Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (1): 43-57.doi: 10.3864/j.issn.0578-1752.2025.01.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat

WANG RongRong(), XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi*(), LI YouJun*()   

  1. College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan
  • Received:2024-05-04 Accepted:2024-08-01 Online:2025-01-01 Published:2025-01-07
  • Contact: WU JinZhi, LI YouJun

Abstract:

【Objective】The objective of this study was to evaluate the effects of one-off irrigation and nitrogen (N) fertilizer management on grain yield and quality in dryland winter wheat (hereinafter referred to as wheat).【Method】From 2020 to 2022, the split-plot field experiment was conducted at the Mengjin, Yichuan and Luoning counties of Luoyang city in Henan province, China, in the typical dryland wheat production area at the intersection between Loess Plateau and Huang-Huai-Hai Plain. The two irrigation levels of no-irrigation during wheat growth period (I0) and soil-moisture-based one-off irrigation after regreening (I1, one-off supplemental irrigation was conducted to 85% of field capacity when the soil water content in the 0-40 cm soil layer after wheat regreening was lower than 60% of field capacity at the first time, there was only this irrigation during the whole growth stage) were assigned as the main plots; and the four N fertilizer managements of N0, N120, N180 and N240 were set as sub-plots, where N rates were 0, 120, 180 and 240 kg·hm-2, respectively, and all of them were applied at sowing under I0 treatment, and 50% as basal, and 50% were applied along with the one-off irrigation under I1. The grain yield and protein yield, zinc content, protein and its components content, and main processing quality indicators of wheat were determined. 【Result】 Compared with I0, I1 significantly increased wheat grain yield and protein yield by 11.5%-73.0% and 9.1%-57.0%, respectively, in which the amplification enlarged with the increase of N rates, and that in the 2020-2021 was higher than that in the 2021-2022. However, I1 reduced the contents of zinc, and protein and its components in wheat grain, as well as the most indicators of processing quality compared with I0. Except for the globulin content at Yichuan in 2020-2021, compared with I0, I1 significantly decreased the content of zinc, protein and its components, and the processing quality of wheat grain. Among them, the content of zinc, albumin, globulin, gliadin, and glutenin were decreased by 5.0%-13.8%, 4.5%-14.1%, 6.4%-17.3%, 2.3%-24.8%, and 8.0%-13.9%, respectively, and the development time, stability time, wet gluten content, sedimentation value, extensibility, and maximum resistance were decreased by 5.3%-23.2%, 8.5%-51.1%, 2.0%-13.3%, 4.5%-18.1%, 4.6%-12.2% and 3.3%-10.6%, respectively. With the increase of N rate, wheat yield firstly increased and then decreased and wheat protein yield firstly increased and then stabilized under I0, while wheat yield firstly increased and then stabilized and wheat protein yield gradually increased under I1, however, the wheat quality indicators mostly tended to increase firstly and then stabilized under both I0 and I1. There were no significant differences between N240 and N180 for most quality indicators, but most of them were significantly higher than N120. The quality indicators of wheat grain under N120 were also significantly higher than that under N0. Considering the interaction effect, irrigation levels and N managements had significant interaction effects on yield and protein yield, but there was no interaction effect on most quality indicators. The grain yield under I1N180 did not change significantly but the protein yield was significantly decreased by 3.9%-4.9% compared with I1N240, however, both the grain yield and protein yield under I1N180 were significantly increased compared with other treatments. Although the content of protein and protein components and the processing quality in wheat grain under I1N180 were significantly lower than that under I0N180 and I0N240, these quality indicators were not significantly lower than that under I1N240. 【Conclusion】 The soil-moisture-based one-off irrigation after regreening combined with the N rate of 180 kg·hm-2 and 50% N topdressing along with irrigation (I1N180) could synchronously improve the grain yield and stabilize the grain quality in dryland wheat. Therefore, I1N180 was suitable for wheat production in the dryland area, where one-off irrigation was guaranteed due to High-Standard Farmland Construction Program.

Key words: one-off irrigation, nitrogen fertilizer management, dryland, winter wheat, grain yield, quality

Table 1

Soil physical and chemical properties in the 0-40 cm soil layer at the beginning of the experiments"

试验地点
Experimental site
土层
Soil layer
(cm)
土壤养分含量 Soil nutrients content pH
土壤容重
Soil bulk density
(g·cm-3)
田间持水量
Field capacity (%)
有机质
Organic matter (g·kg-1)
全氮
Total N
(mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
孟津
Mengjin
0—20 14.7 1.11 9.0 139.6 7.57 1.35 27.4
20—40 10.0 0.89 2.5 107.4 7.40
伊川
Yichuan
0—20 12.4 1.08 12.7 177.1 7.97 1.40 26.0
20—40 8.9 0.77 3.2 139.0 7.91
洛宁
Luoning
0—20 13.2 0.83 5.9 91.5 7.98 1.26 25.3
20—40 9.2 0.69 1.6 75.6 7.82

Fig. 1

Monthly precipitation during the experimental years from June 2020 to May 2022 The broken line shows the average precipitation of 20 years from 2002 to 2022"

