Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (10): 1961-1978.doi: 10.3864/j.issn.0578-1752.2024.10.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response Difference and Its Cause Reasons for Simplified Panicle Fertilization in Different Rice Varieties After Wheat Straw Return

SHU XiaoWei(), WANG ShuShen, FU Tong, WANG ZiHan, DING ZhouYu, YANG Ying, ZHAO ShiRu, ZHOU Juan, HUANG JianYe, YAO YouLi, WANG YuLong, DONG GuiChun()   

  1. Agricultural College of Yangzhou University/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou 225009, Jiangsu
  • Received:2023-06-16 Accepted:2023-11-22 Online:2024-05-16 Published:2024-05-23
  • Contact: DONG GuiChun

Abstract:

【Objective】 The aim of this study was to explore and analyze the differences in yield, panicle differentiation and degeneration, soil microbial activity, and response of soil alkali-hydrolysable nitrogen to simplified panicle fertilization among different rice varieties under the condition of wheat straw return (SR). 【Method】 As test materials, two cultivars were selected, including late maturing medium japonica rice Nanjing 9108 (NJ 9108) and indica rice Yangdao 6 (YD6). Rice yield, spikelet differentiation, and degeneration were evaluated under the interactive conditions of SR and simplified panicle fertilization (0﹕0, no panicle fertilization; 2﹕0, full application of spikelet-promoting fertilizer; 1﹕1, equal application of spikelet-promoting and protecting fertilizers; 0﹕2, full application of spikelet-protection fertilizer). The nutritional basis of rice spikelet differentiation and degeneration was analyzed in terms of nutrient release from straw decomposition, alterations in soil microbial communities and enzyme activity, and soil alkaline nitrogen content. 【Result】 (1) After SR, the average yield of NJ 9108 and YD 6 increased by 4.2% and 3.2%, respectively. Under panicle fertilization treatments, the highest yield for NJ9108 and YD6 was achieved under the 2﹕0 and 1﹕1 treatment, respectively. After no wheat straw return treatment (NR), the yield of both varieties was highest under the 1﹕1 treatment. The yield trend of panicle fertilization treatments was consistent within the range of 180-360 kg N·hm-2. (2) After SR, the initial 0-30 days were a period of rapid decomposition, with the rapid release of carbon and nitrogen from the straw. At 30 days, the average number of bacteria, fungi, and actinomycetes in the soil increased by 179.2%, and the average activity of urease, acid phosphatase, and sucrase increased by 88.8%. During the period of 40 to 60 days, the straw's decomposition and carbon-nitrogen release rates diminished, and the number of microorganisms and enzyme activities decreased significantly. Decomposition and carbon-nitrogen release of straw essentially stalled between 60 and 90 days, while the number of microorganisms and enzyme activities decreased gradually. From 10 to 40 days after SR, the soil's alkali-hydrolysable nitrogen content decreased by an average of 4.8%, while it increased by an average of 5.2% between 50 and 90 days. (3) After SR, the increase in soil alkali-hydrolysable nitrogen caused an increase of 1.4% in the average number of spikelets differentiation, a decrease of 12.3% in the average number of spikelets degeneration, but an increase of 4.4% in the average number of surviving spikelets. Rice harvest increased primarily due to an increase in the number of spikelets per panicle (the number of surviving spikelets per panicle). After SR, the 2﹕0 treatment reduced the rate of spikelet degeneration in NJ9108 and YD6 relative to NR by 23.5% and 7.6%, respectively. The number of spikelet differentiation and degeneration of NJ9108 increased by 8.9 and 5.7 spikelets per panicle under the 2﹕0 treatment relative to the 1﹕1 treatment, whereas Yangdao 6 increased by 6.8 and 11.6 spikelets per panicle, respectively. As the increase in the number of spikelets differentiation was greater than the increase in the number of spikelets degeneration, NJ9108 had the highest number of surviving spikelets under the 2﹕0 treatment, while YD6 had the highest number under the 1﹕1 treatment. 【Conclusion】 Wheat straw return increased rice yield, with NJ 9108 achieving the highest yield under the full application of spikelet-promoting fertilizer and Yangdao 6 achieving the highest yield under the equal application of spikelet-promoting and protecting fertilizers. Those factors that contributed to the increase in yield were mainly due to a significant reduction in the rate and number of spikelets degeneration and an increase in the number of spikelets per panicle. The decrease in the rate of spikelets degeneration for NJ 9108 was greater than that for YD6, which was the main reason for the difference in their response to different panicle fertilization treatments in terms of the number of surviving spikelets.

