Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (17): 3408-3423.doi: 10.3864/j.issn.0578-1752.2024.17.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Tillage Methods Under Straw Returning on the Labile Organic Carbon Fractions and Carbon Pool Management Index in Black Soil Farmland

LIU YaJie1,2,3(), ZHANG TianJiao1,2,3, ZHANG XiangQian1,2(), LU ZhanYuan1,2,3(), LIU ZhanYong1, CHENG YuChen1,2, WU Di1,2,3, LI JinLong4   

  1. 1 Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031
    2 Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot 010031
    3 College of Life Sciences, Inner Mongolia University, Hohhot 010020
    4 Arong Banner Agricultural Development Center, Hulunbuir 162750, Inner Mongolia
  • Received:2023-12-29 Accepted:2024-05-08 Online:2024-09-01 Published:2024-09-04
  • Contact: ZHANG XiangQian, LU ZhanYuan

Abstract:

【Objective】Soil-related indicators were measured during the mature period of maize in 2020 and 2021. The purpose of this study was to investigate the effects of tillage methods with straw returning on soil labile organic carbon and carbon pool management index of black soil farmland at the southern foot of the Daxing’an mountains based on four consecutive years of tillage experiment.【Method】Seven treatments were set up in the tillage positioning experiment, including deep tillage with straw returning (DTS), deep loosening and shallow with straw returning (DSS), subsoiling tillage with straw returning (STS), heavy harrowing straw returning (SHS), rotary tillage with straw returning (RTS), and no-tillage straw returning (NTS), with shallow tillage without straw returning (CK). 0-60 cm surface soil was collected. The contents of labile organic carbon (R333), medium labile organic carbon (R167) and high labile organic carbon(R33) were determined by potassium permanganate solution with different concentrations (0.333, 0.167 and 0.033 mol·L-1), and the effects of different tillage methods on soil labile organic carbon content and carbon pool management index were studied.【Result】(1) Compared with CK, the R333 content in 0-10 cm soil layer treated by DSS, DTS, NTS, RTS and STS significantly increased by 9.0% to 63.7% in two years, respectively. DSS was the highest, followed by DTS and NTS. R333 in 10-60 cm soil layer, DTS, DSS and NTS significantly increased by 30.8%-134.5%, 14.1%-97.8% and 18.9%-63.0%, respectively (P<0.05). (2) Compared with CK, the medium labile organic carbon (R167) of 0-10 cm soil layer under different tillage methods was significantly increased (P<0.05). The DSS treatment of R167 content was the highest, with an increase of 37.3%- 101.0%, and the DTS treatment of 10-60 cm soil layer was the highest, with an increase of 44.8%-72.9%, showing DTS>DSS>NTS treatment. (3) Compared with CK, the R33 content in 0-10 cm soil layer was significantly increased by 13.8%-55.6% under DSS treatment (P<0.05). In 10-20 cm soil layer, R33 content of DTS, DSS, STS, RTS and NTS treatment was significantly increased by 3.6%-29.3% (P<0.05), with DTS being the highest, followed by DSS. In 20-60 cm soil layer, R33 under DTS, DSS and STS treatment was significantly increased (P<0.05), and the proportion was 68.1%-20.0%. (4) The inert organic carbon (IOC) of 0-10 cm soil layer under straw returning was significantly increased by 4.7%-21.8% (P<0.05). In 20-60 cm soil layer, DTS and DSS significantly increased by 5.3%-156.6% and 4.2%-138.8% compared with other treatments (P<0.05). (5) Compared with CK, DTS treatment significantly increased carbon pool activity and carbon pool activity index in 0-20 cm soil layer (P<0.05), and increased by 7.7%-44.8% and 7.7%-45.0%, and significantly increased by DTS, DSS, STS and RTS soil layer carbon pool index (P<0.05). DTS, DSS and NTS treatment significantly increased the carbon pool management index of 0-60 cm soil layer by 21.9%-140.9%, 4.9%-103.7%, 13.3%-62.0% (P<0.05). (6) In 0-60 cm soil layer, R333, R167, R33 and IOC were positively correlated with organic carbon content, carbon pool activity index, bulk density and geometric mean diameter, but negatively correlated with total soil porosity (P<0.01). Increasing the content of active organic carbon could improve soil physical structure and enhanced aggregate stability. The IOC was positively correlated with maize yield and dry matter mass (P<0.01).【Conclusion】Comprehensive analysis shows that both deep tillage with straw returning (DTS) and deep loosening and shallow with straw returning (DDS) can increase soil labile organic carbon and inert organic carbon to a certain extent, and effectively improve the organic carbon pool of farmland.

