Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (21): 4150-4162.doi: 10.3864/j.issn.0578-1752.2023.21.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of Low Phosphorus Tolerant Germplasm in Cotton at Seedling Stage and Comprehensive Evaluation of Low Phosphorus Tolerance

KAYOUMU MiReZhaTiJiang1(), WUMAIERJIANG XiErAiLi1, LI XiaoTong1, WANG XiangRu1, GUI HuiPing1, ZHANG HengHeng1, ZHANG XiLing1, DONG Qiang1,2(), SONG MeiZhen1,2()   

  1. 1 Institute of Cotton, Chinese Academy of Agricultural Sciences/National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang 455000, Henan
    2 Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang
  • Received:2023-04-18 Accepted:2023-06-02 Online:2023-11-01 Published:2023-11-06
  • Contact: DONG Qiang, SONG MeiZhen

Abstract:

【Objective】To establish an evaluation system for low phosphorus tolerance in cotton varieties (lines), screen low phosphorus tolerant cotton germplasm and evaluate different types of phosphorus efficiency, and lay the foundation for studying the physiological mechanisms of low phosphorus tolerance in cotton and mining low phosphorus tolerance genes.【Method】Using 140 cotton cultivars (lines) from different cotton regions at home and abroad, 21 traits such as biomass, root-related indexes and phosphorus efficiency-related indexes were measured under low (10 μmol·L-1 KH2PO4) and normal (500 μmol·L-1 KH2PO4) phosphorus treatments in a hydroponic experiment. The index of low phosphorus stress tolerance was calculated for each index. Using the integrated affiliation function method, principal component analysis, regression analysis and cluster analysis were conducted to classify the low phosphorus tolerance of each cotton variety and to comprehensively evaluate the low phosphorus tolerance and phosphorus efficiency type of each cotton variety.【Result】Compared with the normal phosphorus treatment, the mean values of total phosphorus accumulation, total phosphorus content, aboveground dry weight and total dry matter weight of the tested cotton varieties decreased more under the low phosphorus treatment, while the mean values of root average diameter, specific root area, root tips number and phosphorus use efficiency increased. Under low phosphorus treatment, the coefficients of variation of each index ranged from 6.04% to 47.79%,the coefficients of variation of root indexes such as specific root tips density, root tips number, specific root length and root average diameter were higher than those of normal phosphorus treatment, and the coefficients of variation were 47.49%, 42.13%, 40.19% and 19.16%, respectively; the principal component analysis of the 21 indexes of low phosphorus stress tolerance showed that the cumulative variance contribution of the six principal components reached 77.21%, and the comprehensive low phosphorus tolerance value (D) was calculated using the affiliation function method. The D-value regression equation was established by multiple regression analysis to determine the six low phosphorus tolerance indices and perform systematic clustering to classify different cotton varieties (lines) into three categories: low phosphorus tolerant, intermediate and low phosphorus sensitive.【Conclusion】Total dry matter weight, phosphorus use efficiency, root fresh weight, total root length, root surface area and total phosphorus accumulation were identified as indicators for the evaluation of low phosphorus tolerance in cotton.

Key words: Gossypium hirsutum L., low phosphorus tolerance, screening index, comprehensive evaluation, phosphorus efficiency

Table 1

Trait values and low phosphorus tolerance coefficients of cotton under two phosphorus treatments"

