Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2390-2403.doi: 10.3864/j.issn.0578-1752.2024.12.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Fertilization and Deep Plough on Crop Potassium Utilization and Soil Potassium Forms in Maize-Sorghum Rotation System

YANG WenHui(), LUO HaoCheng, DONG ErWei, WANG JinSong, WANG Yuan, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan()   

  1. College of Resources & Environment, Shanxi Agricultural University/Key Laboratory of Organic Dry Farming, Ministry of Agriculture and Rural Affairs, Taiyuan 030031
  • Received:2023-08-19 Accepted:2023-10-09 Online:2024-06-16 Published:2024-06-25
  • Contact: JIAO XiaoYan

Abstract:

【Objective】 The effects of long-term different fertilizations and deep plough on grain yield, potassium utilization, potassium forms in soil profile and non-exchange potassium release in maize-sorghum rotation system was evaluated to provide the theoretical basis for potassium nutrient management. 【Method】The experiment was conducted in Jinzhong city of Shanxi Province from 2011 to 2022. There were 6 treatments: no fertilizer (CK), NP, NPK, straw return and manure (MS), NPK with MS (NPKMS) and NPKMS with deep plough for 30 cm (NPKMSD). The influences of different treatments on grain yield, potassium uptake, potassium apparent utilization efficiency (KUE), potassium agronomy utilization efficiency (KAUE) and kinetics of non-exchange release were investigated. 【Result】Compared with NP and NPK treatments, the accumulative grain yield was increased 6%-8% under MS, NPKMS and NPKMSD, whereas potassium uptake was promoted 22%-43%. Moreover, the values of PAUE produced by NPKMS and NPKMSD were only half under NPK and MS treatments. The available K content of 0-20 cm soil layer under MS, NPKMS and NPKMSD treatments were 2.2 to 2.8 times higher than those under CK, NP and NPK treatments. Meanwhile, the slow available K was increased 8%-10%. The deep plough enhanced available K content of 20-40 cm soil layer. The K uptake aboveground was more related to available K content of both 0-20 cm and 20-40 cm soil layer and slow available K content of 20-40 cm soil layer. When the soil non-exchangeable K was extracted by CaCl2, the accumulative amount of K released under NPK, MS, NPKMS, and NPKMSD were 1.04, 1.77, 1.99, and 1.81 times than that under NP treatment, respectively, while these values were 1.05, 1.41, 1.85, and 1.63 times under NP treatment when soil non-exchangeable K was extracted by citric acid. 【Conclusion】 Taken together, straw return and manure could activate soil potassium. Thus soil available K content, slow available K content, KUE and KAUE were improved relative to NPK treatments when total potassium input was comparative for 12-years. NPK with MS treatments could induce potassium luxury absorption and resulted in low values of KUE and KAUE. Deep plough could increase subsoil available K content, but its impact on accumulative grain yield was not noticed. Straw return and manure increased cumulative non-exchangeable potassium release amount and release rates. Therefore long-term combination of straw return and appropriate amount manure could substitute chemical potassium fertilizer.

Key words: long-term fertilization, deep plough, potassium balance of soil, potassium forms, soil non-exchangeable potassium release, maize-sorghum rotation, straw return, manure

Table 1

The amount of straw returned and its K content under different fertilization treatments from 2011-2022"

年度
Year
秸秆还田量
The amount of straw returned to the field (kg·hm-2)
秸秆钾含量
K content of straw (%)
CK NP NPK MS NPKMS NPKMSD CK NP NPK MS NPKMS NPKMSD
2011 0 0 0 0 0 0 0 0 0 0 0 0
2012 0 0 0 5771.70 5960.95 6055.55 0 0 0 1.14 1.14 1.14
2013 0 0 0 9960.15 11064.80 11165.00 0 0 0 1.24 1.93 1.80
2014 0 0 0 7032.10 8305.75 8276.05 0 0 0 0.75 0.94 0.97
2015 0 0 0 9013.95 9562.60 9919.20 0 0 0 2.24 2.93 2.80
2016 0 0 0 5847.50 6227.10 6220.30 0 0 0 1.71 1.82 1.74
2017 0 0 0 4888.35 5613.15 4973.30 0 0 0 2.12 2.52 2.37
2018 0 0 0 7572.45 7278.95 8446.60 0 0 0 1.84 1.87 1.73
2019 0 0 0 5752.35 4860.75 5710.55 0 0 0 3.89 3.30 3.68
2020 0 0 0 6327.45 6087.15 5375.50 0 0 0 1.68 2.12 1.81
2021 0 0 0 6247.80 6509.30 6141.70 0 0 0 2.67 2.53 2.92
2022 0 0 0 6457.45 6257.65 6725.65 0 0 0 2.35 2.83 2.33
2011-
2022
0 0 0 74871.25 77728.15 79009.40 0 0 0 1.92 2.14 2.08

Fig. 1

Effects of fertilization and deep plough on grain yield and K uptake Different lowercase letters indicate significant difference at P<0.05 among treatments"