Key words: straw returning, tillage method, black soil, labile organic carbon, inert organic carbon, carbon pool management index, maize yield, the southern foot of the Daxing’an mountains

Fig. 1

Precipitation and air temperature in the experimental site in 2020 and 2021 MP: Monthly precipitation, AT: Monthly air temperature"

Table 1

Foundation fertility of 0-60 cm soil layer in 2018"

土层
Soil depth
(cm)
pH
有机碳
Organic carbon (g·kg-1)
碱解氮
Alkali hydrolysable nitrogen (mg·kg-1)
速效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
全氮
Total nitrogen (g·kg-1)
全钾
Total potassium (g·kg-1)
0-10 8.0 33.3 40.7 47.9 62.7 2.0 34.5
10-20 8.0 30.0 35.0 22.3 41.3 1.9 31.8
20-40 8.1 22.7 32.6 7.7 38.7 1.4 25.4
40-60 8.3 13.3 14.7 10.4 32.2 0.7 19.8

Table 2

Experimental treatment"

处理 Treatments 操作方法 Operations
深翻秸秆还田(DTS)
Deep tillage with straw returning
深翻深度30—35 cm,秸秆还田深度为5—30 cm。翌年春季重耙后进行播种
The depth of plowing is 30-35 cm, the depth of straw returning to the field is 5-30 cm, and the seeds are sown after heavy harrowing in the spring of the next year
深松浅翻秸秆还田(DSS)
Deep loosening and shallow with straw returning
浅翻15—20 cm,深松25—30 cm,秸秆还田深度为2—15 cm。翌年春季重耙后播种
Shallow tillage to a depth of 15-20 cm, deep plowing to a depth of 25-30 cm, and incorporation of straw into the soil at a depth of 2-15 cm should be carried out. The seeds are sown after heavy harrowing in the spring of the next year
深松秸秆还田(STS)
Subsoiling tillage with straw returning
深松25—30 cm,秸秆还田深度为0—8 cm。翌年春季重耙后播种
Subsoiling tillage to a depth of 25-30 cm, and straw returned to the field depth of 0-8 cm should be carried out. The seeds are sown after heavy harrowing in the spring of the next year
重耙秸秆还田(SHS)
Heavy harrowing with straw returning
重耙两遍,重耙深度10—15 cm,秸秆还田深度为0—12 cm。春季常规播种
Heavy harrowing the soil twice to a depth of 10-15 cm, and the straw returned to a depth of 0-12 cm should be carried out. The seeds are conventionally sown in the spring
旋耕秸秆还田(RTS)
Rotary tillage with straw returning
旋耕耙地两遍,旋耕深度10—15 cm,秸秆还田深度为0—12 cm。春季常规播种
Rotary tilling twice, rotary tillage depth of 10-15 cm, the straw returning depth of 0-12 cm should be carried out. The seeds are conventionally sown in the spring
免耕秸秆还田(NTS)
No-tillage with straw returning
玉米秸秆均匀覆盖地表还田,秸秆还田深度为0—3 cm。春季免耕播种机播种
The straw are evenly covered on the surface and returned to the field, the straw is returned to the field depth of 0-3 cm, and the seeds are sown by no-tillage seeder in spring
浅翻秸秆不还田(CK)
Shallow tillage without straw returning
玉米秸秆全部移除,浅翻土壤,深度17—22 cm。春季重耙,常规播种
All straw are removed. The soil is shallowly tillaged, which the depth was 17-22 cm. The heavy harrowing and conventional sowing are carried out in spring

Fig. 2

Effects of different tillage methods on soil labile organic carbon (R333) content under straw returning condition Different lowercase letters meant significant difference at 0.05 level in the same soil layer between different treatments. DTS: Deep tillage with straw returning, DSS: Deep loosening and shallow with straw returning, STS: Subsoiling tillage with straw returning, SHS: Heavy harrowing with straw returning, RTS: Rotary tillage with straw returning, NTS: No-tillage with straw returning, CK: Shallow tillage without straw returning. The same as below"

Fig. 3

Effects of different tillage methods on soil medium labile organic carbon (R167) content under straw returning condition"

Fig. 4

Effects of different tillage methods on soil high labile organic carbon (R33) content under straw returning condition"

Fig. 5

Effects of different tillage methods on soil inert organic carbon (IOC) content under straw returning condition"

Table 3

Effects of different tillage methods on soil carbon pool management index under straw returning condition"