性状
Trait
正常磷处理
Normal phosphorus
低磷处理
Low phosphorus
耐低磷系数
LP/CK (%)
平均值
Mean
标准差
SD
变异系数
CV (%)
平均值
Mean
标准差
SD
变异系数
CV (%)
平均值
Mean
标准差
SD
变异系数
CV
地上部干重ADW (g) 1.70a 0.42 24.81 0.78b 0.18 22.73 48.31 15.54 32.18
地下部干重UDW (g) 0.18b 0.05 26.04 0.22a 0.05 26.69 113.11 41.44 36.64
总干物重TDW (g) 1.88a 0.43 22.90 0.97b 0.21 21.83 54.18 16.48 30.41
主根长TRL (cm) 22.47a 3.73 16.60 22.35a 4.20 18.80 100.71 17.70 17.58
根系表面积RSA (cm2) 212.26b 66.28 31.23 232.29a 71.12 30.62 117.70 50.29 42.73
根平均体积RVE (cm3) 3.01b 1.20 39.86 3.65a 1.17 32.08 136.27 62.30 45.71
总根长TRH (cm) 1226.80a 276.94 22.57 1137.91b 297.77 26.17 97.43 34.04 34.94
根平均直径RAD (mm) 0.55b 0.10 18.80 0.67a 0.13 19.16 123.50 29.60 23.96
比根长SRL (cm·g-1) 7118.69a 2629.93 36.94 6224.08b 2501.58 40.19 97.60 48.44 49.64
比根面积SRA (cm·g-2) 1225.44a 577.74 47.15 1254.15a 526.27 41.96 115.23 58.63 50.88
根组织密度RTD (g·cm-3) 0.07a 0.03 37.89 0.06b 0.02 31.42 98.42 56.73 57.64
根尖数RTN 2182.75b 777.62 35.63 3358.09a 1414.90 42.13 174.14 99.47 57.12
比根尖密度SRTD (个/g) 12586.61b 5817.45 46.22 18046.52a 8623.77 47.79 169.34 105.26 62.16
地上部鲜重SFW (g) 11.87a 2.95 24.83 4.51b 1.12 24.94 40.00 12.94 32.34
地下部鲜重RFW (g) 2.19b 0.75 28.36 2.94a 0.55 25.26 87.86 28.36 32.28
根冠比R/S (%) 11.43b 3.55 31.02 25.78a 5.85 22.70 249.97 107.92 43.17
叶绿素相对含量SPAD 39.06a 1.48 3.80 36.92b 2.23 6.04 94.69 7.05 7.44
总磷含量TPC (mg·g-1) 0.48a 0.08 17.15 0.07b 0.02 24.02 14.45 4.26 29.50
总磷积累量TPA (g·g-1) 0.81a 0.24 29.61 0.05b 0.02 29.88 6.97 2.87 41.11
磷素利用效率PUE (g2·mg-1) 3.68b 1.21 33.02 11.93a 3.15 26.38 354.81 140.05 39.47
磷素吸收效率PUtE (mg·g-1) 2.15b 0.38 17.47 15.43a 2.59 16.77 737.33 174.98 23.73

Fig. 1

PC dispersion points of low-phosphorus tolerance index"

Table 2

Coefficient and contribution rate of comprehensive index under different phosphorus levels of cotton at seedling stage"

性状
Trait
主成分 Principal component
因子1
PC1
因子2
PC2
因子3
PC3
因子4
PC4
因子5
PC5
因子6
PC6
地上部干重ADW 0.40 0.05 0.16 -0.14 0.07 -0.06
地下部干重UDW 0.27 -0.16 -0.35 0.17 -0.06 0.18
总干物重TDW 0.42 0.04 0.10 -0.10 0.05 -0.02
主根长TRL 0.12 0.15 -0.04 0.19 -0.15 -0.14
根系表面积RSA 0.11 0.35 -0.16 0.26 -0.24 -0.03
根平均体积RVE 0.09 0.34 -0.21 0.22 -0.24 0.04
总根长TRH 0.11 0.10 0.18 -0.12 -0.20 0.74
根平均直径RAD 0.00 0.00 0.04 0.01 -0.15 -0.17
比根长SRL -0.17 0.19 0.36 -0.17 -0.13 0.39
比根面积SRA -0.16 0.40 0.15 0.08 -0.13 -0.15
根组织密度RTD 0.12 -0.41 -0.08 -0.09 0.19 0.15
根尖数RTN 0.06 0.18 -0.06 0.36 0.58 0.22
地上部鲜重SFW 0.36 0.02 0.06 0.06 -0.03 0.00
比根尖密度SRTD -0.14 0.25 0.17 0.25 0.55 0.08
地下部鲜重RFW 0.32 0.13 -0.03 0.14 -0.03 0.04
根冠比R/S -0.06 -0.19 -0.45 0.24 -0.09 0.27
叶绿素相对含量SPAD 0.12 0.00 0.01 -0.11 0.13 -0.17
总磷含量TPC 0.02 -0.24 0.32 0.41 -0.15 -0.03
总磷积累量TPA 0.32 -0.12 0.33 0.16 -0.03 -0.05
磷素利用效率PUE 0.32 0.20 -0.07 -0.33 0.13 -0.05
磷素吸收效率PUtE -0.02 0.27 -0.35 -0.37 0.12 0.04
方差贡献率 Variance contribution rate (%) 24.04 15.76 13.94 10.94 6.75 5.79
累计贡献率 Cumulative (%) 24.04 39.80 53.74 64.68 71.43 77.21