Table 2

Effects of fertilization and deep plough on soil K surplus and K use efficiency from 2011 to 2022"

处理
Treatment
钾素投入总量
Total K input
(kg·hm-2)
钾素输出总量
Total K output
(kg·hm-2)
钾素表观平衡量
Apparent K balance
(kg·hm-2)
钾利用效率
K utilization efficiency
(%)
钾素农学利用效率
Agronomic utilization efficiency of K (kg·kg-1)
CK 0 1337.85±18.8c -1337.85±18.84d - -
NP 0 1861.10±9.81b -1861.10±9.81e - -
NPK 743.76 1910.20±15.83a -1166.44±15.83c 7.34±2.25c 15.88±0.09a
MS 825.93 678.85±8.77e 147.08±8.77b 58.96±1.49a 15.26±0.03a
NPKMS 1569.69 734.95±1.75d 834.74±1.75a 49.39±2.95b 8.14±0.05b
NPKMSD 1569.69 700.10±5.29de 869.59±5.29a 45.57±1.50b 8.02±0.02b

Fig. 2

Effects of fertilization and deep plough on the contents of available K, slow available K and total K in 0-20, 20-40 and 40-60 cm soil layer Different lowercase letters indicate significant difference at P<0.05 among treatments"

Fig. 3

The importance of available K and slow available K in 0-20 and 20-40 cm soil layer on aboveground K uptake and its interpretation AK: Available K; SAK: Slow available K. *: P<0.05"

Fig. 4

Release characteristics of non-exchangeable K in 0-20 and 20-40 cm soil layer with different extractants"

Table 3

Effects of fertilization and deep plough on soil non-exchangeable K cumulative release amount and release rate with different extractants"

浸提剂
Extractant
土壤深度
Soil depth (cm)
处理
Treatment
累计释放量 Cumulative release amount (mg·kg-1) 释放速率 Release rate (mg·kg-1·d-1)
T1 T2 T T1 T2 T
氯化钙
CaCl2
0-20 CK 121.91c 70.30b 192.20c 59.71c 8.79b 19.14c
NP 112.45c 67.67b 180.13c 55.08c 8.46b 17.94c
NPK 118.01c 69.95b 187.96c 57.80c 8.74b 18.72c
MS 208.30b 111.03a 319.33b 102.03b 13.88a 31.80b
NPKMS 240.42a 119.04a 359.46a 117.75a 14.88a 35.80a
NPKMSD 212.05b 115.29a 327.35ab 103.86b 14.41a 32.60ab
平均Mean 168.86 92.21 261.07 82.71 11.53 26.00
20-40 CK 104.72c 64.95a 169.67c 51.29c 8.12a 16.90c
NP 111.93bc 70.60a 182.53bc 54.82bc 8.82a 18.18bc
NPK 103.77c 62.70a 166.48c 50.83c 7.84a 16.58c
MS 130.88ab 73.21a 204.09ab 64.10ab 9.15a 20.32ab
NPKMS 135.10a 73.46a 208.57ab 66.17a 9.18a 20.77ab
NPKMSD 145.22a 75.58a 220.80a 71.13a 9.45a 21.99a
平均Mean 121.94 70.08 192.02 59.72 8.76 19.12
柠檬酸
Citric acid
0-20 CK 141.81c 188.73c 330.54d 69.46c 23.59c 32.92d
NP 129.73c 174.71c 304.44d 63.54c 21.84c 30.32d
NPK 145.49c 173.83c 319.32d 71.26c 21.73c 31.80d
MS 207.45b 222.58b 430.03c 101.61b 27.82b 42.82c
NPKMS 285.37a 278.03a 563.40a 139.77a 34.75a 56.11a
NPKMSD 253.51a 241.30b 494.80b 124.17a 30.16b 49.28b
平均Mean 193.89 213.20 407.09 94.97 26.65 40.54
20-40 CK 129.43b 185.62ab 315.05bc 63.39c 23.20ab 31.37bc
NP 144.28b 190.39a 334.67ab 70.67bc 23.80ab 33.33ab
NPK 128.83b 166.77ab 295.60c 63.10c 20.85bc 29.44c
MS 143.62b 180.15ab 323.77bc 70.34bc 22.52abc 32.24bc
NPKMS 150.41b 159.77b 310.18bc 73.67b 19.97c 30.89bc
NPKMSD 173.05a 192.51a 365.56a 84.76a 24.06a 36.40a
平均Mean 144.94 179.20 324.14 70.99 22.40 32.28

Table 4

Fitting model of non-exchangeable K release under different extractants"