Table 2

Irrigation amount, seeding rate, sowing and harvest date at each experimental site in the two experimental years"

年度
Year
试验地点
Experimental site
灌溉量
Irrigation amount (mm)
播种量
Seeding rate (kg·hm-2)
灌溉日期
Irrigation date
播种日期
Sowing date
收获日期
Harvest date
2020-2021 孟津Mengjin 46.3 187.5 2021-02-23 2020-10-21 2021-06-03
伊川Yichuan 42.1 187.5 2021-02-23 2020-10-18 2021-05-30
洛宁Luoning 41.3 187.5 2021-02-21 2020-10-15 2021-06-05
2021-2022 孟津Mengjin 41.4 225.0 2022-03-01 2021-11-02 2022-06-07
伊川Yichuan 38.3 225.0 2022-03-04 2021-10-25 2022-06-02
洛宁Luoning 38.1 225.0 2022-03-05 2021-10-28 2022-06-06

Table 3

Effects of different treatments on grain yield and grain protein yield of wheat in dryland"

年度
Year
处理
Treatment
孟津 Mengjin 伊川 Yichuan 洛宁 Luoning 均值 Average
产量
Yield (kg·hm-2)
蛋白质产量
Protein yield (kg·hm-2)
产量
Yield (kg·hm-2)
蛋白质产量
Protein yield (kg·hm-2)
产量
Yield (kg·hm-2)
蛋白质产量
Protein yield (kg·hm-2)
产量
Yield (kg·hm-2)
蛋白质产量
Protein yield (kg·hm-2)
2020—2021 I0N0 3468f 405.2g 2779f 375.1g 3424f 377.2e 3224e 385.8g
I0N120 4430e 552.1f 4067e 553.3f 4762d 553.5c 4419d 553.0f
I0N180 4833d 623.3de 4586d 634.4e 5516c 642.2b 4978c 633.3d
I0N240 4561e 590.9e 4315e 620.8e 5325c 661.2b 4733d 624.3de
I1N0 6581c 640.1d 5977c 705.5d 4170e 421.1d 5576c 588.9e
I1N120 7543b 859.8c 6944b 856.7c 6561b 671.7b 7016b 796.1c
I1N180 8087a 953.3b 7592a 951.4b 8053a 926.8a 7911a 943.8b
I1N240 8262a 997.5a 7762a 986.7a 8200a 956.5a 8075a 980.2a
2021—2022 I0N0 4759e 453.9g 4799e 515.9g 5339f 503.5d 4966c 491.1f
I0N120 5237d 593.9e 5476cd 603.4e 7192d 800.4c 5969c 665.9e
I0N180 6172c 706.2d 5600c 666.4d 7663c 879.7b 6479b 750.7d
I0N240 5919c 709.3d 5300d 629.0e 7575c 890.7b 6265b 743.0d
I1N0 5478d 519.3f 5428cd 568.1f 5707e 520.1d 5538c 535.8f
I1N120 7236b 833.7c 6144b 723.3c 8118b 885.9b 7166a 814.3c
I1N180 7533a 935.7b 6849a 812.3b 8525a 1020.4a 7636a 922.8b
I1N240 7653a 984.0a 6979a 880.1a 8787a 1039.3a 7806a 967.8a
F-value 试验年度Y 146.6** 11.0 368.9** 88.4* 553.3** 153.8** 203.2** 35.0*
灌溉水平I 2041.6** 2929.6** 3433.5** 806.1** 598.7** 117.5** 198.4** 993.3**
氮肥运筹N 365.6** 346.5** 215.5** 147.3** 568.6** 358.8** 81.6** 390.5**
Y*I 307.2** 148.3** 843.6** 126.7** 98.4** 11.3* 23.1* 126.1**
Y*N 3.2* 6.0** 10.8** 2.0 7.8** 5.4** 0.3 1.3
I*N 20.7** 26.2** 15.2** 8.1** 33.0** 19.3** 7.3** 25.5**
Y*I*N 12.1** 1.9 4.9** 3.5* 8.3** 2.5 3.5* 1.1

Table 4

Effects of different treatments on Zn concentrations of wheat grain in drylands"

年度
Year
处理
Treatment
锌含量 Zn concentration (mg·kg-1)
孟津 Mengjin 伊川 Yichuan 洛宁 Luoning 均值 Average
2020—2021 I0N0 22.21cd 49.42a 21.67bc 31.10c
I0N120 30.22b 42.78bcd 26.11ab 33.04bc
I0N180 38.86a 46.13abc 28.33a 37.77a
I0N240 37.99a 49.01ab 27.22a 38.07a
I1N0 18.32d 31.99e 19.45c 23.25e
I1N120 24.45c 37.23de 21.66bc 27.78d
I1N180 37.66a 41.63cd 23.90abc 34.40bc
I1N240 37.98a 40.56cd 27.23a 35.26b
2021—2022 I0N0 21.21cd 17.82a 22.25a 20.42bcd
I0N120 24.96abc 20.01a 20.01a 21.66bc
I0N180 26.12ab 24.37a 24.48a 24.99a
I0N240 27.04a 23.28a 24.47a 24.93a
I1N0 19.98d 17.80a 18.86a 18.88d
I1N120 22.04bcd 17.78a 19.95a 19.92cd
I1N180 25.54abc 24.47a 20.00a 23.34ab
I1N240 25.69abc 25.59a 24.45a 25.24a
F-value 试验年度Y 22.73* 2925.64** 0.89 83.39*
灌溉水平I 15.01* 25.12** 11.23* 67.95**
氮肥运筹N 43.68** 5.40** 2.64 36.91**
Y*I 1.20 25.58** 0.31 28.42**
Y*N 12.90** 0.34 0.40 3.40*
I*N 0.99 1.36 0.40 2.37
Y*I*N 0.33 1.67 0.18 0.64