Fig 2

The correlation coefficient between the low phosphorus stress tolerance index and the comprehensive evaluation value (D) of low phosphorus tolerance in cotton seedling stage *: Significant correlation at the level of 0.05"

Table 3

Prediction of optimal model for low phosphorus tolerance in cotton varieties"

多元回归方程 Multiple regression equation 决定系数 R2 FF value PP value
D=0.13+0.48X1 0.56 357.79 ≤0.001
D=0.12+0.46X1+0.58X2 0.65 325.65 ≤0.001
D=0.11+0.44X1+0.55X2+0.36X3 0.79 432.59 ≤0.001
D=0.11+0.41X1+0.51X2+0.32X3+0.23X4 0.86 555.48 ≤0.001
D=0.09+0.38X1+0.49X2+0.29X3+0.20X4+0.25X5 0.91 574.91 ≤0.001
D=0.08+0.34X1+0.46X2+0.27X3+0.19X4+0.23X5+0.31X6 0.99 596.43 ≤0.001

Fig. 3

Phylogram of low phosphorus tolerance of different cotton varieties (lines) Class I: Low phosphorus sensitive; Class Ⅱ: Intermediate; Class Ⅲ: Low phosphorus tolerant"

Fig. 4

Systematic cluster diagram of low phosphorus tolerance of different cotton varieties (lines)"

[1]
卢秀茹, 贾肖月, 牛佳慧. 中国棉花产业发展现状及展望. 中国农业科学, 2018, 51(1): 26-36.

doi: 10.3864/j.issn.0578-1752.2018.01.003
LU X R, JIA X Y, NIU J H. The present situation and prospects of cotton industry development in China. Scientia Agricultura Sinica, 2018, 51(1): 26-36. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.01.003
[2]
庞保刚, 曹楠, 周治国, 赵文青. 不同磷敏感棉花品种临界磷浓度稀释模型与磷营养诊断. 中国农业科学, 2020, 53(22): 4561-4570.

doi: 10.3864/j.issn.0578-1752.2020.22.004
PANG B G, CAO N, ZHOU Z G, ZHAO W Q. Critical phosphorus concentration dilution model and phosphorus nutrition diagnosis in two cotton cultivars with different phosphorus sensitivity. Scientia Agricultura Sinica, 2020, 53(22): 4561-4570. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.22.004
[3]
白灯莎·买买提艾力, 孙良斌, 冯固. 不同年代棉花品种磷效率比较. 中国生态农业学报(中英文), 2020, 28(7): 1010-1021.
BAIDENGSHA·M, SUN L B, FENG G. Phosphorus efficiency comparison among cotton varieties cultivated at different times over 63 years. Chinese Journal of Eco-Agriculture, 2020, 28(7): 1010-1021. (in Chinese)
[4]
ZHOU T, DU Y L, AHMED S, LIU T, REN M L, LIU W G, YANG W Y. Genotypic differences in phosphorus efficiency and the performance of physiological characteristics in response to low phosphorus stress of soybean in southwest of China. Frontiers in Plant Science, 2016, 7: 1776.