浸提剂
Extractant
土壤深度
Soil depth (cm)
处理
Treatment
一级动力学方程 First-order reaction 抛物线扩散 Parabolic diffusion 零级反应 Zero-order reaction
0-49 h 49-241 h 0-241 h 0-49 h 49-241 h 0-241 h 0-49 h 49-241 h 0-241 h
R2 SE R2 SE R2 SE R2 SE R2 SE R2 SE R2 SE R2 SE R2 SE
氯化钙
CaCl2
0-20 CK 0.9668 4.72 0.9393 5.99 0.9536 7.30 0.9992 1.05 0.9922 1.97 0.9966 2.06 0.9174 7.26 0.9769 5.08 0.9152 10.81
NP 0.9709 3.74 0.9462 4.50 0.9643 5.31 0.9978 1.37 0.9809 2.94 0.9921 3.13 0.9327 6.22 0.9703 5.96 0.8993 11.44
NPK 0.9812 3.13 0.9570 4.65 0.9691 5.98 0.9983 1.09 0.9852 2.69 0.9938 2.80 0.9454 5.57 0.9734 5.90 0.9085 11.03
MS 0.9833 5.22 0.9431 8.63 0.9624 9.19 0.9977 2.98 0.9892 3.08 0.9935 4.53 0.9481 9.85 0.9896 8.02 0.8975 19.38
NPKMS 0.9938 4.15 0.9466 9.76 0.9643 10.22 0.9971 3.45 0.9936 2.70 0.9946 4.66 0.9590 9.75 0.9874 8.29 0.8974 21.28
NPKMSD 0.9911 4.05 0.9100 11.97 0.9379 11.99 0.9929 3.19 0.9967 1.89 0.9980 2.52 0.9588 8.66 0.9965 4.84 0.9253 16.64
平均 Mean 0.9812 4.17 0.9404 7.58 0.9586 8.33 0.9972 2.19 0.9896 2.55 0.9948 3.28 0.9436 7.89 0.9823 6.35 0.9072 15.10
20-40 CK 0.9655 3.75 0.9400 5.17 0.9565 6.10 0.9999 0.79 0.9918 1.84 0.9968 1.85 0.9282 6.09 0.9654 3.95 0.9151 9.91
NP 0.9879 2.62 0.9320 5.52 0.9519 6.87 0.9955 1.73 0.9862 2.61 0.9941 2.76 0.9564 5.12 0.9548 4.92 0.9093 11.27
NPK 0.9771 3.23 0.9574 4.78 0.9687 5.62 0.9981 0.75 0.9892 2.05 0.9956 2.08 0.9374 5.44 0.9624 3.98 0.9124 9.74
MS 0.9914 2.64 0.9568 5.37 0.9705 5.78 0.9946 2.13 0.9929 1.99 0.9947 2.84 0.9581 5.72 0.9653 4.47 0.9016 12.59
NPKMS 0.9972 1.52 0.9446 6.78 0.9587 8.38 0.9877 3.08 0.9912 2.26 0.9940 3.10 0.9729 4.68 0.9599 4.92 0.9005 12.92
NPKMSD 0.9898 2.95 0.8920 8.89 0.9236 9.66 0.9965 2.12 0.9952 1.66 0.9961 2.76 0.9557 6.52 0.9758 3.97 0.9032 13.18
平均 0.9848 2.79 0.9371 6.09 0.9550 7.07 0.9954 1.77 0.9911 2.07 0.9952 2.57 0.9515 5.59 0.9639 4.37 0.9070 11.60
柠檬酸
Citric acid
0-20 CK 0.9820 4.95 0.9315 19.25 0.9309 25.71 0.9296 8.81 0.9967 3.33 0.9716 13.88 0.9810 4.88 0.9925 5.45 0.9842 10.46
NP 0.9979 1.45 0.9228 18.45 0.9231 23.89 0.9729 5.69 0.9970 3.30 0.9712 12.90 0.9906 3.11 0.9955 3.94 0.9889 8.14
NPK 0.9718 5.50 0.9073 18.24 0.9226 21.65 0.9355 10.13 0.9936 4.37 0.9805 11.52 0.9792 4.95 0.9960 3.69 0.9804 11.12
MS 0.9989 1.64 0.9241 22.70 0.9271 31.49 0.9747 8.23 0.9988 1.77 0.9829 13.71 0.9905 4.52 0.9875 8.39 0.9778 15.26
NPKMS 0.9999 1.71 0.9419 24.80 0.9466 35.45 0.9636 12.94 0.9976 4.26 0.9902 13.06 0.9929 5.71 0.9763 14.41 0.9586 27.49
NPKMSD 0.9982 2.58 0.9275 25.00 0.9356 33.09 0.9502 13.21 0.9992 1.93 0.9885 11.80 0.9959 3.17 0.9856 9.78 0.9647 21.97
平均 Mean 0.9914 2.97 0.9258 21.41 0.9310 28.55 0.9544 9.84 0.9972 3.16 0.9808 12.81 0.9884 4.39 0.9889 7.61 0.9758 15.74
20-40 CK 0.9911 366.40 0.9228 19.06 0.9234 24.28 0.9906 3.69 0.9937 4.91 0.9658 14.82 0.9748 5.06 0.9974 3.13 0.9929 6.69
NP 0.9796 380.43 0.9220 20.10 0.9228 25.80 0.9943 3.20 0.9955 3.90 0.9738 13.66 0.9536 7.54 0.9961 3.91 0.9881 8.94
NPK 0.9956 333.57 0.9141 17.39 0.9198 21.98 0.9632 5.51 0.9946 3.95 0.9704 12.45 0.9909 2.85 0.9968 3.16 0.9898 7.37
MS 0.9994 363.69 0.9100 18.51 0.9172 24.02 0.9720 6.14 0.9964 3.15 0.9761 12.44 0.9912 3.25 0.9937 4.74 0.9855 9.73
NPKMS 0.9998 331.77 0.9155 18.32 0.9226 22.19 0.9615 6.72 0.9880 4.63 0.9734 11.37 0.9925 3.12 0.9909 5.22 0.9815 10.09
NPKMSD 0.9965 398.25 0.9303 19.47 0.9346 25.23 0.9804 5.64 0.9985 2.17 0.9843 11.03 0.9795 5.88 0.9917 5.91 0.9773 13.36
平均 Mean 0.9937 362.35 0.9191 18.81 0.9234 23.92 0.9770 5.15 0.9945 3.78 0.9740 12.63 0.9804 4.62 0.9944 4.34 0.9858 9.36
[1]
REGMI A, LADHA J, PASUQUIN E, PATHAK H, HOBBS P, SHRESTHA L, GHARTI D, DUVEILLER E. The role of potassium in sustaining yields in a long-term rice-wheat experiment in the Indo-Gangetic Plains of Nepal. Biology and Fertility of Soils, 2002, 36(3): 240-247.