Key words: wheat straw return, panicle fertilizer, rice, spikelets differentiation and degeneration, yield, soil microbial activity

Fig. 1

Temperature and precipitation at the experiment site"

Table 1

Experimental design"

试验
Experiment
施氮量
Nitrogen fertilization level (kg·hm-2)
处理
Treatment
基肥
Base fertilizer
(kg·hm-2)
分蘖肥
Tillering fertilizer (kg·hm-2)
穗肥Panicle fertilizer (kg·hm-2)
促花肥
Spikelet-promoting fertilizer
保花肥
Spikelet-protection fertilizer
2021 270 94.5 81
简化穗肥
Simplified panicle
fertilizer
0﹕0 0 0
2﹕0 94.5 0
1﹕1 47.25 47.25
0﹕2 0 94.5
2022 180 63 54
施氮量
Nitrogen fertilizer
level
0﹕0 0 0
2﹕0 63 0
1﹕1 31.5 31.5
0﹕2 0 63
360 126 108
0﹕0 0 0
2﹕0 126 0
1﹕1 63 63
0﹕2 0 126

Fig. 2

Effect of simplified panicle fertilization on rice yield after wheat straw return SR: Wheat straw return; NR: No straw return; NJ9108: Nanjing 9108; YD6: Yangdao 6; Different lowercase letters indicate significant difference between different panicle fertilization treatments under the same straw treatment at 0.05 level. The same as below"

Table 2

Effects of simplified panicle fertilization on rice yield components after wheat straw return"

年份
Year
秸秆
Straw
品种
Variety
穗肥
Panicle
fertilization
穗数
Panicles
(×104·hm-2)
每穗粒数
Spikelets per
panicle
结实率
Seed setting
rate (%)
千粒重
1000-grain
weight (g)
2021 SR NJ9108 0﹕0 340.11±2.50b 122.11±2.27d 87.15±0.27b 25.48±0.15ab
2﹕0 364.31±2.21a 142.43±2.37a 87.75±0.41b 25.40±0.17b
1﹕1 363.94±2.35a 137.21±2.12b 87.88±0.62b 25.70±0.1ab
0﹕2 362.96±2.17a 128.15±2.16c 88.88±0.45a 25.89±0.17a
YD6 0﹕0 229.10±2.22b 159.76±2.91c 79.06±0.62b 31.00±0.21ab
2﹕0 243.19±1.79a 179.89±2.99a 79.75±0.36b 30.82±0.30b
1﹕1 242.81±1.78a 184.39±2.80a 79.79±0.53b 31.39±0.15a
0﹕2 242.44±1.79a 170.14±3.12b 80.65±0.60a 31.35±0.42a
NR NJ9108 0﹕0 341.70±1.14b 117.56±2.38c 87.05±0.33b 25.47±0.10ab
2﹕0 374.42±1.48a 131.02±2.35a 87.10±0.71b 25.24±0.42b
1﹕1 374.94±1.32a 131.63±2.33a 87.17±0.27b 25.43±0.06ab
0﹕2 374.74±1.19a 123.71±2.13b 87.97±0.44a 25.85±0.08a
YD6 0﹕0 231.43±1.30b 152.68±2.49c 78.53±0.60b 30.61±0.38b
2﹕0 245.44±1.27a 174.24±3.01a 79.36±0.34a 30.66±0.33b
1﹕1 246.02±1.60a 178.17±2.91a 79.88±0.29a 31.12±0.09a
0﹕2 244.85±1.67a 167.19±2.90b 80.17±0.55a 31.37±0.09a
2022 SR NJ9108 0﹕0 345.10±2.02b 118.09±0.98d 74.11±0.39c 25.65±0.15a
2﹕0 376.55±2.76a 138.98±1.04a 83.93±0.23b 25.59±0.09a
1﹕1 375.21±2.30a 134.47±0.89b 84.21±0.32b 25.64±0.07a
0﹕2 376.45±2.65a 125.42±0.84c 84.92±0.42a 25.86±0.05a
YD6 0﹕0 229.12±1.07b 160.20±2.84d 73.56±0.37c 30.90±0.23bc
2﹕0 250.89±0.87a 175.71±2.87b 75.61±0.16b 30.78±0.34c
1﹕1 250.79±1.67a 180.51±0.96a 76.17±0.04ab 31.12±0.14ab
0﹕2 250.47±1.68a 165.51±3.03c 76.44±0.57a 31.28±0.01a
NR NJ9108 0﹕0 345.87±2.04b 114.32±1.17c 73.36±0.20c 25.62±0.06a
2﹕0 387.40±1.91a 128.41±0.71a 82.61±0.88b 25.51±0.08a
1﹕1 385.90±1.09a 129.77±1.39a 83.77±0.53a 25.45±0.09a
0﹕2 384.90±0.56a 124.82±1.17b 83.41±1.25ab 25.64±0.07a
YD6 0﹕0 231.96±1.30b 155.02±1.87d 73.15±0.49c 30.52±0.36b
2﹕0 254.02±0.28a 171.70±2.84b 74.66±0.04b 30.41±0.16b
1﹕1 252.71±1.14a 176.92±0.81a 75.17±0.1ab 30.83±0.09a
0﹕2 251.67±1.68a 165.22±2.09c 75.67±0.08a 31.05±0.10a