处理
Treatment
土层
Soil depth
(cm)
2020 2021
碳库活度
Activity
碳库活度指数
Activity index
碳库指数
Carbon pool index
碳库管理指数
Carbon
management index
碳库活度
Activity
碳库活度指数
Activity index
碳库指数
Carbon pool index
碳库管理指数
Carbon
management index
DTS 0-10 0.21±0.00a 1.08±0.01a 1.13±0.01c 121.85±0.99b 0.23±0.01b 1.27±0.04b 1.13±0.00c 143.19±4.36c
10-20 0.20±0.00b 1.11±0.04b 1.20±0.01b 133.08±3.60a 0.21±0.01a 1.45±0.05a 1.24±0.04b 179.51±0.22a
20-40 0.20±0.01de 0.64±0.03e 2.09±0.04a 135.00±4.02b 0.17±0.01b 1.21±0.03b 1.75±0.03a 212.50±3.73a
40-60 0.28±0.00c 0.69±0.01c 2.03±0.06a 139.17±1.70a 0.22±0.00a 1.14±0.04a 2.10±0.09a 240.85±15.29a
DSS 0-10 0.20±0.00b 1.04±0.01b 1.23±0.00a 127.39±1.24a 0.26±0.01a 1.44±0.02a 1.22±0.01a 174.65±2.13a
10-20 0.17±0.00e 0.91±0.03e 1.24±0.00a 112.57±3.47b 0.17±0.00b 1.20±0.04b 1.32±0.03a 158.14±4.86b
20-40 0.19±0.01e 0.61±0.03e 1.93±0.03b 117.10±5.84c 0.17±0.00b 1.22±0.05b 1.67±0.03b 203.70±9.94a
40-60 0.26±0.02d 0.62±0.04d 1.69±0.05b 104.87±6.51cd 0.19±0.00b 0.96±0.02b 1.88±0.09b 180.99±8.64b
STS 0-10 0.20±0.01b 1.00±0.02c 1.09±0.01d 108.93±3.37d 0.21±0.00c 1.18±0.01c 1.08±0.00d 126.32±1.01d
10-20 0.17±0.00de 0.95±0.05de 1.08±0.01d 102.54±4.29c 0.17±0.00b 1.18±0.06bc 1.19±0.04bcd 140.09±5.37c
20-40 0.21±0.00d 0.69±0.01d 1.64±0.01c 114.09±0.70c 0.14±0.01c 0.96±0.03c 1.55±0.04c 148.21±2.28b
40-60 0.29±0.01cd 0.69±0.02c 1.55±0.04c 106.45±1.01c 0.12±0.01d 0.61±0.05d 1.61±0.05c 97.76±7.26e
SHS 0-10 0.18±0.00c 0.90±0.02e 1.10±0.03cd 99.50±0.82e 0.18±0.00d 0.99±0.00d 1.08±0.00d 106.23±0.07e
10-20 0.20±0.00bc 1.07±0.03bc 1.05±0.01e 112.08±1.51b 0.16±0.00c 1.09±0.05cd 1.14±0.03d 124.93±4.67d
20-40 0.30±0.01bc 0.98±0.01bc 1.10±0.02e 107.01±3.05d 0.18±0.01b 1.29±0.05b 1.05±0.02e 135.53±3.85cd
40-60 0.30±0.01c 0.72±0.02c 1.47±0.03c 104.91±1.23cd 0.12±0.00d 0.64±0.02d 1.51±0.10cd 97.18±4.09e
RTS 0-10 0.18±0.00c 0.94±0.01d 1.18±0.01b 110.76±0.47d 0.19±0.01d 1.05±0.05d 1.16±0.01b 121.80±5.47d
10-20 0.16±0.01e 0.88±0.02e 1.15±0.00c 101.20±2.58c 0.12±0.00e 0.85±0.02e 1.22±0.02bc 104.11±1.49e
20-40 0.29±0.00c 0.93±0.01c 1.29±0.01d 120.29±1.65c 0.15±0.00c 1.04±0.03c 1.23±0.01d 128.08±3.48d
40-60 0.28±0.01cd 0.67±0.01cd 1.48±0.02c 99.32±3.24d 0.16±0.01c 0.85±0.05c 1.58±0.07cd 134.06±6.63d
NTS 0-10 0.20±0.00b 1.03±0.01b 1.13±0.03c 117.03±1.09c 0.25±0.01a 1.38±0.05a 1.12±0.01c 153.90±5.27b
10-20 0.23±0.01a 1.24±0.04a 1.06±0.02de 130.88±1.88a 0.17±0.00b 1.21±0.06b 1.15±0.03cd 139.98±6.13c
20-40 0.49±0.01a 1.59±0.02a 1.01±0.02f 160.73±0.65a 0.20±0.00a 1.39±0.06a 1.03±0.00e 143.24±6.25bc
40-60 0.35±0.01b 0.84±0.03b 1.35±0.04d 113.31±0.93b 0.23±0.01a 1.18±0.01a 1.43±0.05d 167.98±5.22c
CK 0-10 0.20±0.00b 1.00±0.00c 1.00±0.00e 100.00±0.00e 0.18±0.00d 1.00±0.00d 1.00±0.00e 100.00±0.00e
10-20 0.18±0.01cd 1.00±0.00cd 1.00±0.00f 100.00±0.00c 0.14±0.01d 1.00±0.00d 1.00±0.00e 100.00±0.00e
20-40 0.31±0.00b 1.00±0.00b 1.00±0.00g 100.00±0.00e 0.14±0.00c 1.00±0.00c 1.00±0.00e 100.00±0.00e
40-60 0.41±0.01a 1.00±0.00a 1.00±0.00e 100.00±0.00cd 0.19±0.01b 1.00±0.00b 1.00±0.00e 100.00±0.00e