[2]
WANG X S, MI X T, SUN L Q, HE G, WANG Z H. Straw return cannot prevent soil potassium depletion in wheat fields of drylands. European Journal of Agronomy, 2023, 143: 126728.
[3]
RÖMHELD V, KIRKBY E A. Research on potassium in agriculture: needs and prospects. Plant and Soil, 2010, 335(1): 155-180.
[4]
汪宁. 浅议我国钾肥生产技术现状及未来展望. 中国石油和化工标准与质量, 2020, 40(21): 160-161, 164.
WANG N. Discussion on the present situation and future prospect of potash fertilizer production technology in China. China Petroleum and Chemical Standard and Quality, 2020, 40(21): 160-161, 164. (in Chinese)
[5]
周月, 武娜, 孙小虹. 2020年我国钾肥行业运行情况及2021年预测. 磷肥与复肥, 2021, 36(8): 1-4.
ZHOU Y, WU N, SUN X H. The operation of China.s potash fertilizer industry in 2020 and the forecast for 2021. Phosphate & Compound Fertilizer, 2021, 36(8): 1-4. (in Chinese)
[6]
农业部新闻办公室. 我国主要农作物秸秆综合利用率超过80%[EB/OL]. http://www.moa.gov.cn/zwllm/zwdt/201605/t20160526_5151375.htm 2016-05-26.
News Office of Ministry of Agriculture. The comprehensive utilization rate of main crop straw was over 80 percent[EB/OL]. http://www.moa.gov.cn/zwllm/zwdt/201605/t20160526_5151375.htm 2016-05-26. (in Chinese)
[7]
高静, 朱捷, 黄益国, 张明, 张瑞春, 彭亚琼. 农作物秸秆还田研究进展. 作物研究, 2019, 33(6): 597-602.
GAO J, ZHU J, HUANG Y G, ZHANG M, ZHANG R C, PENG Y Q. Discussion on the utilization methods of straw. Crop Research, 2019, 33(6): 597-602. (in Chinese)
[8]
BAI Y L, WANG L, LU Y L, YANG L P, ZHOU L P, NI L, CHENG M F. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation. Journal of Integrative Agriculture, 2015, 14(12): 2467-2476.
[9]
SINGH V K, DWIVEDI B S, SINGH S K, MISHRA R P, SHUKLA A K, RATHORE S S, SHEKHAWAT K, MAJUMDAR K, JAT M L. Effect of tillage and crop establishment, residue management and K fertilization on yield, K use efficiency and apparent K balance under rice-maize system in north-western India. Field Crops Research, 2018, 224: 1-12.
[10]
YUAN G Y, HUAN W W, SONG H, LU D J, CHEN X Q, WANG H Y, ZHOU J M. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice-wheat system. Soil and Tillage Research, 2021, 209: 104958.
[11]
李廷亮, 王宇峰, 王嘉豪, 栗丽, 谢钧宇, 李丽娜, 黄晓磊, 谢英荷. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示. 中国农业科学, 2020, 53(23): 4835-4854. doi: 10.3864/j.issn.0578-1752.2020.23.010.
LI T L, WANG Y F, WANG J H, LI L, XIE J Y, LI L N, HUANG X L, XIE Y H. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China. Scientia Agricultura Sinica, 2020, 53(23): 4835-4854. doi: 10.3864/j.issn.0578-1752.2020.23.010. (in Chinese)
[12]
ZHU D D, CONG R H, REN T, LU Z F, LU J W, LI X K. Straw incorporation improved the adsorption of potassium by increasing the soil humic acid in macroaggregates. Journal of Environmental Management, 2022, 310: 114665.
[13]
王宏庭, 金继运, 王斌, 赵萍萍. 山西褐土长期施钾和秸秆还田对冬小麦产量和钾素平衡的影响. 植物营养与肥料学报, 2010, 16(4): 801-808.
WANG H T, JIN J Y, WANG B, ZHAO P P. Effects of long-term potassium application and wheat straw return to cinnamon soil on wheat yields and soil potassium balance in Shanxi. Plant Nutrition and Fertilizer Science, 2010, 16(4): 801-808. (in Chinese)
[14]
解文艳, 周怀平, 杨振兴, 路慧英, 关春林, 武文丽. 秸秆还田方式对褐土钾素平衡与钾库容量的影响. 植物营养与肥料学报, 2015. 21(04): 936-942. doi:10.11674/zwyf.2015.0412.
XIE W Y, ZHOU H P, YANG Z X, LU H Y, GUAN C L, WU W L. Effects of straw return modes on potassium balance and potassium pool in cinnamon soil. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 936-942. doi:10.11674/zwyf.2015.0412. (in Chinese)
[15]
ZHANG Z Y, LIU D B, WU M Q, XIA Y, ZHANG F L, FAN X P. Long-term straw returning improve soil K balance and potassium supplying ability under rice and wheat cultivation. Scientific Reports, 2021, 11: 22260.