Table 5

Effects of different treatments on content of protein and protein components of wheat grain in dryland"

年度
Year
处理
Treatment
粗蛋白含量
Protein content (%)
清蛋白含量
Albumin content (%)
球蛋白含量
Globulin content (%)
醇溶蛋白含量
Gliadin content (%)
谷蛋白含量
Glutenin content (%)
MJ YC LN MJ YC LN MJ YC LN MJ YC LN MJ YC LN
2020—2021 I0N0 11.67cd 13.50b 11.01b 1.96bc 1.88a 1.73bc 1.66a 0.77b 1.22b 2.88a 3.45ab 2.55b 3.76c 4.02cd 4.12a
I0N120 12.47abc 13.61b 11.62b 2.17ab 1.92a 1.96ab 1.71a 1.09ab 1.44ab 2.95a 3.48a 3.14a 4.05abc 4.2abc 4.27a
I0N180 12.91ab 13.83ab 11.66b 2.33a 1.98a 2.04a 1.84a 1.33a 1.53a 3.26a 3.60a 3.19a 4.16ab 4.34ab 4.30a
I0N240 12.96a 14.37a 12.41a 2.20ab 1.83a 2.04a 1.73a 1.25ab 1.49a 3.21a 3.64a 3.21a 4.20a 4.39a 4.36a
I1N0 9.72e 11.80d 10.10c 1.84c 1.86a 1.68c 1.32b 1.18ab 1.31ab 2.84a 2.85d 2.00c 3.25d 3.58e 3.34b
I1N120 11.40d 12.33cd 10.24c 2.03bc 1.63a 1.77bc 1.63a 1.04ab 1.22b 2.97a 3.05cd 2.47b 3.81bc 3.76de 3.73ab
I1N180 11.79cd 12.53c 11.50b 2.10abc 2.03a 1.93ab 1.78a 1.29a 1.36ab 3.10a 3.17c 2.58b 3.91abc 3.96cd 3.97ab
I1N240 12.07bcd 12.72c 11.66b 1.84c 1.66a 2.02a 1.81a 1.31a 1.35ab 3.12a 3.19bc 2.64b 4.01abc 4.10bc 3.93ab
2021—2022 I0N0 9.54e 10.75c 9.44d 1.79bcd 1.75a 1.74bc 1.53c 1.50abcd 1.44cd 2.59e 3.04ab 2.57cd 3.40c 3.50e 3.47abcd
I0N120 11.34d 11.02c 11.13bc 1.85abc 1.98a 1.91ab 1.81ab 1.69abc 1.55abc 2.96bc 3.12a 2.95ab 4.05ab 3.91abc 3.60abc
I0N180 11.44cd 11.90b 11.48abc 2.12a 2.07a 1.96a 1.93a 1.75a 1.64ab 3.08ab 3.14a 3.13a 4.17ab 4.16a 3.71ab
I0N240 11.98bc 11.87b 11.76ab 2.04abc 2.10a 1.97a 1.89a 1.72ab 1.66a 3.10a 3.16a 3.14a 4.21a 4.11ab 3.73a
I1N0 9.49e 10.47c 9.11d 1.52d 1.67a 1.70c 1.07d 1.35d 1.27e 2.42f 2.47d 2.26d 3.26c 3.09f 3.25d
I1N120 11.52cd 11.76b 10.91c 1.76cd 1.60a 1.75bc 1.71b 1.47cd 1.39de 2.78d 2.69cd 2.53cd 3.47c 3.55de 3.34cd
I1N180 12.42ab 11.86b 11.97a 2.07ab 1.76a 1.82abc 1.86ab 1.38d 1.50cd 2.84cd 2.83bc 2.69bc 3.86b 3.80cd 3.40cd
I1N240 12.86a 12.62a 11.83ab 1.91abc 1.89a 2.00a 1.89a 1.48bcd 1.51bcd 2.88cd 2.91abc 2.64bc 4.01ab 3.85bc 3.43bcd
F-value 试验年度Y 53.69* 671.29** 2.94 11.41 0.01 0.98 0.47 51.35* 14.05 4.56 299.16** 6.81 4.37 201.50** 17.63
灌溉水平I 27.21** 41.14** 8.85* 9.75* 22.01** 14.05* 29.68** 2.03 19.29* 3.64 52.58** 118.13** 16.69* 65.90** 7.43
氮肥运筹N 67.91** 21.21** 51.13** 10.18** 0.74 11.55** 32.84** 2.68 8.77** 6.11** 8.65** 22.94** 34.47** 33.44** 3.52*
Y*I 144.84** 91.36** 8.86* 0.52 3.16 0.04 0.97 10.21* 0.62 0.92 0.53 3.66 0.00 0.18 0.71
Y*N 3.25* 2.21 7.02** 1.42 0.86 0.39 3.94* 0.70 0.24 0.55 0.07 0.69 0.84 2.47 0.38
I*N 3.23* 1.74 2.82 0.40 0.40 1.10 6.60** 1.11 1.07 0.13 1.64 0.22 0.70 0.55 0.23
Y*I*N 0.49 1.29 0.26 0.76 0.14 0.04 0.13 0.35 1.28 0.03 0.33 0.14 1.90 0.03 0.57