Fig. 6

Correlation of soil indices of different tillage methods under straw returning condition in 0-60 cm soil layer R333: Labile organic carbon, R167: Medium labile organic carbon, R33: High labile organic carbon, IOC: Inert organic carbon, SOC: Organic carbon, A: Activity, AI: Activity index, CPI: Carbon pool index, CMI: Carbon pool management index, BD: Bulk density, TP: Total porosity, GWD: Geometric mean diameter, DR>0.25: The proportion of diameter >0.25 mm soil aggregates, pH: Potential of hydrogen"

[1]
HE L Y, LU S X, WANG C G, MU J, ZHANG Y L, WANG X D. Changes in soil organic carbon fractions and enzyme activities in response to tillage practices in the Loess Plateau of China. Soil and Tillage Research, 2021, 209: 104940.
[2]
徐莹莹, 孙士明, 靳晓燕, 王俊河, 庞爱国, 于晓波, 于侃超. 不同耕作措施对土壤质构和玉米产量的影响. 玉米科学, 2022, 30(4): 97-106.
XU Y Y, SUN S M, JIN X Y, WANG J H, PANG A G, YU X B, YU K C. Effects of different tillage measures on soil texture and maize yield. Journal of Maize Sciences, 2022, 30(4): 97-106. (in Chinese)
[3]
沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应. 生态学杂志, 1999, 18(3): 33-39.
SHEN H, CAO Z H, HU Z Y. Characterization of soil active organic carbon and its ecological effect. Chinese Journal of Ecology, 1999, 18(3): 33-39. (in Chinese)
[4]
石丽红, 李超, 唐海明, 程凯凯, 李微艳, 文丽, 肖小平. 长期不同施肥措施对双季稻田土壤活性有机碳组分和水解酶活性的影响. 应用生态学报, 2021, 32(3): 921-930.

doi: 10.13287/j.1001-9332.202103.023
SHI L H, LI C, TANG H M, CHENG K K, LI W Y, WEN L, XIAO X P. Effects of long-term fertilizer management on soil labile organic carbon fractions and hydrolytic enzyme activity under a double- cropping rice system of Southern China. Chinese Journal of Applied Ecology, 2021, 32(3): 921-930. (in Chinese)
[5]
吕瑞珍, 熊瑛, 李友军, 吕强, 黄明. 保护性耕作对农田土壤碳库特性的影响. 水土保持学报, 2014, 28(4): 206-209, 217.
R Z, XIONG Y, LI Y J, Q, HUANG M. Effect of conservation tillage on soil carbon pool in farmland. Journal of Soil and Water Conservation, 2014, 28(4): 206-209, 217. (in Chinese)
[6]
STANHILL G. The role of terrestrial vegetation in the global carbon cycle: Measurement by remote sensing. Agriculture, Ecosystems & Environment, 1985, 12(3): 264-266.
[7]
LOGINOW W, WISNIEWSKI W, GONET S, CIEŚCIŃSKA B. Fractionation of organic carbon based on susceptibility to oxidation. Journal of Soil Science, 1987, 20(1):47-52.
[8]
BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459.
[9]
LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant and Soil, 1993, 155(1): 399-402.
[10]
ZHANG Z M, YAN J, HAN X Z, ZOU W X, CHEN X, LU X C, FENG Y T. Labile organic carbon fractions drive soil microbial communities after long-term fertilization. Global Ecology and Conservation, 2021, 32: e01867.
[11]
张志毅, 熊桂云, 吴茂前, 范先鹏, 冯婷婷, 巴瑞先, 段申荣. 有机培肥与耕作方式对稻麦轮作土壤团聚体和有机碳组分的影响. 中国生态农业学报(中英文), 2020, 28(3): 405-412.
ZHANG Z Y, XIONG G Y, WU M Q, FAN X P, FENG T T, BA R X, DUAN S R. Effects of organic fertilization and tillage method on soil aggregates and organic carbon fractions in a wheat-rice system. Chinese Journal of Eco-Agriculture, 2020, 28(3): 405-412. (in Chinese)
[12]
贺美. 秸秆还田对黑土有机质变化的影响效应[D]. 北京: 中国农业科学院, 2016.
HE M. Effects of straw returning methods on black soil organic matter[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[13]
叶新新, 王冰清, 刘少君, 马超, 李军利, 柴如山, 熊启中, 李虹颖, 郜红建. 耕作方式和秸秆还田对砂姜黑土碳库及玉米小麦产量的影响. 农业工程学报, 2019, 35(14): 112-118.
YE X X, WANG B Q, LIU S J, MA C, LI J L, CHAI R S, XIONG Q Z, LI H Y, GAO H J. Influence of tillage and straw retention on soil carbon pool and maize-wheat yield in Shajiang black soil. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 112-118. (in Chinese)
[14]
李霞, 罗丽卉, 周娅, 杨定清, 王棚, 李森. 秸秆还田对水稻-油菜轮作体系土壤活性有机碳组分及酶活性的影响. 华北农学报, 2022, 37(5): 124-131.