doi: 10.1038/s41598-021-01594-8 pmid: 34782658
[16]
席凯鹏, 杨苏龙, 席吉龙, 李永山, 张建诚, 武雪萍. 长期棉花秸秆配施有机肥对土壤理化性质及棉花产量的影响. 中国土壤与肥料, 2022(7): 82-90.
XI K P, YANG S L, XI J L, LI Y S, ZHANG J C, WU X P. Effects of long-term cotton straw incorporation and manure application on soil characters and cotton yield. Soil and Fertilizer Sciences in China, 2022(7): 82-90. (in Chinese)
[17]
CHU H Y, FUJII T, MORIMOTO S, LIN X G, YAGI K, HU J L, ZHANG J B. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Applied and Environmental Microbiology, 2007, 73(2): 485-491.

pmid: 17098920
[18]
蒋发辉, 钱泳其, 郭自春, 高磊, 张中彬, 曹振, 国佳欣, 刘峰, 彭新华. 基于Meta分析评价东北黑土地保护性耕作与深耕的区域适宜性:以作物产量为例. 土壤学报, 2022, 59(4): 935-952.
JIANG F H, QIAN Y Q, GUO Z C, GAO L, ZHANG Z B, CAO Z, GUO J X, LIU F, PENG X H. Evaluating the regional suitability of conservation tillage and deep tillage based on crop yield in the black soil of northeast China: a meta-analysis. Acta Pedologica Sinica, 2022, 59(4): 935-952. (in Chinese)
[19]
BOGUNOVIC I, PEREIRA P, KISIC I, SAJKO K, SRAKA M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). CATENA, 2018, 160: 376-384.
[20]
田平, 姜英, 孙悦, 马梓淇, 隋鹏祥, 梅楠, 齐华. 不同还田方式对玉米秸秆腐解及土壤养分含量的影响. 中国生态农业学报(中英文), 2019, 27(1): 100-108.
TIAN P, JIANG Y, SUN Y, MA Z Q, SUI P X, MEI N, QI H. Effect of straw return methods on maize straw decomposition and soil nutrients contents. Chinese Journal of Eco-Agriculture, 2019, 27(1): 100-108. (in Chinese)
[21]
李纯燕, 杨恒山, 萨如拉, 张瑞富, 曹倩, 张丽娟. 不同耕作措施下秸秆还田对土壤速效养分和微生物量的影响. 水土保持学报, 2017, 31(1): 197-201, 210.
LI C Y, YANG H S, SA R L, ZHANG R F, CAO Q, ZHANG L J. Effect of straw returning on soil available nutrients and microbe biomass under different tillage methods. Journal of Soil and Water Conservation, 2017, 31(1): 197-201, 210. (in Chinese)
[22]
LIU K L, HAN T, HUANG J, HUANG Q H, LI D M, HU Z H, YU X C, MUHAMMAD Q, AHMED W, HU H W, ZHANG H M. Response of soil aggregate-associated potassium to long-term fertilization in red soil. Geoderma, 2019, 352: 160-170.
[23]
侯云鹏, 刘志全, 尹彩侠, 孔丽丽, 李前, 张磊, 王立春, 徐新朋. 长期秸秆还田下基于东北水稻高产和钾素平衡的钾肥用量研究. 植物营养与肥料学报, 2020, 26(11): 2020-2031.
HOU Y P, LIU Z Q, YIN C X, KONG L L, LI Q, ZHANG L, WANG L C, XU X P. Optimum amount of potassium fertilizer based on high yield and soil potassium balance under straw return in rice production region of northeast China. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2020-2031. (in Chinese)
[24]
LI X S, LI Y F, WU T Q, QU C Y, NING P, SHI J L, TIAN X H. Potassium fertilization combined with crop straw incorporation alters soil potassium fractions and availability in northwest China: an incubation study. PLoS ONE, 2020, 15(7): e0236634.
[25]
殷志遥, 黄丽, 薛斌, 黄雅楠, 李小坤, 鲁剑巍. 连续秸秆还田对水稻土中钾素形态的影响. 土壤通报, 2017, 48(2): 351-358.
YIN Z Y, HUANG L, XUE B, HUANG Y N, LI X K, LU J W. Effect of continuous straw incorporation on forms of potassium in the paddy soils. Chinese Journal of Soil Science, 2017, 48(2): 351-358. (in Chinese)
[26]
NISHANTH D, BISWAS D R. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresource Technology, 2008, 99(9): 3342-3353.

