas, 2002, 137(1): 20-28.

doi: 10.1034/j.1601-5223.2002.1370104.x
[6]
LIU G Q, GODWIN I D. Highly efficient sorghum transformation. Plant Cell Reports, 2012, 31(6): 999-1007.

doi: 10.1007/s00299-011-1218-4 pmid: 22234443
[7]
CASAS A M, KONONOWICZ A K, ZEHR U B, TOMES D T, AXTELL J D, BUTLER L G, BRESSAN R A, HASEGAWA P M. Transgenic sorghum plants via microprojectile bombardment. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(23): 11212-11216.
[8]
ZHAO Z Y, CAI T S, TAGLIANI L, MILLER M, WANG N, PANG H, RUDERT M, SCHROEDER S, HONDRED D, SELTZER J, PIERCE D. Agrobacterium-mediated sorghum transformation. Plant Molecular Biology, 2000, 44(6): 789-798.

doi: 10.1023/a:1026507517182 pmid: 11202440
[9]
ABLE J A, RATHUS C, GODWIN I D. The investigation of optimal bombardment parameters for transient and stable transgene expression in Sorghum. In Vitro Cellular & Developmental Biology Plant, 2001, 37(3): 341-348.
[10]
张明洲, 唐乔, 陈宗伦, 刘军, 崔海瑞, 舒庆尧, 夏英武, ALTOSAAR I. 农杆菌介导Bt基因遗传转化高粱. 生物工程学报, 2009, 25(3): 418-423.
ZHANG M Z, TANG Q, CHEN Z L, LIU J, CUI H R, SHU Q Y, XIA Y W, ALTOSAAR I. Genetic transformation of Bt gene into Sorghum (Sorghum bicolor L.) mediated by Agrobacterium tumefaciens. Chinese Journal of Biotechnology, 2009, 25(3): 418-423. (in Chinese)
[11]
CHOU J, HUANG J, HUANG Y H. Simple and efficient genetic transformation of sorghum using immature inflorescences. Acta Physiologiae Plantarum, 2020, 42(3): 1-8.

doi: 10.1007/s11738-019-2990-y
[12]
KURIYAMA T, SHIMADA S, MATSUI M. Improvement of Agrobacterium-mediated transformation for tannin-producing sorghum. Plant Biotechnology, 2019, 36(1): 43-48.

doi: 10.5511/plantbiotechnology.19.0131a
[13]
CHE P, ANAND A, WU E, SANDER J D, SIMON M K, ZHU W W, SIGMUND A L, ZASTROW-HAYES G, MILLER M, LIU D L, LAWIT S J, ZHAO Z Y, ALBERTSEN M C, JONES T J. Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnology Journal, 2018, 16(7): 1388-1395.

doi: 10.1111/pbi.2018.16.issue-7
[14]
MOOKKAN M, NELSON-VASILCHIK K, HAGUE J, ZHANG Z J, KAUSCH A P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports, 2017, 36(9): 1477-1491.

doi: 10.1007/s00299-017-2169-1
[15]
NELSON-VASILCHIK K, HAGUE J, MOOKKAN M, ZHANG Z J, KAUSCH A. Transformation of recalcitrant Sorghum varieties facilitated by baby boom and Wuschel2. Current Protocols in Plant Biology, 2018, 3(4): e20076.

doi: 10.1002/cppb.v3.4
[16]
CHE P, WU E, SIMON M K, ANAND A, LOWE K, GAO H R, SIGMUND A L, YANG M Z, ALBERTSEN M C, GORDON-KAMM W, JONES T J. Wuschel2 enables highly efficient CRISPR/Cas- targeted genome editing during rapid de novo shoot regeneration in sorghum. Communications Biology, 2022, 5: 344.

doi: 10.1038/s42003-022-03308-w
[17]
JAMBAGI S, BHAT R, BHAT S, KURUVINASHETTI M S. Agrobacterium-mediated transformation studies in sorghum using an improved gfp reporter gene. Journal of SAT Agricultural Research, 2010, 8: 9.
[18]
WANG N, RYAN L, SARDESAI N, WU E, LENDERTS B, LOWE K, CHE P, ANAND A, WORDEN A, VAN DYK D, BARONE P, SVITASHEV S, JONES T, GORDON-KAMM W. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nature Plants, 2023, 9(2): 255-270.