Table 6

Effects of different treatments on processing quality of wheat grain in dryland"

年度
Year
处理
Treatment
形成时间
Development time (min)
稳定时间
Stability time (min)
湿面筋含量
Wet gluten content (%)
沉降值
Sedimentation value (ml)
延伸性
Extensibility (mm)
最大阻力
Maximum resistance (BU)
MJ YC LN MJ YC LN MJ YC LN MJ YC LN MJ YC LN MJ YC LN
2020—2021 I0N0 2.48c 5.97ab 4.20c 4.20b 6.55b 5.04bc 31.0b 35.2a 26.4bc 29.9ab 38.8ab 25.7c 171.5a 179.2ab 136.6c 479.0ab 409.9a 500.6bc
I0N120 3.48a 6.06ab 5.00b 4.88a 7.10a 5.29ab 31.5ab 35.9a 29.1ab 30.4a 40.0ab 30.9ab 172.8a 182.8a 155.3ab 484.8a 420.5a 531.4ab
I0N180 3.68a 6.17ab 5.48ab 4.93a 7.15a 5.50a 31.7ab 36.1a 30.8a 30.6a 40.4ab 31.4ab 173.9a 183.1a 160.2ab 486.4a 425.9a 539.1ab
I0N240 3.71a 6.22a 5.52a 5.03a 7.16a 5.55a 32.5a 36.6a 30.8a 30.4a 40.9a 31.6a 174.0a 183.0a 161.8a 487.2a 426.6a 534.8ab
I1N0 2.26c 4.43d 2.94d 3.36c 5.61c 3.66e 25.2d 31.4c 23.7c 20.5d 30.6c 19.8d 142.8d 173.4ab 115.2d 405.9d 362.9b 461.7c
I1N120 2.91b 4.62d 5.18ab 4.11b 6.61b 4.53d 28.3c 32.8bc 29.3a 26.7c 30.6c 28.8b 159.7c 169.9b 153.4b 435.8c 387.2ab 560.6a
I1N180 3.10b 5.40c 5.28ab 4.27b 6.79ab 4.74cd 28.9c 33.0bc 29.7a 27.7bc 37.2b 30.1ab 160.5c 171.3b 154.2b 453.9bc 398.4ab 521.0ab
I1N240 3.14b 5.86b 5.33ab 4.45b 6.77ab 4.92bcd 29.5c 33.2b 30.8a 27.8bc 38.9ab 30.2ab 165.8b 171.7b 157.2ab 459.1bc 405.3a 495.3bc
2021—2022 I0N0 2.87abc 3.33c 3.33c 3.34b 5.27a 5.27a 21.2e 22.7b 22.7b 18.2d 16.6b 16.6b 112.3de 124.3c 124.31c 365.3a 360.0abc 360.0abc
I0N120 3.00ab 4.13ab 4.13ab 4.34a 5.41a 5.41a 27.2c 26.1a 26.1a 22.0bc 19.9a 19.9a 130.7ab 132.3ab 132.3ab 379.8a 376.7ab 376.7ab
I0N180 3.10a 4.20ab 4.20ab 4.44a 5.53a 5.53a 29.7ab 26.2a 26.2a 23.3ab 20.8a 20.8a 133.7a 134.4a 134.4a 389.9a 393.0a 393.0a
I0N240 3.12a 4.44a 4.44a 4.45a 5.54a 5.54a 30.2a 26.2a 26.2a 23.8a 21.8a 21.8a 134.3a 134.2a 134.2a 391.0a 395.3a 395.3a
I1N0 2.16e 2.85d 2.85d 2.45c 4.65a 4.65a 21.2e 21.8b 21.8b 11.2e 15.9b 15.9b 109.1e 111.5d 111.5d 322.7b 331.6c 331.6c
I1N120 2.36de 3.98b 3.98b 2.43c 4.64a 4.64a 25.4d 25.5a 25.5a 20.8c 19.4a 19.4a 118.4cd 127.5bc 127.5bc 359.6ab 347.1bc 347.1bc
I1N180 2.58cd 4.15ab 4.15ab 2.96b 4.81a 4.81a 28.4bc 25.7a 25.7a 22.8ab 20.1a 20.1a 122.8c 131.2ab 131.2ab 366.2a 369.1ab 369.1ab
I1N240 2.71bc 4.31ab 4.31ab 3.13b 5.06abcd 5.06a 28.7b 26.2a 26.2a 23.7a 20.3ab 20.3a 124.7bc 132.3ab 132.3ab 378.2a 370.7abc 370.7ab
F-value 试验年度Y 32.7* 1671.5** 68.3* 108.0** 371.1** 12.5* 247.4** 473.5** 97.3* 1520.9** 4749.3** 13162.0** 5099.8** 9423.0** 77.6* 334.9** 25.9* 105.9**
灌溉水平I 71.3** 183.7** 9.4* 201.0** 11.1* 47.9** 346.4** 151.8** 3.6 122.8** 44.0** 13.7* 303.7** 38.9** 15.9* 63.5** 20.8* 48.7**
氮肥运筹N 38.7** 48.6** 68.7** 44.9** 6.0** 11.2** 104.5** 24.1** 24.6** 70.1** 19.7** 34.0** 49.5** 7.3** 31.3** 8.2** 5.8** 4.5*
Y*I 0.4 82.5** 0.3 21.3* 0.1 47.9** 91.8** 82.5** 3.6 16.1* 24.0** 13.7* 23.2** 3.3 15.9* 5.56 0.2 8.9*
Y*N 10.1** 6.7** 2.1 0.7* 2.2 11.2** 27.8** 5.6** 24.6** 9.7** 2.1 35.0** 2.6 5.8** 31.3** 0.1 0.2 2.0
I*N 0.4 7.1* 2.0 2.8 0.4 0.8 0.6 0.3 0.7 19.9** 2.8 0.4 2.1 0.2 0.3 2.1 0.3 0.9
Y*I*N 1.8 3.1* 3.6* 3.4* 0.4 1.5 4.7* 0.1 0.3 0.0 4.0* 1.9 9.8** 2.0 3.0 0.2 0.1 1.0
[1]
吴金芝, 李淑靖, 李国强, 黄明, 付国占, 李友军, 蒋向, 冯晔. 拔节期灌溉和追施氮肥对旱地沟播小麦产量和品质的影响. 华北农学报, 2023, 38(3): 100-107.