pmid: 17905580
[27]
HOSSEINPUR A R, MOTAGHIAN H R. Application of kinetic models in describing soil potassium release characteristics and their correlations with potassium extracted by chemical methods. Pedosphere, 2013, 23(4): 482-492.
[28]
SRINIVASARAO C, RUPA T R, SUBBA RAO A, RAMESH G, BANSAL S K. Release kinetics of nonexchangeable potassium by different extractants from soils of varying mineralogy and depth. Communications in Soil Science and Plant Analysis, 2006, 37(3/4): 473-491.
[29]
ZAREIAN G, FARPOOR M H, HEJAZI-MEHRIZI M, JAFARI A. Kinetics of non-exchangeable potassium release in selected soil orders of southern Iran. Soil and Water Research, 2018, 13(4): 200-207.
[30]
杨雅, 夏贤格, 范先鹏, 夏颖, 张富林, 刘冬碧, 吴茂前, 张志毅. 长期秸秆还田提升稻麦轮作系统土壤供钾容量和强度. 植物营养与肥料学报, 2022, 28(4): 589-597.
YANG Y, XIA X G, FAN X P, XIA Y, ZHANG F L, LIU D B, WU M Q, ZHANG Z Y. Long-term straw returning increase the capacity and intensity of soil potassium supply in a rice and wheat rotation system. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 589-597. (in Chinese)
[31]
RAO C S, SWARUP A, RAO A S, GOPAL V R. Kinetics of nonexchangeable potassium release from a Tropaquept as influenced by long-term cropping, fertilisation, and manuring. Soil Research, 1999, 37(2): 317.
[32]
QIU S H, XIE J G, ZHAO S C, XU X P, HOU Y P, WANG X F, ZHOU W, HE P, JOHNSTON A M, CHRISTIE P, JIN J Y. Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China. Field Crops Research, 2014, 163: 1-9. doi:10.1016/j.fcr.2014.04.016.
[33]
HE C E, OUYANG Z, TIAN Z R, SCHAFFER H D. Yield and potassium balance in a wheat-maize cropping system of the North China plain. Agronomy Journal, 2012, 104(4): 1016-1022.
[34]
马悦, 田怡, 牟文燕, 张学美, 张露露, 于杰, 李永华, 王浩琳, 何刚, 石美, 王朝辉, 邱炜红. 北方麦区小麦产量与籽粒氮磷钾含量对监控施钾和土壤速效钾的响应. 中国农业科学, 2022, 55(16): 3155-3169. doi: 10.3864/j.issn.0578-1752.2022.16.008.
MA Y, TIAN Y, MU W Y, ZHANG X M, ZHANG L L, YU J, LI Y H, WANG H L, HE G, SHI M, WANG Z H, QIU W H. Response of wheat yield and grain nitrogen, phosphorus and potassium concentrations to test-integrated potassium application and soil available potassium in northern wheat production regions of China. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169. doi: 10.3864/j.issn.0578-1752.2022.16.008. (in Chinese)
[35]
王劲松, 白歌, 张艳慧, 申甜雨, 董二伟, 焦晓燕. 长期不同施肥处理对高粱花后叶片衰老、抗氧化酶活性及产量的影响. 作物学报, 2023, 49(3): 845-855.