doi: 10.7668/hbnxb.20193054
LI X, LUO L H, ZHOU Y, YANG D Q, WANG P, LI S. Effects of straw returning on soil active organic carbon components and enzyme activities in rice-rape rotation. Acta Agriculturae Boreali-Sinica, 2022, 37(5): 124-131. (in Chinese)

doi: 10.7668/hbnxb.20193054
[15]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agriculture Scientech Press, 2000. (in Chinese)
[16]
张宇浩, 方莉, 程芳琴. 日光节能温室土壤有机碳及组分变化对栽培年限的响应. 山西农业科学, 2013, 41(11): 1202-1204.
ZHANG Y H, FANG L, CHENG F Q. Response on the changes of soil organic carbon and its fractions in solar greenhouse to planting years. Journal of Shanxi Agricultural Sciences, 2013, 41(11): 1202-1204. (in Chinese)
[17]
谢雪, 鲁艳红, 廖育林, 聂军, 张江林, 孙玉桃, 曹卫东, 高雅洁. 紫云英与稻草还田替代部分化肥对双季稻产量和土壤活性有机碳的影响. 中国农业科学, 2023, 56(18): 3585-3598. doi: 10.3864/j.issn.0578-1752.2023.18.008.
XIE X, LU Y H, LIAO Y L, NIE J, ZHANG J L, SUN Y T, CAO W D, GAO Y J. Effects of returning Chinese milk vetch and rice straw to replace partial fertilizers on double season rice yield and soil labile organic carbon. Scientia Agricultura Sinica, 2023, 56(18): 3585-3598. doi: 10.3864/j.issn.0578-1752.2023.18.008. (in Chinese)
[18]
朱敏, 王兴龙, 张頔, 孔凡磊, 袁继超. 耕作方式与秸秆还田对川中紫土土壤碳库与玉米产量的影响. 华北农学报, 2017, 32(S1): 302-307.

doi: 10.7668/hbnxb.2017.S1.052
ZHU M, WANG X L, ZHANG D, KONG F L, YUAN J C. Effects of tillage methods and straw returning on soil carbon pool and maize yield in purple soil in central Sichuan. Acta Agriculturae Boreali- Sinica, 2017, 32(S1): 302-307. (in Chinese)
[19]
LIU B, XIA H, JIANG C C, RIAZ M, YANG L, CHEN Y F, FAN X P, XIA X G. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. The Science of the Total Environment, 2022, 841: 156608.
[20]
郭伟, 周云鹏, 陈美淇, 李丹丹, 王青霞, 周谈坛, 赵炳梓. 秸秆与有机无机肥配施对潮土关键微生物及小麦产量的影响. 土壤学报. https://kns.cnki.net/kcms/detail/32.1119.p.20231013.0850.002.html.
GUO W, ZHOU Y P, CHEN M Q, LI D D, WANG Q X, ZHOU T T, ZHAO B Z. Effects of combined application of straw and organic- inorganic fertilizers on key microorganisms and wheat yield in fluvo-aquic soil. Acta Pedologica Sinica. https://kns.cnki.net/kcms/detail/32.1119.p.20231013.0850.002.html. (in Chinese)
[21]
吴萍萍, 王静, 李录久, 汪霄. 化肥减施下有机物料对砂姜黑土有机碳组分和养分含量的影响. 核农学报, 2022, 36(11): 2286-2294.