doi: 10.7668/hbnxb.20193771
WU J Z, LI S J, LI G Q, HUANG M, FU G Z, LI Y J, JIANG X, FENG Y. Effects of irrigation and topdressing nitrogen at jointing stage on grain yield and quality of furrow-seeding wheat in dryland. Acta Agriculturae Boreali-Sinica, 2023, 38(3): 100-107. (in Chinese)

doi: 10.7668/hbnxb.20193771
[2]
LI J P, WANG Z M, YAO C S, ZHANG Z, LIU Y, ZHANG Y H. Micro-sprinkling irrigation simultaneously improves grain yield and protein concentration of winter wheat in the North China Plain. The Crop Journal, 2021, 9(6): 1397-1407.
[3]
SHEN Y X, HAN X J, FENG H X, HAN Z D, WANG M, MA D Y, JIN J M, LI S J, MA G, ZHANG Y F, WANG C Y. Wheat GSPs and processing quality are affected by irrigation and nitrogen through nitrogen remobilisation. Foods, 2023, 12(24): 4407.
[4]
BISWAS D, GJETVAJ B, ST LUCE M, LIU K, ASGEDOM H. Effects of soil water and nitrogen on drought resilience, growth, yield, and grain quality of a spring wheat. Canadian Journal of Plant Science, 2023, 103(4): 401-410.
[5]
YANG R, LIANG X, TORRION J A, WALSH O S, O’BRIEN K, LIU Q. The influence of water and nitrogen availability on the expression of end-use quality parameters of spring wheat. Agronomy, 2018, 8(11): 257.
[6]
代新俊, 夏清, 杨珍平, 高志强. 氮肥后移对强筋小麦氮素积累转运及籽粒产量与品质的影响. 水土保持学报, 2018, 32(3): 289-294.
DAI X J, XIA Q, YANG Z P, GAO Z Q. Effects of postponing nitrogen application on accumulation and transport of nitrogen and yield and quality of grain in strong-gluten wheat. Journal of Soil and Water Conservation, 2018, 32(3): 289-294. (in Chinese)
[7]
张睿, 侯宇, 李凤艳, 孙学磊, 王远利, 王珂, 刘曼双, 张建平, 侯芳芳. 喷灌对秦岭北麓旱地小麦产量及品质的效应. 麦类作物学报, 2017, 37(6): 815-819.
ZHANG R, HOU Y, LI F Y, SUN X L, WANG Y L, WANG K, LIU M S, ZHANG J P, HOU F F. Effect of sprinkler irrigation on yield and quality of dryland wheat in the north foot of Qinling Mountains. Journal of Triticeae Crops, 2017, 37(6): 815-819. (in Chinese)
[8]
禹静涛, 赵晨, 双丽, 范李剑, 宋占兴, 杨思, 张晓琪, 夏清, 高志强, 杨珍平. 灌水对强筋小麦籽粒产量及营养品质的影响. 麦类作物学报, 2020, 40(12): 1514-1523.
YU J T, ZHAO C, SHUANG L, FAN L J, SONG Z X, YANG S, ZHANG X Q, XIA Q, GAO Z Q, YANG Z P. Effect of irrigation on grain yield and nutritional quality of strong gluten wheat. Journal of Triticeae Crops, 2020, 40(12): 1514-1523. (in Chinese)
[9]
陈雨露, 康娟, 王家瑞, 申圆心, 李玉莹, 张艳菲, 马耕, 徐文俊, 王晨阳. 灌水与施磷对小麦氮素积累运转及水分利用效率的影响. 麦类作物学报, 2019, 39(9): 1095-1104.
CHEN Y L, KANG J, WANG J R, SHEN Y X, LI Y Y, ZHANG Y F, MA G, XU W J, WANG C Y. Effect of irrigation and phosphorus application on nitrogen accumulation and water use efficiency of winter wheat. Journal of Triticeae Crops, 2019, 39(9): 1095-1104. (in Chinese)
[10]
ZHANG P P, MA G, WANG C Y, LU H F, LI S S, XIE Y X, MA D Y, ZHU Y J, GUO T C. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS ONE, 2017, 12(6): e0178494.
[11]
唐继伟, 孙文彦, 田昌玉, 尹红娟, 温延臣, 徐久凯, 赵秉强. 不同氮肥类型和用量对小麦产量和加工品质的影响. 植物营养与肥料学报, 2021, 27(4): 728-740.
TANG J W, SUN W Y, TIAN C Y, YIN H J, WEN Y C, XU J K, ZHAO B Q. Effects of different nitrogen sources and rates on the yield and processing quality of winter wheat. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 728-740. (in Chinese)
[12]
WU W, WANG Y, WANG L, XU H S, ZÖRB C, GEILFUS C M, XUE C, SUN Z M, MA W Q. Booting stage is the key timing for split nitrogen application in improving grain yield and quality of wheat-A global meta-analysis. Field Crops Research, 2022, 287: 108665.
[13]
CHEN Y F, CHEN H L, CHEN R H, YANG H K, ZHENG T, HUANG X L, FAN G Q. The impacts of nitrogen accumulation, translocation, and photosynthesis on simultaneous improvements in the grain yield and gluten quality of dryland wheat. Agronomy, 2023, 13(5): 1283.
[14]
YAO C S, LI J P, ZHANG Z, LIU Y, WANG Z M, SUN Z C, ZHANG Y H. Improving wheat yield, quality and resource utilization efficiency through nitrogen management based on micro-sprinkler irrigation. Agricultural Water Management, 2023, 282: 108277.
[15]
董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质. 作物学报, 2023, 49(7): 1942-1953.