doi: 10.3724/SP.J.1006.2023.24092
WANG J S, BAI G, ZHANG Y H, SHEN T Y, DONG E W, JIAO X Y. Impacts of long-term fertilization on post-anthesis leaf senescence, antioxidant enzyme activities and yield in sorghum. Acta Agronomica Sinica, 2023, 49(3): 845-855. (in Chinese)
[36]
郭鑫年, 蒙静, 田旭东, 周涛, 梁锦秀, 陈刚, 孙娇, 尹志荣, 纪立东. 钾肥用量对水稻钾素分配累积、钾肥利用效率及平衡的影响. 中国土壤与肥料, 2019(6): 154-160.
GUO X N, MENG J, TIAN X D, ZHOU T, LIANG J X, CHEN G, SUN J, YIN Z R, JI L D. Effects of potassium application on the distribution, utilization efficiency of potassium in rice and soil potassium balance. Soil and Fertilizer Sciences in China, 2019(6): 154-160. (in Chinese)
[37]
刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响. 中国农业科学, 2023, 56(4): 635-648. doi: 10.3864/j.issn.0578-1752.2023.04.004.
LIU N, XIE C, HUANG H Y, YAO R, XU S, SONG H L, YU H Q, ZHAO X H, WANG J, JIANG C J, WANG X G. Effects of potassium application on root and nodule characteristics, nutrient uptake and yield of peanut. Scientia Agricultura Sinica, 2023, 56(4): 635-648. doi: 10.3864/j.issn.0578-1752.2023.04.004. (in Chinese)
[38]
ROBINSON J B. Development of K-Fertilizer Recommendations.Proceedings of 22nd Colloquium of the International Potash Institute.[C]. Bern, Switzerland: international Potash Institute,1990.
[39]
KIRKMAN J H, BASKER A, SURAPANENI A, MACGREGOR A N. Potassium in the soils of New Zealand—a review. New Zealand Journal of Agricultural Research, 1994, 37(2): 207-227.
[40]
李娜, 韩晓日, 杨劲峰, 刘宁, 李巧宁, 房大伟. 长期施肥对棕壤矿物吸附点位钾有效性及其剖面分布的影响. 植物营养与肥料学报, 2012, 18(6): 1412-1417.
LI N, HAN X R, YANG J F, LIU N, LI Q N, FANG D W. Effects of long-term fertilization on the availability of K adsorbed by clay minerals and profile distribution in brown soil. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1412-1417. (in Chinese)
[41]
柳开楼, 黄晶, 叶会财, 韩苗, 韩天富, 宋惠洁, 胡志华, 胡丹丹, 李大明, 余喜初, 黄庆海, 李文军, 陈国钧. 长期施钾对双季玉米钾素吸收利用和土壤钾素平衡的影响. 植物营养与肥料学报, 2020, 26(12): 2235-2245.
LIU K L, HUANG J, YE H C, HAN M, HAN T F, SONG H J, HU Z H, HU D D, LI D M, YU X C, HUANG Q H, LI W J, CHEN G J. Effects of long-term potassium fertilization on potassium uptake, utilization and soil potassium balance in double maize cropping system. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2235-2245. (in Chinese)
[42]
LI C Z, ZHAO X L, LIU X W, LU D, CHEN X Q, WANG H Y, ZHOU J M. Rice and wheat yield and soil potassium changes in response to potassium management in two soil types. Nutrient Cycling in Agroecosystems, 2020, 117: 121-130.
[43]
ZHAO Z H, GAO S F, LU C Y, LI X Y, LI F, WANG T Y. Effects of different tillage and fertilization management practices on soil organic carbon and aggregates under the rice-wheat rotation system. Soil and Tillage Research, 2021, 212: 105071.
[44]
WANG Y L, WU P N, MEI F J, LING Y, QIAO Y B, LIU C S, LEGHARI S J, GUAN X K, WANG T C. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. Journal of Environmental Management, 2021, 288: 112391.
[45]
LING J, ZHOU J, WU G, ZHAO D Q, WANG Z T, WEN Y, ZHOU S L. Deep-injected straw incorporation enhances subsoil quality and wheat productivity. Plant and Soil, 2022: 1-14.
[46]
ZHU D D, ZHANG J L, WANG Z, MUHAMMAD R K, LU J W, LI X K. Soil available potassium affected by rice straw incorporation and potassium fertilizer application under a rice-oilseed rape rotation system. Soil Use and Management, 2019, 35(3): 503-510.
[47]
李华伟, 司纪升, 徐月, 李升东, 吴建军, 王法宏. 栽培技术优化对冬小麦根系垂直分布及活性的调控. 作物学报, 2015, 41(7): 1136-1144.
LI H W, SI J S, XU Y, LI S D, WU J J, WANG F H. Regulative effect of optimized cultivation practice to the root vertical distribution and activity in winter wheat. Acta Agronomica Sinica, 2015, 41(7): 1136-1144. (in Chinese)
[48]
姜佰文, 于士源, 杨贺淇, 邵慧, 刘丽红, 刘俊辉, 梁源, 迟海航, 刘国辉. 增密种植条件下苗期深松与氮肥侧深施对玉米根系生长与氮效率的影响. 东北农业大学学报, 2023, 54(6): 1-9, 19.
JIANG B W, YU S Y, YANG H Q, SHAO H, LIU L H, LIU J H, LIANG Y, CHI H H, LIU G H. Effects of deep loosening and N side-deep fertilization during seedling stage on root growth of field-grown maize under high planting density. Journal of Northeast Agricultural University, 2023, 54(6): 1-9, 19. (in Chinese)
[49]
樊芳芳, 王劲松, 董二伟, 焦晓燕, 丁玉川, 武爱莲, 郭珺, 王立革. 连作对高粱生长及根区土壤环境的影响. 中国土壤与肥料, 2016(3): 127-133.