pmid: 27933086
[5]
舒雨. 低磷对小麦叶片生长和光合作用的影响及机理研究[D]. 武汉: 华中农业大学, 2021.
SHU Y. Studies on the mechanism of the effects of low phosphorus on leaf growth and photosynthesis in wheat[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
[6]
栗振义, 张绮芯, 仝宗永, 李跃, 徐洪雨, 万修福, 毕舒贻, 曹婧, 何峰, 万里强, 李向林. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析. 中国农业科学, 2017, 50(20): 3898-3907.

doi: 10.3864/j.issn.0578-1752.2017.20.006
LI Z Y, ZHANG Q X, TONG Z Y, LI Y, XU H Y, WAN X F, BI S Y, CAO J, HE F, WAN L Q, LI X L. Analysis of morphological and physiological responses to low Pi stress in different alfalfas. Scientia Agricultura Sinica, 2017, 50(20): 3898-3907. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.20.006
[7]
刘露露, 汪军成, 姚立蓉, 孟亚雄, 李葆春, 杨轲, 司二静, 王化俊, 马小乐, 尚勋武, 李兴茂. 不同春小麦品种耐低磷性评价及种质筛选. 中国生态农业学报(中英文), 2020, 28(7): 999-1009.
LIU L L, WANG J C, YAO L R, MENG Y X, LI B C, YANG K, SI E J, WANG H J, MA X L, SHANG X W, LI X M. Evaluation of low phosphorus tolerance and germplasm screening of spring wheat. Chinese Journal of Eco-Agriculture, 2020, 28(7): 999-1009. (in Chinese)
[8]
罗园, 李东梅, 雷淼淼, 冯宗云. 青稞苗期耐低磷能力评价. 麦类作物学报, 2019, 39(12): 1450-1458.
LUO Y, LI D M, LEI M M, FENG Z Y. Evaluation of low-phosphorus tolerance of hulless barley at seedling stage. Journal of Triticeae Crops, 2019, 39(12): 1450-1458. (in Chinese)
[9]
解斌, 安秀红, 陈艳辉, 程存刚, 康国栋, 周江涛, 赵德英, 李壮, 张艳珍, 杨安. 不同苹果砧木对持续低磷的响应及适应性评价. 中国农业科学, 2022, 55(13): 2598-2612.

doi: 10.3864/j.issn.0578-1752.2022.13.010
XIE B, AN X H, CHEN Y H, CHENG C G, KANG G D, ZHOU J T, ZHAO D Y, LI Z, ZHANG Y Z, YANG A. Response and adaptability evaluation of different apple rootstocks to continuous phosphorus deficiency. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.13.010
[10]
李银银, 许更文, 李俊峰, 郭佳蓉, 王志琴, 杨建昌. 水稻品种的耐低磷性及其农艺生理性状. 中国水稻科学, 2018, 32(1): 51-66.

doi: 10.16819/j.1001-7216.2018.7047
LI Y Y, XU G W, LI J F, GUO J R, WANG Z Q, YANG J C. Tolerance to low phosphorus and its agronomic and physiological characteristics of rice cultivars. Chinese Journal of Rice Science, 2018, 32(1): 51-66. (in Chinese)

doi: 10.16819/j.1001-7216.2018.7047
[11]
林海建, 张志明, 高世斌, 潘光堂. 玉米耐低磷研究现状及磷高效育种策略的探讨. 中国农学通报, 2008, 24(1): 181-185.
LIN H J, ZHANG Z M, GAO S B, PAN G T. The research actuality of maize (Zea mays L.) tolerance to low phosphorus and the strategy of high phosphorus efficiency breeding. Chinese Agricultural Science Bulletin, 2008, 24(1): 181-185. (in Chinese)
[12]
刘灵, 廖红, 王秀荣, 严小龙. 不同根构型大豆对低磷的适应性变化及其与磷效率的关系. 中国农业科学, 2008, 41(4): 1089-1099.
LIU L, LIAO H, WANG X R, YAN X L. Adaptive changes of soybean genotypes with different root architectures to low phosphorus availability as related to phosphorus efficiency. Scientia Agricultura Sinica, 2008, 41(4): 1089-1099. (in Chinese)
[13]
郑金凤, 米少艳, 婧姣姣, 白志英, 李存东. 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013, 46(10): 1984-1993.