doi: 10.1038/s41477-022-01338-0 pmid: 36759580
[19]
石太渊. 高粱组织培养研究进展. 杂粮作物, 2003, 23(6): 340-343.
SHI T Y. Research progress of Sorghum tissue culture. Rain Fed Crops, 2003, 23(6): 340-343. (in Chinese)
[20]
CARVALHO C H S, ZEHR U B, GUNARATNA N, ANDERSON J, KONONOWICZ H H, HODGES T K, AXTELL J D. Agrobacterium-mediated transformation of sorghum: Factors that affect transformation efficiency. Genetics and Molecular Biology, 2004, 27(2): 259-269.

doi: 10.1590/S1415-47572004000200022
[21]
HOWE A, SATO S, DWEIKAT I, FROMM M, CLEMENTE T. Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Reports, 2006, 25(8): 784-791.

doi: 10.1007/s00299-005-0081-6
[22]
WU E, LENDERTS B, GLASSMAN K, BEREZOWSKA-KANIEWSKA M, CHRISTENSEN H, ASMUS T, ZHEN S F, CHU U, CHO M J, ZHAO Z Y. Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cellular & Developmental Biology-Plant, 2014, 50(1): 9-18.
[23]
BELIDE S, VANHERCKE T, PETRIE J R, SINGH S P. Robust genetic transformation of Sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods, 2017, 13: 109.

doi: 10.1186/s13007-017-0260-9
[24]
KUMAR V, CAMPBELL L M, RATHORE K S. Rapid recovery- and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum. Plant Cell, Tissue and Organ Culture, 2011, 104(2): 137-146.

doi: 10.1007/s11240-010-9809-2
[25]
NGUYEN T V, THU T T, CLAEYS M, ANGENON G. Agrobacterium-mediated transformation of Sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell, Tissue and Organ Culture, 2007, 91(2): 155-164.

doi: 10.1007/s11240-007-9228-1
[26]
刘宣雨, 刘树君, 宋松泉. 建立甜高粱(Sorghum bicolor)高频、高效再生体系的研究. 中国农业科学, 2010, 43(23): 4963-4969. doi: 10.3864/j.issn.0578-1752.2010.23.023.
LIU X Y, LIU S J, SONG S Q. Research on establishment of a highly frequent and efficient regeneration system of Sorghum bicolor. Scientia Agricultura Sinica, 2010, 43(23): 4963-4969. doi: 10.3864/j.issn.0578-1752.2010.23.023. (in Chinese)
[27]
SAI N K, VISARADA K, LAKSHMI Y A, PASHUPATINATH E, RAO S V, SEETHARAMA N. In vitro culture methods in sorghum with shoot tip as the explant material. Plant Cell Reports, 2006, 25(3): 174-182.

doi: 10.1007/s00299-005-0044-y
[28]
GIRIJASHANKAR V, SHARMA H C, SHARMA K K, SWATHISREE V, PRASAD L S, BHAT B V, ROYER M, SECUNDO B S, NARASU M L, ALTOSAAR I, SEETHARAMA N. Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Reports, 2005, 24(9): 513-522.

doi: 10.1007/s00299-005-0947-7 pmid: 16172896
[29]
LI J Q, WANG L H, ZHAN Q W, FAN F F, ZHAO T, WAN H B. Development of a simple and efficient method for Agrobacterium- mediated transformation in Sorghum. International Journal of Agriculture and Biology, 2015, 18(1): 134-138.

doi: 10.17957/IJAB
[30]
OU-LEE T M, TURGEON R, WU R. Expression of a foreign gene linked to either a plant-virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat, and sorghum. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(18): 6815-6819.
[31]
BATTRAW M, HALL T C. Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase Ⅱ and β-glucuronidase genes. Theoretical and Applied Genetics, 1991, 82(2): 161-168.

doi: 10.1007/BF00226207
[32]
HAGIO T, BLOWERS A D, EARLE E D. Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Reports, 1991, 10(5): 260-264.