doi: 10.11869/j.issn.100-8551.2022.11.2286
WU P P, WANG J, LI L J, WANG X. Effects of organic materials applications on soil organic carbon fractions and nutrient contents in lime concretion black soil under chemical fertilizer reduction. Journal of Nuclear Agricultural Sciences, 2022, 36(11): 2286-2294. (in Chinese)

doi: 10.11869/j.issn.100-8551.2022.11.2286
[22]
李晓庆, 赵承森, 孟雨田, 徐晴晴, 陈琳, 马晓伟, 刘锡博, 王宏燕, 赵伟. 玉米秸秆对不同有机碳含量的黑土有机碳库的影响. 华南农业大学学报, 2018, 39(6): 39-46.
LI X Q, ZHAO C S, MENG Y T, XU Q Q, CHEN L, MA X W, LIU X B, WANG H Y, ZHAO W. Effects of maize straw on organic carbon pool in different organic carbon with different contents of organic carbon in black soil. Journal of South China Agricultural University, 2018, 39(6): 39-46. (in Chinese)
[23]
郭书亚, 尚赏, 王坤, 付国占, 卢广远. 秸秆覆盖深松对夏玉米田土壤有机碳库的影响. 作物杂志, 2022(2): 113-118.
GUO S Y, SHANG S, WANG K, FU G Z, LU G Y. Effects of straw mulching and subsoiling on soil organic carbon pool in summer maize field. Crops, 2022(2): 113-118. (in Chinese)
[24]
郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应. 中国农业科学, 2021, 54(3): 596-607. doi: 10.3864/j.issn.0578-1752.2021.03.013.
ZHENG F J, WANG X, LI S P, LIU X T, LIU Z P, LU J J, WU X P, XI J L, ZHANG J C, LI Y S. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice. Scientia Agricultura Sinica, 2021, 54(3): 596-607. doi: 10.3864/j.issn.0578-1752.2021.03.013. (in Chinese)
[25]
张霞. 耕作与施肥对渭北旱塬黑垆土碳库构成的影响[D]. 杨凌: 西北农林科技大学, 2018.
ZHANG X. Effects of tillage and fertilization on composition of organic carbon pool in dark loessial soil of Weibei Highland[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[26]
李玉梅, 王根林, 孟祥海, 胡颖慧, 王伟, 李建英, 张冬梅. 秸秆还田方式对旱地草甸土活性有机碳组分的影响. 农业资源与环境学报, 2021, 38(2): 268-276.
LI Y M, WANG G L, MENG X H, HU Y H, WANG W, LI J Y, ZHANG D M. Effects of different straw returning methods on labile organic carbon distribution in upland meadow soil. Journal of Agricultural Resources and Environment, 2021, 38(2): 268-276. (in Chinese)
[27]
苏卓侠, 苏冰倩, 上官周平. 植物凋落物分解对土壤有机碳稳定性影响的研究进展. 水土保持研究, 2022, 29(2): 406-413.
SU Z X, SU B Q, SHANGGUAN Z P. Advances in effects of plant litter decomposition on the stability of soil organic carbon. Research of Soil and Water Conservation, 2022, 29(2): 406-413. (in Chinese)
[28]
LI Y M, DUAN Y, WANG G L, WANG A Q, SHAO G Z, MENG X H, HU H Y, ZHANG D M. Straw alters the soil organic carbon composition and microbial community under different tillage practices in a meadow soil in Northeast China. Soil and Tillage Research, 2021, 208: 104879.
[29]
王彩霞, 岳西杰, 葛玺祖, 王旭东. 不同耕作措施对塿土土壤有机碳形态及活性的影响. 干旱地区农业研究, 2010, 28(6): 58-63, 74.
WANG C X, YUE X J, GE X Z, WANG X D. Effect of different cultivation measures on activity and bound forms of organic carbon in Lou Soil. Agricultural Research in the Arid Areas, 2010, 28(6): 58-63, 74. (in Chinese)
[30]
LIU X, PENG C, ZHANG W J, LI S Y, AN T T, XU Y D, GE Z, XIE N H, WANG J K. Subsoiling tillage with straw incorporation improves soil microbial community characteristics in the whole cultivated layers: A one-year study. Soil and Tillage Research, 2022, 215: 105188.
[31]
闫秋艳, 董飞, 贾亚琴, 李峰, 杨峰, 鲁晋秀, 高丽娟, 张建诚, 王苗. 耕作方式对旱地麦田土壤蓄水变化特征及小麦产量的影响. 水土保持学报, 2021, 35(1): 222-228.
YAN Q Y, DONG F, JIA Y Q, LI F, YANG F, LU J X, GAO L J, ZHANG J C, WANG M. Effects of tillage patterns on soil water storage and wheat yield in dryland wheat field. Journal of Soil and Water Conservation, 2021, 35(1): 222-228. (in Chinese)
[32]
胡海清, 罗斯生, 罗碧珍, 魏书精, 吴泽鹏, 王振师, 李小川, 周宇飞. 林火干扰对森林生态系统土壤有机碳的影响研究进展. 生态学报, 2020, 40(6): 1839-1850.
HU H Q, LUO S S, LUO B Z, WEI S J, WU Z P, WANG Z S, LI X C, ZHOU Y F. Effects of forest fire disturbance on soil organic carbon in forest ecosystems: A review. Acta Ecologica Sinica, 2020, 40(6): 1839-1850. (in Chinese)
[33]
HAN Y, YAO S H, JIANG H, GE X L, ZHANG Y L, MAO J D, DOU S, ZHANG B. Effects of mixing maize straw with soil and placement depths on decomposition rates and products at two cold sites in the mollisol region of China. Soil and Tillage Research, 2020, 197: 104519.
[34]
田平, 姜英, 孙悦, 马梓淇, 隋鹏祥, 梅楠, 齐华. 不同还田方式对玉米秸秆腐解及土壤养分含量的影响. 中国生态农业学报(中英文), 2019, 27(1): 100-108.
TIAN P, JIANG Y, SUN Y, MA Z Q, SUI P X, MEI N, QI H. Effect of straw return methods on maize straw decomposition and soil nutrients contents. Chinese Journal of Eco-Agriculture, 2019, 27(1): 100-108. (in Chinese)
[35]
张宇, 陈阜, 张海林, 陈继康. 耕作方式对玉米秸秆腐解影响的研究. 玉米科学, 2009, 17(6): 68-73.
ZHANG Y, CHEN F, ZHANG H L, CHEN J K. Tillage effects of decomposed ratio on corn straw. Journal of Maize Sciences, 2009, 17(6): 68-73. (in Chinese)
[36]
孙萌, 刘洋, 李寒, 李保国, 齐国辉, 张雪梅. 有机物覆盖对核桃园土壤有机碳库及酶活性的影响. 植物营养与肥料学报, 2018, 24(1): 270-278.
SUN M, LIU Y, LI H, LI B G, QI G H, ZHANG X M. Effects of organic mulching on soil organic carbon pool and soil enzyme activity in walnut orchard. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 270-278. (in Chinese)
[37]
刘红梅, 张海芳, 赵建宁, 王慧, 秦洁, 杨殿林, 张乃芹. 氮添加对贝加尔针茅草原土壤活性有机碳和碳库管理指数的影响. 草业学报, 2020, 29(8): 18-26.