doi: 10.3864/j.issn.0578-1752.2013.10.003
ZHENG J F, MI S Y, JING J J, BAI Z Y, LI C D. Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low phosphorus stress in wheat substitution. Scientia Agricultura Sinica, 2013, 46(10): 1984-1993. (in Chinese)
[14]
李卫华. 棉花磷素高效利用品种筛选及机理的初步研究[D]. 乌鲁木齐: 新疆农业大学, 2010.
LI W H. Research on phosphorus efficient genotypes of cotton varieties screening and its mechanism[D]. Urumqi: Xinjiang Agricultural University, 2010. (in Chinese)
[15]
IQBAL A, GUI H P, ZHANG H H, WANG X R, PANG N C, DONG Q A, SONG M Z. Genotypic variation in cotton genotypes for phosphorus-use efficiency. Agronomy, 2019, 9(11): 689.

doi: 10.3390/agronomy9110689
[16]
WU A J, FANG Y, LIU S, WANG H, XU B C, ZHANG S Q, DENG X P, PALTA J A, SIDDIQUE K H, CHEN Y L. Root morphology and rhizosheath acid phosphatase activity in legume and graminoid species respond differently to low phosphorus supply. Rhizosphere, 2021, 19: 100391.

doi: 10.1016/j.rhisph.2021.100391
[17]
WEN Z H, PANG J Y, TUEUX G, LIU Y F, SHEN J B, RYAN M H, LAMBERS H, SIDDIQUE K H M. Contrasting patterns in biomass allocation, root morphology and mycorrhizal symbiosis for phosphorus acquisition among 20 chickpea genotypes with different amounts of rhizosheath carboxylates. Functional Ecology, 2020, 34(7): 1311-1324.

doi: 10.1111/fec.v34.7
[18]
KAYOUMU M, LI X T, IQBAL A, WANG X R, GUI H P, QI Q, RUAN S J, GUO R S, DONG Q, ZHANG X L, SONG M Z. Genetic variation in morphological traits in cotton and their roles in increasing phosphorus-use-efficiency in response to low phosphorus availability. Frontiers in Plant Science, 2022, 13: 1051080.

doi: 10.3389/fpls.2022.1051080
[19]
张锡洲, 阳显斌, 李廷轩, 郑子成, 林玲, 杨顺平. 不同磷效率小麦对磷的吸收及根际土壤磷组分特征差异. 中国农业科学, 2012, 45(15): 3083-3092.

doi: 10.3864/j.issn.0578-1752.2012.15.009
ZHANG X Z, YANG X B, LI T X, ZHENG Z C, LIN L, YANG S P. Characteristics of phosphorus uptake and phosphorus fractions in the rhizosphere among different phosphorus efficiency wheat cultivars. Scientia Agricultura Sinica, 2012, 45(15): 3083-3092. (in Chinese)
[20]
OUMA E O. Evaluating heritability and relationships among phosphorus efficiency traits in maize under low P soils of western Kenya. Current Journal of Applied Science and Technology, 2021, 40(11): 83-96.
[21]
罗佳, 候银莹, 程军回, 王宁宁, 陈波浪. 低磷胁迫下不同磷效率基因型棉花的根系形态特征. 中国农业科学, 2016, 49(12): 2280-2289.