doi: 10.1007/BF00232571 pmid: 24221592
[33]
石太渊, 杨立国, 王颖, 郑文静, 高连军. PHY157广谱抗病基因导入高粱及转基因植株的筛选与研究. 杂粮作物, 2001, 21(1): 12-14.
SHI T Y, YANG L G, WANG Y, ZHENG W J, GAO L J. Transfering broad-spectrum resistant PYH157 gene into sorghum and screening transgenic plants. Rain Fed Crops, 2001, 21(1): 12-14. (in Chinese)
[34]
WANG W Q, WANG J X, YANG C P, LI Y H, LIU L, XU J. Pollen-mediated transformation of Sorghum bicolor plants. Biotechnology and Applied Biochemistry, 2007, 48(Pt2): 79-83.

doi: 10.1042/BA20060231
[35]
CASAS A M, KONONOWICZ A K, HAAN T G, ZHANG L Y, TOMES D T, BRESSAN R A, HASEGAWA P M. Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cellular & Developmental Biology-Plant, 1997, 33(2): 92-100.
[36]
ZHU H, MUTHRUKRISHNAN S, KRISHNAVENI S, WILDE G, JEOUNG J M, LIANG G H. Biolistic transformation of sorghum using a rice chitinase gene. Journal of Genetics and Breeding, 1998, 52: 243-252.
[37]
EMANI C, SUNILKUMAR G, RATHORE K S. Transgene silencing and reactivation in sorghum. Plant Science, 2002, 162(2): 181-192.

doi: 10.1016/S0168-9452(01)00559-3
[38]
石太渊, 杨立国, 肖军. 基因枪轰击高粱愈伤组织获得转基因植株. 辽宁农业科学, 2003(6): 9-10.
SHI T Y, YANG L G, XIAO J. Transgenic plant were obtained by bombardment sorghum callus with gene gun. Liaoning Agricultural Science, 2003(6): 9-10. (in Chinese)
[39]
TADESSE Y, SÁGI L, SWENNEN R, JACOBS M. Optimisation of transformation conditions and production of transgenic Sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell, Tissue and Organ Culture, 2003, 75(1): 1-18.

doi: 10.1023/A:1024664817800
[40]
RAGHUWANSHI A, BIRCH R G. Genetic transformation of sweet sorghum. Plant Cell Reports, 2010, 29(9): 997-1005.

doi: 10.1007/s00299-010-0885-x pmid: 20535472
[41]
GROOTBOOM A W, MKHONZA N L, O`KENNEDY M M, CHAKAUYA E, KUNERT K, CHIKWAMBA R K. Biolistic mediated Sorghum (Sorghum bicolor L. Moench) transformation via mannose and bialaphos based selection systems. International Journal of Botany, 2010, 6(2): 89-94.

doi: 10.3923/ijb.2010.89.94
[42]
韩立杰. 高粱粒重的QTL分析及qGW1的精细定位[D]. 北京: 中国农业大学, 2016.
HAN L J. QTL analysis of grain weight and fine mapping of qGW1in sorghum (Sorghum bicolor L.)[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[43]
WANG L H, GAO L, LIU G Q, MENG R R, LIU Y L, LI J Q. An efficient sorghum transformation system using embryogenic calli derived from mature seeds. PeerJ, 2021, 9: e11849.

doi: 10.7717/peerj.11849
[44]
GAO Z S, JAYARAJ J, MUTHUKRISHNAN S, CLAFLIN L, LIANG G H. Efficient genetic transformation of Sorghum using a visual screening marker. Genome, 2005, 48(2): 321-333.

doi: 10.1139/g04-095
[45]
GAO Z S, XIE X J, LING Y, MUTHUKRISHNAN S, LIANG G H. Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnology Journal, 2005, 3(6): 591-599.
[46]
GUREL S, GUREL E, KAUR R, WONG J, MENG L, TAN H Q, LEMAUX P G. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Reports, 2009, 28(3): 429-444.