Table 3

Variance analysis of rice yield under simplified panicle fertilization conditions after wheat straw return"

变异来源
Source of variation
自由度
Degree of freedom
平方和
Sum of squares
均方
Mean square
F
Computed F
F0.05
F0.01
区组 Replication 6 0.06 0.01 0.88 4.28 8.47
年度间 Year (Y) 1 10.03 10.03 845.58** 5.99 13.75
秸秆 Straw (S) 1 3.69 3.69 311.01** 5.99 13.75
品种 Variety (V) 1 2.28 2.28 104.64** 4.75 9.33
穗肥 Fertilization (F) 3 123.88 41.29 1640** 2.73 4.07
Y×S 1 0.01 0.01 1 5.99 13.75
Y×V 1 0.05 0.05 2.48 4.75 9.33
Y×F 3 2.15 0.72 28.46** 2.73 4.07
S×V 1 0.03 0.03 1.45 4.75 9.33
S×F 3 0.74 0.25 9.8** 2.73 4.07
V×F 3 2.90 0.97 38.34** 2.73 4.07
Y×S×V 3 0.01 0 0.07 2.73 4.07
Y×S×F 3 1.90 0.63 25.1** 2.73 4.07
Y×V×F 3 0.33 0.11 4.42** 2.73 4.07
Y×S×V×F 3 0.03 0.01 0.38 2.73 4.07
误差 Error 72 1.81 0.03
总变异 Total 127 150.24

Table 4

Correlation and path analysis between yield and its component"

年份
Year
品种
Variety
产量构成因素
Yield component
相关系数
Correlation coefficient
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient
穗数
Panicles
每穗粒数
Spikelets per panicle
结实率
Seed setting rate
千粒重
1000-grain weight
2021 NJ9108 穗数Panicles 0.793** 0.407 0.206 0.076 0.016
每穗粒数Spikelets per panicle 0.897** 0.716 0.363 0.020 -0.155
结实率Seed setting rate 0.283 0.096 0.018 0.003 0.066
千粒重1000-grain weight 0.058 0.131 0.005 -0.028 0.090
YD6 穗数Panicles 0.884** 0.286 0.218 0.138 0.066
每穗粒数Spikelets per panicle 0.943** 0.679 0.517 0.190 0.087
结实率Seed setting rate 0.532** 0.097 0.047 0.027 0.069
千粒重1000-grain weight 0.372** 0.150 0.034 0.019 0.107
2022 NJ9108 穗数Panicles 0.902** 0.274 0.187 0.246 -0.055
每穗粒数Spikelets per panicle 0.908** 0.431 0.295 0.338 -0.084
结实率Seed setting rate 0.963** 0.378 0.340 0.293 0.023
千粒重1000-grain weight -0.087 0.030 -0.006 -0.006 0.002
YD6 穗数Panicles 0.905** 0.371 0.267 0.282 0.063
每穗粒数Spikelets per panicle 0.912** 0.551 0.396 0.308 0.036
结实率Seed setting rate 0.811* 0.155 0.118 0.087 0.087
千粒重1000-grain weight 0.302 0.116 0.021 0.008 0.065