doi: 10.11686/cyxb2019477
LIU H M, ZHANG H F, ZHAO J N, WANG H, QIN J, YANG D L, ZHANG N Q. Effects of nitrogen addition on labile soil organic carbon and carbon pool management index of Stipa baicalensis steppe in Inner Mongolia, China. Acta Prataculturae Sinica, 2020, 29(8): 18-26. (in Chinese)
[38]
薛萐, 刘国彬, 潘彦平, 戴全厚, 张超, 余娜. 黄土丘陵区人工刺槐林土壤活性有机碳与碳库管理指数演变. 中国农业科学, 2009, 42(4): 1458-1464. doi: 10.3864/j.issn.0578-1752.2009.04.042.
XUE S, LIU G B, PAN Y P, DAI Q H, ZHANG C, YU N. Evolution of soil labile organic matter and carbon management index in the artificial Robinia of loess hilly area. Scientia Agricultura Sinica, 2009, 42(4): 1458-1464. doi: 10.3864/j.issn.0578-1752.2009.04.042. (in Chinese)
[39]
张琦, 王淑兰, 王浩, 刘朋召, 王旭敏, 张元红, 李昊昱, 王瑞, 王小利, 李军. 深松与免耕频次对黄土旱塬春玉米田土壤团聚体与土壤碳库的影响. 中国农业科学, 2020, 53(14): 2840-2851. doi: 10.3864/j.issn.0578-1752.2020.14.008.
ZHANG Q, WANG S L, WANG H, LIU P Z, WANG X M, ZHANG Y H, LI H Y, WANG R, WANG X L, LI J. Effects of subsoiling and No-tillage frequencies on soil aggregates and carbon pools in the Loess Plateau. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851. doi: 10.3864/j.issn.0578-1752.2020.14.008. (in Chinese)
[40]
朱长伟, 陈琛, 牛润芝, 李洋, 姜桂英, 杨锦, 申凤敏, 刘芳, 刘世亮. 不同轮耕模式对豫北农田土壤固碳及碳库管理指数的影响. 中国生态农业学报(中英文), 2022, 30(4): 671-682.
ZHU C W, CHEN C, NIU R Z, LI Y, JIANG G Y, YANG J, SHEN F M, LIU F, LIU S L. Effects of tillage rotation modes on soil carbon sequestration and carbon pool management index of farmland in northern Henan. Chinese Journal of Eco-Agriculture, 2022, 30(4): 671-682. (in Chinese)
[41]
赵宇航, 殷浩凯, 胡雪纯, 解文艳, 刘志平, 周怀平, 杨振兴. 长期秸秆还田褐土有机碳矿化特征及其驱动力. 环境科学, 2024, 45(4): 2353-2362.
ZHAO Y H, YIN H K, HU X C, XIE W Y, LIU Z P, ZHOU H P, YANG Z X. Characteristics and driving forces of organic carbon mineralization in brown soil with long-term straw returning. Environmental Science, 2024, 45(4): 2353-2362. (in Chinese)
[42]
黎嘉成, 高明, 田冬, 黄容, 徐国鑫. 秸秆及生物炭还田对土壤有机碳及其活性组分的影响. 草业学报, 2018, 27(5): 39-50.