doi: 10.1007/s00299-008-0655-1
[47]
LU L, WU X R, YIN X Y, MORRAND J, CHEN X L, FOLK W R, ZHANG Z J. Development of marker-free transgenic Sorghum (Sorghum bicolor (L.) Moench) using standard binary vectors with bar as a selectable marker. Plant Cell, Tissue and Organ Culture, 2009, 99(1): 97-108.

doi: 10.1007/s11240-009-9580-4
[48]
INDRAARULSELVI P, MICHAEL P, UMAMAHESWARI S, KRISHNAVENI S. Agrobacterium mediated transformation of Sorghum bicolor for disease resistance. International Journal of Pharma and Bio Sciences, 2010, 1: 272-281.
[49]
IGNACIMUTHU S, PREMKUMAR A. Development of transgenic Sorghum bicolor (L.) Moench resistant to the Chilo partellus (Swinhoe) through Agrobacterium-mediated transformation. Molecular Biology and Genetic Engineering, 2014, 2(1): 1-8.

doi: 10.7243/2053-5767-2-1
[50]
DO P T, LEE H, MOOKKAN M, FOLK W R, ZHANG Z J. Rapid and efficient Agrobacterium-mediated transformation of Sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker. Plant Cell Reports, 2016, 35(10): 2065-2076.

doi: 10.1007/s00299-016-2019-6
[51]
SATO-IZAWA K, TOKUE K, EZURA H. Development of a stable Agrobacterium-mediated transformation protocol for Sorghum bicolor Tx430. Plant Biotechnology, 2018, 35(2): 181-185.

doi: 10.5511/plantbiotechnology.18.0424a
[52]
刘宣雨, 王青云, 刘树君, 宋松泉. 高粱遗传转化研究进展. 植物学报, 2011, 46(2): 216-223.

doi: 10.3724/SP.J.1259.2011.00216
LIU X Y, WANG Q Y, LIU S J, SONG S Q. Advances in the genetic transformation of Sorghum bicolor. Chinese Bulletin of Botany, 2011, 46(2): 216-223. (in Chinese)

doi: 10.3724/SP.J.1259.2011.00216
[53]
SCHNIPPENKOETTER W, LO C, LIU G Q, DIBLEY K, CHAN W L, WHITE J, MILNE R, ZWART A, KWONG E, KELLER B, GODWIN I, KRATTINGER S G, LAGUDAH E. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnology Journal, 2017, 15(11): 1387-1396.

doi: 10.1111/pbi.12723 pmid: 28301718
[54]
MAHESWARI M, VARALAXMI Y, VIJAYALAKSHMI A, YADAV S K, SHARMILA P, VENKATESWARLU B, VANAJA M, SARADHI P P. Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biologia Plantarum, 2010, 54(4): 647-652.

doi: 10.1007/s10535-010-0115-y
[55]
ZHANG H L, YU F F, XIE P, SUN S Y, QIAO X H, TANG S Y, CHEN C X, YANG S, MEI C, YANG D K, WU Y R, XIA R, LI X, LU J, LIU Y X, XIE X W, MA D M, XU X, LIANG Z W, FENG Z H, HUANG X H, YU H, LIU G F, WANG Y C, LI J Y, ZHANG Q F, CHEN C, OUYANG Y D, XIE Q. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379(6638): eade8416.

doi: 10.1126/science.ade8416
[56]
ZHAO Z, TOMES D. Sorghum Transformation. Genetic Transformation of Plants. Berlin Heidelberg: Springer Verlag Press, 2003: 91-107.
[57]
JIANG W Z, ZHOU H B, BI H H, FROMM M, YANG B, WEEKS D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 2013, 41(20): e188.

doi: 10.1093/nar/gkt780
[58]
LI A X, JIA S G, YOBI A, GE Z X, SATO S J, ZHANG C, ANGELOVICI R, CLEMENTE T E, HOLDING D R. Editing of an alpha-kafirin gene family increases, digestibility and protein quality in Sorghum. Plant Physiology, 2018, 177(4): 1425-1438.

doi: 10.1104/pp.18.00200
[59]
ZHANG D, TANG S Y, XIE P, YANG D K, WU Y R, CHENG S J, DU K, XIN P Y, CHU J F, YU F F, XIE Q. Creation of fragrant sorghum by CRISPR/Cas9. Journal of Integrative Plant Biology, 2022, 64(5): 961-964.