Fig. 3

Effects of simplified panicle fertilization on rice spikelets differentiation and degeneration after wheat straw return NDiS: The number of differentiated spikelets per panicle; NDeS: The number of degenerated spikelets per panicle; NSS: The number of surviving spikelets per panicle; DRS: The degenerated rate of spikelets per panicle"

Fig. 4

Changes in soil alkali-hydrolysable N during 10 to 90 d after wheat straw return and no straw return"

Fig. 5

Decomposition of wheat straw and carbon and nitrogen release"

Fig. 6

Effect of wheat straw return on quantity of soil microorganisms"

Fig. 7

Effect of wheat straw return on soil enzyme activity"

Fig. 8

Effect of simplified panicle fertilization on rice yield and components after wheat straw return at different nitrogen application levels N180: Apply nitrogen 180 kg·hm-2; N360: Apply nitrogen 360 kg·hm-2"

[1]
张强, 张戈丽, 朱道林, 邸媛媛, 杨彤, 刘若琪, 董金玮. 1980—2018年中国水稻生产变化的时空格局. 资源科学, 2022, 44(4): 687-700.

doi: 10.18402/resci.2022.04.04
ZHANG Q, ZHANG G L, ZHU D L, DI Y Y, YANG T, LIU R Q, DONG J W. Spatiotemporal patterns of paddy rice production change in China during 1980-2018. Resources Science, 2022, 44(4): 687-700. (in Chinese)

doi: 10.18402/resci.2022.04.04
[2]
张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54(7): 1301-1321. doi: 10.3864/j.issn.0578-1752.2021.07.001.
ZHANG H C, HU Y J, YANG J C, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H, GUO B W, XING Z P, HU Q. Development and prospect of rice cultivation in China. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321. doi: 10.3864/j.issn.0578-1752.2021.07.001. (in Chinese)
[3]
陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响. 作物学报, 2022, 48(3): 656-666.

doi: 10.3724/SP.J.1006.2022.12012
CHEN Y, LI S Y, ZHU A, LIU K, ZHANG Y J, ZHANG H, GU J F, ZHANG W Y, LIU L J, YANG J C. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing. Acta Agronomica Sinica, 2022, 48(3): 656-666. (in Chinese)