doi: 10.3724/SP.J.1006.2023.21049
DONG Z Q, L H, YAO Y R, ZHANG J T, ZHANG L H, YAO H P, SHEN H P, JIA X L. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction. Acta Agronomica Sinica, 2023, 49(7): 1942-1953. (in Chinese)
[16]
李孟华, 于荣, 杨月娥, 王朝辉. 低锌旱地土壤水分对小麦产量和锌利用的影响. 植物营养与肥料学报, 2016, 22(2): 388-394.
LI M H, YU R, YANG Y E, WANG Z H. Effects of soil moisture on wheat grain yield and zinc utilization in zinc-deficient dryland soil. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 388-394. (in Chinese)
[17]
靳静静, 王朝辉, 戴健, 王森, 高雅洁, 曹寒冰, 于荣. 长期不同氮、磷用量对冬小麦籽粒锌含量的影响. 植物营养与肥料学报, 2014, 20(6): 1358-1367.
JIN J J, WANG Z H, DAI J, WANG S, GAO Y J, CAO H B, YU R. Effects of long-term N and P fertilization with different rates on Zn concentration in grain of winter wheat. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1358-1367. (in Chinese)
[18]
李宏云, 王少霞, 李萌, 田霄鸿, 赵爱青, 国春慧. 不同水氮管理下锌与氮磷肥配合喷施对冬小麦锌营养品质的影响. 中国农业科学, 2014, 47(20): 4016-4026. doi: 10.3864/j.issn.0578-1752. 2014.20.010.
LI H Y, WANG S X, LI M, TIAN X H, ZHAO A Q, GUO C H. Effects of combined foliar Zn application with N or P under different water and nitrogen managements on Zn nutritional quality of winter wheat. Scientia Agricultura Sinica, 2014, 47(20): 4016-4026. doi: 10.3864/j.issn.0578-1752.2014.20.010. (in Chinese)
[19]
满建国, 于振文, 石玉, 张永丽. 不同土层测墒补灌对冬小麦耗水特性与光合速率和产量的影响. 应用生态学报, 2015, 26(8): 2353-2361.
MAN J G, YU Z W, SHI Y, ZHANG Y L. Effects of supplemental irrigation by measuring moisture content in different soil layers on water consumption characteristics, photosynthesis and grain yield of winter wheat. Chinese Journal of Applied Ecology, 2015, 26(8): 2353-2361. (in Chinese)
[20]
刘月兰, 于振文, 张永丽, 石玉, 王东. 拔节期和开花期不同土层深度测墒补灌对北方小麦旗叶叶绿体超微结构和荧光特性的影响. 中国农业科学, 2014, 47(14): 2751-2761. doi: 10.3864/j.issn.0578-1752.2014.14.006.
LIU Y L, YU Z W, ZHANG Y L, SHI Y, WANG D. Effects of supplemental irrigation based on the measurement of moisture content in soil layers at jointing and anthesis stages on the chloroplast ultramicrostructure and chlorophyll fluorescence parameters of flag leaves of winter wheat. Scientia Agricultura Sinica, 2014, 47(14): 2751-2761. doi: 10.3864/j.issn.0578-1752.2014.14.006. (in Chinese)
[21]
中华人民共和国水利部. 中华人民共和国水利行业标准: SL424-2008旱情等级标准. 北京: 中国水利水电出版社, 2009: 1-4.
Ministry of Water Resources of The People’s Republic of China. Water conservancy industry standards of The People’s Republic of China:Standard of classification for drought severity (SL424-2008). Beijing: China Water & Power Press, 2009: 1-4. (in Chinese)
[22]
朱新开, 周君良, 封超年, 郭文善, 彭永欣. 不同类型专用小麦籽粒蛋白质及其组分含量变化动态差异分析. 作物学报, 2005, 31(3): 342-347.
ZHU X K, ZHOU J L, FENG C N, GUO W S, PENG Y X. Differences of protein and its component accumulation in wheat for different end uses. Acta Agronomica Sinica, 2005, 31(3): 342-347. (in Chinese)
[23]
赵海燕, 赵丽洁, 韩根兰, 王江, 王子建, 聂萌恩, 杜慧玲, 原向阳, 董淑琦. 氮锌配施对谷子根系形态及锌含量的影响. 作物杂志, 2023(4): 152-158.
ZHAO H Y, ZHAO L J, HAN G L, WANG J, WANG Z J, NIE M E, DU H L, YUAN X Y, DONG S Q. Effects of nitrogen and zinc application on root morphology and zinc content in foxtail millet. Crops, 2023(4): 152-158. (in Chinese)
[24]
许振柱, 于振文, 王东, 张永丽. 灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响. 作物学报, 2003, 29(5): 682-687.
XU Z Z, YU Z W, WANG D, ZHANG Y L. Effect of irrigation conditions on protein composition accumulation of grain and its quality in winter wheat. Acta Agronomica Sinica, 2003, 29(5): 682-687. (in Chinese)
[25]
VAN DE VONDEL J, LAMBRECHT M A, DELCOUR J A. Osborne extractability and chromatographic separation of protein from quinoa (Chenopodium quinoa Willd.) wholemeal. LWT, 2020, 126: 109321.
[26]
张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响. 作物学报, 2023, 49(9): 2539-2551.