doi: 10.11686/cyxb2017261
LI J C, GAO M, TIAN D, HUANG R, XU G X. Effects of straw and biochar on soil organic carbon and its active components. Acta Prataculturae Sinica, 2018, 27(5): 39-50. (in Chinese)
[43]
陈帅. 黑土区坡耕地玉米秸秆还田水土保持功效研究[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019.
CHEN S. Effect of corn straw returning on soil and water conservation in slopping farmland of black soil region[D]. Harbin: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2019. (in Chinese)
[44]
田慎重. 基于长期耕作和秸秆还田的农田土壤碳库演变、固碳减排潜力和碳足迹分析[D]. 泰安: 山东农业大学, 2014.
TIAN S Z. Responses of soil organic carbon pool, greenhouse gas emission and carbon footprint to a long-term tillage and residue management system[D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[1] SHEN WenYan, ZHANG NaiYu, LI TianJiao, SONG TianHao, ZHANG XiuZhi, PENG Chang, LIU HongFang, ZHANG ShuXiang, DUAN BiHua. Characteristics of phoD-Harboring Microbial Communities Under Long-Term Fertilization and Its Effects on Organic Phosphorus Fractions in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(20): 4082-4093.
[2] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[3] SUN Yue, REN KeYu, ZOU HongQin, GAO HongJun, ZHANG ShuiQing, LI DeJin, LI BingJie, LIAO ChuQian, DUAN YingHua, XU MingGang. Effect of Long-Term Straw Returning on the Soil Organic Carbon Bound to Iron Oxides in Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3823-3834.
[4] LI TianJiao, ZHANG NaiYu, SHEN WenYan, SONG TianHao, LIU HongFang, LIU XiaoYan, ZHANG XiuZhi, PENG Chang, YANG JinFeng, ZHANG ShuXiang. Effects of Long-Term Fertilization on Soil Aggregate Stability and Its Driving Factors in Black Soil and Brown Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3835-3847.
[5] YANG LiDa, PENG XinYue, ZHU WenXue, ZHAO Jing, YUAN XiaoTing, LIN Ping, LUO Kai, LI YiLing, LUO ChunMing, LI YuZe, YANG WenYu, YONG TaiWen. Effects of Straw Returning and Irrigation Methods on Seedling Emergence and Growth in Soybean and Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(17): 3366-3383.
[6] LI HaiPeng, DU WuYan, WU HanQian, ZHANG Jie, MENG HuiSheng, HONG JianPing, XU MingGang, HAO XianJun, GAO WenJun. Different Manures Affect Soil Nutrients and Bacterial Community Structure in Mining Reclamation Area [J]. Scientia Agricultura Sinica, 2024, 57(16): 3207-3219.
[7] WANG WenJun, LIANG AiZhen, ZHANG Yan, CHEN XueWen, HUANG DanDan. Model Simulation Research of Soil Organic Carbon Dynamics of Long-Term Conservation Tillage in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(10): 1943-1960.
[8] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[9] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[10] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[11] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[12] YU BoWei, ZHANG QingWen, HAO Zhuo, SHI YuLong, LI XueLiang, LI MengNi, JING XueKai. Interaction Between Transverse Ridge Tillage and Topography on Soil Erodibility Along the Long Gentle Slope in a Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(23): 4706-4716.
[13] ZHOU Ying, YANG Peng, WANG LiGang, LEI QiuLiang, ZHANG YaNan. Optimization Path of the Ecological Compensation Mechanism for Conservation Tillage in the Northeast Black Soil Region [J]. Scientia Agricultura Sinica, 2023, 56(22): 4478-4489.
[14] GUO RongBo, LI GuoDong, PAN MengYu, ZHENG XianFeng, WANG ZhaoHui, HE Gang. Effects of Long-Term Straw Return and Nitrogen Application Rate on Organic Carbon Storage, Components and Aggregates in Cultivated Layers [J]. Scientia Agricultura Sinica, 2023, 56(20): 4035-4048.
[15] MEI XiuWen, ZHU TengXiao, LI YuPing, LI ShuangYi, SUN LiangJie, AN TingTing, WANG JingKuan. Effects of Rhizodeposition on Straw Carbon and Nitrogen Sequestration in Soil Profile Under Different Fertilization Conditions [J]. Scientia Agricultura Sinica, 2023, 56(19): 3856-3868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!