doi: 10.3724/SP.J.1006.2022.12012
[4]
LIU K, LI T T, CHEN Y, HUANG J, QIU Y Y, LI S Y, WANG H, ZHU A, ZHUO X X, YU F, ZHANG H, GU J F, LIU L J, YANG J C. Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Research, 2020, 258: 107946.
[5]
JU C X, LIU T, SUN C M. Panicle nitrogen strategies for nitrogen-efficient rice varieties at a moderate nitrogen application rate in the lower reaches of the Yangtze River, China. Agronomy, 2021, 11(2): 192.
[6]
李一, 王秋兵. 我国秸秆资源养分还田利用潜力及技术分析. 中国土壤与肥料, 2020(1): 119-126.
LI Y, WANG Q B. Study on potential of straw resource nutrient return to field and application technology in China. Soil and Fertilizer Sciences in China, 2020(1): 119-126. (in Chinese)
[7]
LI Z K, SHEN Y, ZHANG W Y, ZHANG H, LIU L J, WANG Z Q, GU J F, YANG J C. Effects of long-term straw returning on rice yield and soil properties and bacterial community in a rice-wheat rotation system. Field Crops Research, 2023, 291: 108800.
[8]
郑浣彤, 邵玺文, 耿艳秋, 金峰, 孙琪, 刘丽新, 范洪霞, 郭丽颖. 秸秆还田与氮肥运筹对水稻产量及氮素利用的影响. 灌溉排水学报, 2019, 38(12): 29-36.
ZHENG H T, SHAO X W, GENG Y Q, JIN F, SUN Q, LIU L X, FAN H X, GUO L Y. Effects of sraw returning and nitrogen fertilizer application on rice yield and nitrogen utilization. Journal of Irrigation and Drainage, 2019, 38(12): 29-36. (in Chinese)
[9]
张斯梅, 杨四军, 石祖梁, 常志州. 江苏省稻麦秸秆收集利用现状分析及对策. 生态与农村环境学报, 2014, 30(6): 706-710.
ZHANG S M, YANG S J, SHI Z L, CHANG Z Z. Status quo of collection and utilization of rice and wheat straw in Jiangsu Province and the countermeasures. Journal of Ecology and Rural Environment, 2014, 30(6): 706-710. (in Chinese)
[10]
王德建, 常志州, 王灿, 张刚, 张斯梅. 稻麦秸秆全量还田的产量与环境效应及其调控. 中国生态农业学报, 2015, 23(9): 1073-1082.
WANG D J, CHANG Z Z, WANG C, ZHANG G, ZHANG S M. Regulation and effect of 100% straw return on crop yield and environment. Chinese Journal of Eco-Agriculture, 2015, 23(9): 1073-1082. (in Chinese)
[11]
郝建华, 丁艳锋, 王强盛, 刘正辉, 李刚华, 乔晶, 刘杨, 王绍华. 麦秸还田对水稻群体质量和土壤特性的影响. 南京农业大学学报, 2010, 33(3): 13-18.
HAO J H, DING Y F, WANG Q S, LIU Z H, LI G H, QIAO J, LIU Y, WANG S H. Effect of wheat crop straw application on the quality of rice population and soil properties. Journal of Nanjing Agricultural University, 2010, 33(3): 13-18. (in Chinese)
[12]
李朝苏, 谢瑞芝, 黄钢, 吴春, 李少昆, 汤永禄. 稻麦轮作区保护性耕作条件下氮肥对水稻生长发育和产量的调控效应. 植物营养与肥料学报, 2010, 16(3): 528-535.
LI C S, XIE R Z, HUANG G, WU C, LI S K, TANG Y L. Effects of nitrogen management on rice growth and grain yield under conservation tillage in rice-wheat cropping system. Plant Nutrition and Fertilizer Science, 2010, 16(3): 528-535. (in Chinese)
[13]
徐国伟, 谈桂露, 王志琴, 刘立军, 杨建昌. 秸秆还田与实地氮肥管理对直播水稻产量、品质及氮肥利用的影响. 中国农业科学, 2009, 42(8): 2736-2746. doi:10.3864/j.issn.0578-1752.2009.08.012.
XU G W, TAN G L, WANG Z Q, LIU L J, YANG J C. Effects of wheat-residue application and site-specific nitrogen management on grain yield and quality and nitrogen use efficiency in direct-seeding rice. Scientia Agricultura Sinica, 2009, 42(8): 2736-2746. doi: 10.3864/j.issn.0578-1752.2009.08.012. (in Chinese)
[14]
王夏雯, 王绍华, 李刚华, 王强盛, 刘正辉, 余翔, 丁艳锋. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系. 作物学报, 2008, 34(12): 2184-2189.

doi: 10.3724/SP.J.1006.2008.02184
WANG X W, WANG S H, LI G H, WANG Q S, LIU Z H, YU X, DING Y F. Effect of panicle nitrogen fertilizer on concentrations of cytokinin and auxin in young panicles of Japonica rice and its relation with spikelet development. Acta Agronomica Sinica, 2008, 34(12): 2184-2189. (in Chinese)
[15]
ZHANG J W, WANG J D, ZHOU Y, XU L, CHEN Y L, DING Y F, NING Y W, LIANG D, ZHANG Y C, LI G H. Reduced basal and increased topdressing fertilizer rate combined with straw incorporation improves rice yield stability and soil organic carbon sequestration in a rice-wheat system. Frontiers in Plant Science, 2022, 13: 964957.
[16]
YANG S Q, WANG Y S, LIU R L, XING L, YANG Z L. Improved crop yield and reduced nitrate nitrogen leaching with straw return in a rice-wheat rotation of Ningxia irrigation district. Scientific Reports, 2018, 8: 9458.