FAN F F, WANG J S, DONG E W, JIAO X Y, DING Y C, WU A L, GUO J, WANG L G. Effects of sorghum continuous cropping on the growth of sorghum and soil environment. Soil and Fertilizer Sciences in China, 2016(3): 127-133. (in Chinese)
[50]
王瑾, 李小坤, 鲁剑巍, 王筝, 占丽平. 不同酸提取条件下几种含钾矿物中钾释放动力学研究. 中国农业科学, 2012, 45(22): 4643-4650. doi:10.3864/j.issn.0578-1752.2012.22.010.
WANG J, LI X K, LU J W, WANG Z, ZHAN L P. Study on potassium release kinetics of several K-bearing minerals by sequential extraction of different acid solution. Scientia Agricultura Sinica, 2012, 45(22): 4643-4650. doi:10.3864/j.issn.0578-1752.2012.22.010. (in Chinese)
[51]
GUO X Y, WANG H, YU Q, AHMAD N, LI J, WANG R, WANG X L. Subsoiling and plowing rotation increase soil C and N storage and crop yield on a semiarid Loess Plateau. Soil and Tillage Research, 2022, 221: 105413.
[1] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[2] MA RongHui, YANG WuJie, YU Lei, YANG ZeLong, WANG Jian, GUO YueSheng. Investigation on Potential of Replacing Chemical Fertilizer for Crop Straw and Livestock Manure Organic Fertilizer in Shandong Province [J]. Scientia Agricultura Sinica, 2024, 57(4): 721-739.
[3] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[4] SHEN WenYan, ZHANG NaiYu, LI TianJiao, SONG TianHao, ZHANG XiuZhi, PENG Chang, LIU HongFang, ZHANG ShuXiang, DUAN BiHua. Characteristics of phoD-Harboring Microbial Communities Under Long-Term Fertilization and Its Effects on Organic Phosphorus Fractions in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(20): 4082-4093.
[5] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[6] SUN Yue, REN KeYu, ZOU HongQin, GAO HongJun, ZHANG ShuiQing, LI DeJin, LI BingJie, LIAO ChuQian, DUAN YingHua, XU MingGang. Effect of Long-Term Straw Returning on the Soil Organic Carbon Bound to Iron Oxides in Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3823-3834.
[7] LI TianJiao, ZHANG NaiYu, SHEN WenYan, SONG TianHao, LIU HongFang, LIU XiaoYan, ZHANG XiuZhi, PENG Chang, YANG JinFeng, ZHANG ShuXiang. Effects of Long-Term Fertilization on Soil Aggregate Stability and Its Driving Factors in Black Soil and Brown Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3835-3847.
[8] YANG LiDa, PENG XinYue, ZHU WenXue, ZHAO Jing, YUAN XiaoTing, LIN Ping, LUO Kai, LI YiLing, LUO ChunMing, LI YuZe, YANG WenYu, YONG TaiWen. Effects of Straw Returning and Irrigation Methods on Seedling Emergence and Growth in Soybean and Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(17): 3366-3383.
[9] LIU YaJie, ZHANG TianJiao, ZHANG XiangQian, LU ZhanYuan, LIU ZhanYong, CHENG YuChen, WU Di, LI JinLong. Effects of Tillage Methods Under Straw Returning on the Labile Organic Carbon Fractions and Carbon Pool Management Index in Black Soil Farmland [J]. Scientia Agricultura Sinica, 2024, 57(17): 3408-3423.
[10] LI HaiPeng, DU WuYan, WU HanQian, ZHANG Jie, MENG HuiSheng, HONG JianPing, XU MingGang, HAO XianJun, GAO WenJun. Different Manures Affect Soil Nutrients and Bacterial Community Structure in Mining Reclamation Area [J]. Scientia Agricultura Sinica, 2024, 57(16): 3207-3219.
[11] GUAN TongTong, ZHANG Yan, TAO HaiNing, DONG Xiu, SHEN YuYing. Effects of Green Manure Return on Soil Organic Carbon Component and Carbon Invertase Enzyme Activities [J]. Scientia Agricultura Sinica, 2024, 57(14): 2791-2802.
[12] WEI QiHang, FENG Yao, WANG XiaoXing, ZHU HongGang, FANG Zhao, LI ZhaoJun. Screening of Deodorizing Bacteria and Its Application in Composting [J]. Scientia Agricultura Sinica, 2024, 57(13): 2623-2634.
[13] DONG YongJie, ZHANG Diaoliang, LI Yue, PENG JianChen, HU FaLong, YIN Wen, CHAI Qiang, FAN ZhiLong. Response of Maize Growth and Yield with Different Nitrogen Application Rates to Intercropped Leguminous Green Manure [J]. Scientia Agricultura Sinica, 2024, 57(10): 1900-1914.
[14] SHU XiaoWei, WANG ShuShen, FU Tong, WANG ZiHan, DING ZhouYu, YANG Ying, ZHAO ShiRu, ZHOU Juan, HUANG JianYe, YAO YouLi, WANG YuLong, DONG GuiChun. Response Difference and Its Cause Reasons for Simplified Panicle Fertilization in Different Rice Varieties After Wheat Straw Return [J]. Scientia Agricultura Sinica, 2024, 57(10): 1961-1978.
[15] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!