doi: 10.3864/j.issn.0578-1752.2016.12.004
LUO J, HOU Y Y, CHENG J H, WANG N N, CHEN B L. Root morphological characteristics of cotton genotypes with different phosphorus efficiency under phosphorus stress. Scientia Agricultura Sinica, 2016, 49(12): 2280-2289. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.12.004
[22]
龚丝雨, 梁喜欢, 钟思荣, 杨帅强, 张世川, 朱肖文, 王朝, 刘齐元. 苗期耐低磷烟草基因型筛选及其磷效率. 植物营养与肥料学报, 2019, 25(4): 661-670.
GONG S Y, LIANG X H, ZHONG S R, YANG S Q, ZHANG S C, ZHU X W, WANG Z, LIU Q Y. Screening of tobacco genotypes tolerant to low-phosphorus and their phosphorus efficiency at tobacco seedling stage. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 661-670. (in Chinese)
[23]
杨春婷, 张永清, 马星星, 陈伟, 董璐, 张楚, 路之娟. 苦荞耐低磷基因型筛选及评价指标的鉴定. 应用生态学报, 2018, 29(9): 2997-3007.

doi: 10.13287/j.1001-9332.201809.021
YANG C T, ZHANG Y Q, MA X X, CHEN W, DONG L, ZHANG C, LU Z J. Screening genotypes and identifying indicators of different Fagopyrum tataricum varieties with low phosphorus tolerance. Chinese Journal of Applied Ecology, 2018, 29(9): 2997-3007. (in Chinese)
[24]
周卫丰, 史春阳, 葛永胜, 丁艳, 胡训霞, 刘璟, 王泽港, 葛才林. 水稻耐低磷根系形态重塑基因挖掘及功能分析. 扬州大学学报 (农业与生命科学版), 2022, 43(3): 1-11.
ZHOU W F, SHI C Y, GE Y S, DING Y, HU X X, LIU J, WANG Z G, GE C L. Gene mining and functional analysis of root morphological remodeling tolerant to low phosphorus in rice. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(3): 1-11. (in Chinese)
[25]
刘允熙, 罗佳佳, 雷健, 刘国道, 刘攀道. 柱花草磷高效种质筛选及根系形态对低磷胁迫的响应分析. 草地学报, 2021, 29(5): 876-883.

doi: 10.11733/j.issn.1007-0435.2021.05.003
LIU Y X, LUO J J, LEI J, LIU G D, LIU P D. Screening of phosphorus efficiency germplasm and analysis of root morphology responding to phosphorus deficiency in Stylosanthes guianensis. Acta Agrestia Sinica, 2021, 29(5): 876-883. (in Chinese)
[26]
易科, 杨曙, 孔吴俊, 陈迪文, 谢璐, 唐新莲, 黎晓峰, 赵尊康. 基于根系形态及空间分布的甘蔗磷高效吸收特征分析. 江西农业大学学报, 2022, 44(6): 1362-1372.
YI K, YANG S, KONG W J, CHEN D W, XIE L, TANG X L, LI X F, ZHAO Z K. Analysis of efficient phosphorus absorption characteristic based on root morphology and spatial distribution in sugarcane. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(6): 1362-1372. (in Chinese)
[27]
潘新雅, 李军保, 陈阳, 王鹏飞, 卫先伟, 李瑞, 刘佳茜, 郑智龙, 徐炳成, 王智. 6个紫花苜蓿品种根系形态结构对低磷胁迫的响应. 草地学报, 2021, 29(11): 2494-2504.

doi: 10.11733/j.issn.1007-0435.2021.11.015
PAN X Y, LI J B, CHEN Y, WANG P F, WEI X W, LI R, LIU J X, ZHENG Z L, XU B C, WANG Z. Response of root morphology and anatomical structure of six alfalfa cultivars to phosphorus deficiency. Acta Agrestia Sinica, 2021, 29(11): 2494-2504. (in Chinese)
[28]
乔胜锋, 邓亚萍, 瞿寒冰, 张伟杨, 顾骏飞, 张耗, 刘立军, 王志琴, 杨建昌. 不同籼稻品种对低磷响应的差异及其农艺生理性状. 中国水稻科学, 2021, 35(4): 396-406.