doi: 10.1111/jipb.13232
[60]
TESSO T, KAPRAN I, GRENIER C, SNOW A, SWEENEY P, PEDERSEN J, MARX D, BOTHMA G, EJETA G. The potential for crop-to-wild gene flow in Sorghum in Ethiopia and Niger: A geographic survey. Crop Science, 2008, 48(4): 1425-1431.

doi: 10.2135/cropsci2007.08.0441
[61]
SILVA T N, THOMAS J B, DAHLBERG J, RHEE S Y, MORTIMER J C. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. Journal of Experimental Botany, 2022, 73(3): 646-664.

doi: 10.1093/jxb/erab450
[62]
HAN Y, BROUGHTON S, LIU L, ZHANG X Q, ZENG J B, HE X Y, LI C D. Highly efficient and genotype-independent barley gene editing based on anther culture. Plant Communications, 2021, 2(2): 100082.

doi: 10.1016/j.xplc.2020.100082
[63]
DEY M, BAKSHI S, GALIBA G, SAHOO L, PANDA S K. shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3 Biotech, 2012, 2(3): 233-240.

doi: 10.1007/s13205-012-0051-y
[64]
MA Z Y, LIU J F, WANG X F. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) shoot apex with a fungal phytase gene improves phosphorus acquisition. Methods in Molecular Biology, 2013, 958: 211-222.

doi: 10.1007/978-1-62703-212-4_18 pmid: 23143496
[65]
CAO X S, XIE H T, SONG M L, LU J H, MA P, HUANG B Y, WANG M G, TIAN Y F, CHEN F, PENG J, LANG Z B, LI G F, ZHU J K. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. The Innovation, 2023, 4(1): 100345.

doi: 10.1016/j.xinn.2022.100345
[66]
DEMIRER G S, ZHANG H, MATOS J L, GOH N S, CUNNINGHAM F J, SUNG Y, CHANG R, ADITHAM A J, CHIO L, CHO M J, STASKAWICZ B, LANDRY M P. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology, 2019, 14(5): 456-464.

doi: 10.1038/s41565-019-0382-5 pmid: 30804481
[1] WANG ZhaoHao, GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao. Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493.
[2] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[3] GAO ChenKai, LIU ShuiMiao, LI YuMing, WU PengNian, WANG YanLi, LIU ChangShuo, QIAO YiBo, GUAN XiaoKang, WANG TongChao, WEN PengFei. Prediction of Water Content of Winter Wheat Plant Based on Comprehensive Index Synergetic Optimization [J]. Scientia Agricultura Sinica, 2023, 56(22): 4403-4416.
[4] TANG ZhenSan, YUAN JianLong, KANG LiangHe, CHENG LiXiang, LÜ Tai, YANG Chen, ZHANG Feng. Potato Tuber Skin Roughness Classification Analysis Based on Image Characteristics Recognition [J]. Scientia Agricultura Sinica, 2023, 56(22): 4428-4440.
[5] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[6] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[7] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[8] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[9] SHI XiaoLong, GUO Pei, REN JingYao, ZHANG He, DONG QiQi, ZHAO XinHua, ZHOU YuFei, ZHANG Zheng, WAN ShuBo, YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[10] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[11] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[12] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
[13] LIU YuQing,YAN GaoWei,ZHANG Tong,LAN JinPing,GUO YaLu,LI LiYun,LIU GuoZhen,DOU ShiJuan. Overexpression of OsPR1A Enhanced Xa21-Mediated Resistance to Rice Bacterial Blight [J]. Scientia Agricultura Sinica, 2021, 54(23): 4933-4942.
[14] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[15] CHEN Liu,NI Zheng,YU Bin,HUA JiongGang,YE WeiCheng,YUN Tao,LIU KeShu,ZHU YinChu,ZHANG Cun. Optimized Promoter Regulating of Duck Tembusu Virus E Protein Expression Delivered by a Vectored Duck Enteritis Virus in vitro [J]. Scientia Agricultura Sinica, 2020, 53(24): 5125-5134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!