doi: 10.3724/SP.J.1006.2023.21062
ZHANG L H, ZHANG J T, DONG Z Q, HOU W B, ZHAI L C, YAO Y R, L H, ZHAO Y A, JIA X L. Effect of water management on yield and its components of winter wheat in different precipitation years. Acta Agronomica Sinica, 2023, 49(9): 2539-2551. (in Chinese)
[27]
马耕, 张盼盼, 王晨阳, 刘卫星, 张美微, 马冬云, 谢迎新, 朱云集, 郭天财. 高产小麦花后植株氮素累积、转运和产量的水氮调控效应. 麦类作物学报, 2015, 35(6): 798-805.
MA G, ZHANG P P, WANG C Y, LIU W X, ZHANG M W, MA D Y, XIE Y X, ZHU Y J, GUO T C. Regulation effect of irrigation and nitrogen on post-anthesis nitrogen accumulation, translocation and grain yield of high-yield wheat. Journal of Triticeae Crops, 2015, 35(6): 798-805. (in Chinese)
[28]
代新俊. 氮肥运筹方式对冬小麦植株氮代谢及产量品质的影响[D]. 太谷: 山西农业大学, 2019.
DAI X J. Effects of nitrogen application on nitrogen accumulation and grain yield and quality of winter wheat[D]. Taigu: Shanxi Agricultural University, 2019. (in Chinese)
[29]
ZHANG Z, YU Z W, ZHANG Y L, SHI Y. Optimized nitrogen fertilizer application strategies under supplementary irrigation improved winter wheat (Triticum aestivum L.)yield and grain protein yield. PeerJ, 2021, 9: e11467.
[30]
XIA H Y, XUE Y F, LIU D Y, KONG W L, XUE Y H, TANG Y Y, LI J, LI D, MEI P P. Rational application of fertilizer nitrogen to soil in combination with foliar Zn spraying improved Zn nutritional quality of wheat grains. Frontiers in Plant Science, 2018, 9: 677.