doi: 10.16819/j.1001-7216.2021.210304
QIAO S F, DENG Y P, QU H B, ZHANG W Y, GU J F, ZHANG H, LIU L J, WANG Z Q, YANG J C. Differences in response to low phosphorus stress among indica rice varieties and their agronomic and physiological characteristics. Chinese Journal of Rice Science, 2021, 35(4): 396-406. (in Chinese)
[29]
任盼荣, 汪军成, 姚立蓉, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦种质资源磷利用效率的评价及其转录组分析. 大麦与谷类科学, 2018, 35(4): 56-57.
REN P R, WANG J C, YAO L R, SI E J, YANG K, MENG Y X, LI B C, MA X L, WANG H J. Evaluation of phosphorus use efficiency and transcriptome analysis in barley germplasm (Hordeum vulgare L.). Barley and Cereal Sciences, 2018, 35(4): 56-57. (in Chinese)
[30]
刘鹏, 武爱莲, 王劲松, 南江宽, 董二伟, 焦晓燕, 平俊爱. 不同基因型高粱的磷效率和磷素转运特性研究. 山西农业科学, 2018, 46(3): 344-349.
LIU P, WU A L, WANG J S, NAN J K, DONG E W, JIAO X Y, PING J A. Study on phosphorus use efficiency and phosphorus remobilization characteristics of four different Sorghum genotypes. Journal of Shanxi Agricultural Sciences, 2018, 46(3): 344-349. (in Chinese)
[31]
李小莉, 胡安永, 王嘉林, 肖珣, 沈仁芳, 赵学强. 酸性土壤上不同水稻品种耐低磷差异研究. 江西农业学报, 2022, 34(5): 102-106.
LI X L, HU A Y, WANG J L, XIAO X, SHEN R F, ZHAO X Q. Study on difference of low phosphorus tolerance of rice varieties in acid soil. Acta Agriculturae Jiangxi, 2022, 34(5): 102-106. (in Chinese)
[32]
朱瑞利, 毛琳琳, 王龙, 易可可, 孙静文. 苗期耐低磷毛叶苕子品种的筛选及其磷效率类型评价. 中国土壤与肥料, 2022(3): 148-157.
ZHU R L, MAO L L, WANG L, YI K K, SUN J W. Screening of Vicia Villosa varieties with low phosphorus tolerance at seedling stage and evaluation of their phosphorus efficiency types. Soil and Fertilizer Sciences in China, 2022(3): 148-157. (in Chinese)
[33]
龚丝雨. 烟草苗期耐低磷基因型筛选及生理机制研究[D]. 南昌: 江西农业大学, 2019.
GONG S Y. Screening of low-phosphorus tolerant genotypes and its physiological mechanism of tobacco at seedling stage[D]. Nanchang: Jiangxi Agricultural University, 2019. (in Chinese)
[34]
张君杰, 朱素青, 骆璐, 张秀荣, 万勇善, 刘风珍, 张昆. 不同花生品种磷吸收速率和根系形态对低磷胁迫的响应. 山东农业科学, 2022, 54(3): 68-73.
ZHANG J J, ZHU S Q, LUO L, ZHANG X R, WAN Y S, LIU F Z, ZHANG K. Response of phosphorus uptake rate and root morphology to low phosphorus stress in different peanut varieties. Shandong Agricultural Sciences, 2022, 54(3): 68-73. (in Chinese)
[35]
王一凡, 杨江伟, 唐勋, 晋昕, 张宁, 司怀军. 马铃薯响应磷胁迫机制及磷高效利用育种. 中国马铃薯, 2021, 35(1): 68-74.
WANG Y F, YANG J W, TANG X, JIN X, ZHANG N, SI H J. Mechanism of potato response to phosphorus stress and high- efficiency phosphorus breeding. Chinese Potato Journal, 2021, 35(1): 68-74. (in Chinese)
[1] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[2] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[3] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[4] CHEN ZhiMin, CHEN XiaoLin, TAN ZhenHua, CHEN ZhaoXing, SHEN DanDan, MA YanYan, ZHENG YongQiang, YI ShiLai, LÜ Qiang, XIE RangJin. Comprehensive Fruit Quality Evaluation and Suitable Areas Selection of Newhall Navel Orange in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1949-1965.
[5] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[6] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[7] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[8] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[9] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[10] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[11] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[12] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[13] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[14] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[15] ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage [J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!