doi: 10.3389/fpls.2018.00677 pmid: 29881394
[31]
王文杰, 刘玉秀, 张正茂, 姜宗昊. 灌水对黑小麦产量和籽粒微量元素含量的影响. 西北农业学报, 2020, 29(10): 1510-1519.
WANG W J, LIU Y X, ZHANG Z M, JIANG Z H. Effect of irrigation on yield and trace element content in grains of black wheat. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(10): 1510-1519. (in Chinese)
[32]
LI M, WANG S X, TIAN X H, ZHAO J H, LI H Y, GUO C H, CHEN Y L, ZHAO A Q. Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P. Journal of Cereal Science, 2015, 61: 26-32.
[33]
常旭虹, 赵广才, 王德梅, 杨玉双, 马少康, 李振华, 李辉利, 贾二红, 陈枫. 生态环境与施氮量协同对小麦籽粒微量元素含量的影响. 植物营养与肥料学报, 2014, 20(4): 885-895.
CHANG X H, ZHAO G C, WANG D M, YANG Y S, MA S K, LI Z H, LI H L, JIA E H, CHEN F. Effects of ecological environment and nitrogen application rate on microelement contents of wheat grain. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 885-895. (in Chinese)
[34]
惠晓丽, 王朝辉, 罗来超, 马清霞, 王森, 戴健, 靳静静. 长期施用氮磷肥对旱地冬小麦籽粒产量和锌含量的影响. 中国农业科学, 2017, 50(16): 3175-3185. doi:10.3864/j.issn.0578-1752.2017.16.011.
HUI X L, WANG Z H, LUO L C, MA Q X, WANG S, DAI J, JIN J J. Winter wheat grain yield and Zn concentration affected by long-term N and P application in dryland. Scientia Agricultura Sinica, 2017, 50(16): 3175-3185. doi:10.3864/j.issn.0578-1752.2017.16.011. (in Chinese)
[35]
KUTMAN U B, KUTMAN B Y, CEYLAN Y, ALI OVA E, CAKMAK I. Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant and Soil, 2012, 361(1): 177-187.
[36]
LI Y, YIN Y P, ZHAO Q, WANG Z L. Changes of glutenin subunits due to water-nitrogen interaction influence size and distribution of glutenin macropolymer particles and flour quality. Crop Science, 2011, 51(6): 2809-2819.
[37]
石玉, 张永丽, 于振文. 施氮量对不同品质类型小麦子粒蛋白质组分含量及加工品质的影响. 植物营养与肥料学报, 2010, 16(1): 33-40.
SHI Y, ZHANG Y L, YU Z W. Effects of nitrogen fertilization on protein components contents and processing quality of different wheat genotypes. Plant Nutrition and Fertilizer Science, 2010, 16(1): 33-40. (in Chinese)
[38]
赵长星, 马东辉, 王月福, 林琪, 吴钢, 邵宏波, Cheruth Abdul JALEEL. 施氮量和花后土壤含水量对优质强筋小麦产量和品质的影响. 生态学报, 2008, 28(9): 4396-4404.
ZHAO C X, MA D H, WANG Y F, LIN Q, WU G, SHAO H B, JALEEL C A. Effects of nitrogen fertilizer rate and post-anthesis soil water content on yield and quality of high-quality strong gluten wheat. Acta Ecologica Sinica, 2008, 28(9): 4396-4404. (in Chinese)
[39]
李秋霞, 王晨阳, 马冬云, 谢迎新, 刘卫星, 朱云集, 郭天财. 灌水及施氮对高产区小麦产量及品质性状的影响. 麦类作物学报, 2014, 34(1): 102-107.
LI Q X, WANG C Y, MA D Y, XIE Y X, LIU W X, ZHU Y J, GUO T C. Effects of irrigation and nitrogen application on grain yield, protein content and quality traits of winter wheat in high-yielding area. Journal of Triticeae Crops, 2014, 34(1): 102-107. (in Chinese)
[40]
周栋, 于琦, 李敖, 李军. 施氮量对渭北旱地冬小麦产量和籽粒品质的影响. 麦类作物学报, 2020, 40(7): 818-825.
ZHOU D, YU Q, LI A, LI J. Effect of nitrogen application rate on winter wheat yield and grain quality in Weibei dryland. Journal of Triticeae Crops, 2020, 40(7): 818-825. (in Chinese)
[1] YANG YongQing, HU PengJu, SONG YaHui, JIN XinXin, SU Qiao, WANG Jin. QTL Mapping of Quality Traits for A Peanut Germplasm SW9721-3 with Ultra-High Oil Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 635-646.
[2] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[3] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[4] WU LiDong, LIN ShuTing, QIU YinHui, LIU YaTing, ZHANG Rui, LI YongQing, SHANG Wei, ZHONG LiuQing. Variation of Different Drying Methods on the Quality of Capsicum annuum L. [J]. Scientia Agricultura Sinica, 2025, 58(3): 582-599.
[5] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[6] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[7] LI PeiSong, LU YongDi, GUO Yu, ZHANG QiPeng, LIU TaoFen, WANG TianHe, YANG MingFeng, XIANG Dao, TIAN JingShan, ZHANG WangFeng. The Regional Distribution of Raw Cotton Quality in Xinjiang Based on Notarized Inspection Data for Cotton [J]. Scientia Agricultura Sinica, 2025, 58(1): 58-74.
[8] GAO XingXiang, KONG Yuan, ZHANG YaoZhong, LI Mei, LI Jian, JIN Yan, ZHANG GuoFu, LIU ShuaiShuai, LIU MingPing, ZENG Yan, BAI LianYang. Analysis on Distribution and Change of Weed Community in Winter Wheat Field in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 91-100.
[9] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[10] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[11] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[12] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[13] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[14] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[15] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!