doi: 10.1038/s41598-018-27776-5 pmid: 29930282
[17]
WANG X C, SAMO N, ZHAO C K, WANG H N, YANG G T, HU Y G, PENG Y L, RASUL F. Negative and positive impacts of rape straw returning on the roots growth of hybrid rice in the Sichuan Basin area. Agronomy, 2019, 9(11): 690.
[18]
WANG L, QIN T, LIU T Q, GUO L J, LI C F, ZHAI Z B. Inclusion of microbial inoculants with straw mulch enhances grain yields from rice fields in central China. Food and Energy Security, 2020, 9(4): 230.
[19]
杨思存, 霍琳, 王建成. 秸秆还田的生化他感效应研究初报. 西北农业学报, 2005, 14(1): 52-56.
YANG S C, HUO L, WANG J C. Allelopathic effect of straw returning. Acta Agriculturae Boreali-Occidentalis Sinica, 2005, 14(1): 52-56. (in Chinese)
[20]
金鑫, 蔡林运, 李刚华, 侯朋福, 王绍华. 小麦秸秆全量还田对水稻生长及稻田氧化还原物质的影响. 中国土壤与肥料, 2013(5): 80-85.
JIN X, CAI L Y, LI G H, HOU P F, WANG S H. Effects of all wheat crop straw application on rice growth and redox substance in rice fields. Soil and Fertilizer Sciences in China, 2013(5): 80-85. (in Chinese)
[21]
张洪熙, 赵步洪, 杜永林, 谭长乐, 戴正元, 季红娟, 王宝和, 周长海. 小麦秸秆还田条件下轻简栽培水稻的生长特性. 中国水稻科学, 2008, 22(6): 603-609.
ZHANG H X, ZHAO B H, DU Y L, TAN C L, DAI Z Y, JI H J, WANG B H, ZHOU C H. Growth characteristics of rice under simplified cultivation with wheat residue return. Chinese Journal of Rice Science, 2008, 22(6): 603-609. (in Chinese)
[22]
陈新红, 叶玉秀, 许仁良, 周青, 吴冬梅. 小麦秸秆还田量对水稻产量和品质的影响. 作物杂志, 2009(1): 54-57.
CHEN X H, YE Y X, XU R L, ZHOU Q, WU D M. Effects of wheat straw residue amount on grain yield and quality in rice. Crops, 2009(1): 54-57. (in Chinese)
[23]
YE C, MA H Y, HUANG X, XU C M, CHEN S, CHU G, ZHANG X F, WANG D Y. Effects of increasing panicle-stage N on yield and N use efficiency of indica rice and its relationship with soil fertility. The Crop Journal, 2022, 10(6): 1784-1797.
[24]
秦俭, 杨志远, 孙永健, 徐徽, 吕腾飞, 代邹, 郑家奎, 蒋开锋, 马均. 氮素穗肥运筹对两个杂交中籼稻叶片形态、光合生产及产量的影响. 中国水稻科学, 2017, 31(4): 391-399.

doi: 10.16819/j.1001-7216.2017.6146 391
QIN J, YANG Z Y, SUN Y J, XU H, T F, DAI Z, ZHENG J K, JIANG K F, MA J. Effects of nitrogen topdressing for panicle initiation on leaf morphology, photosynthetic production and grain yield of two middle-season hybrid rice. Chinese Journal of Rice Science, 2017, 31(4): 391-399. (in Chinese)

doi: 10.16819/j.1001-7216.2017.6146 391
[25]
白洁瑞, 邱淑芬, 李勇, 沈家禾, 储亚云, 魏广彬, 朱荣松. 氮肥分期施用对机插稻产量构成及氮肥利用率的影响. 中国土壤与肥料, 2016(5): 45-49.
BAI J R, QIU S F, LI Y, SHEN J H, CHU Y Y, WEI G B, ZHU R S. Effects of N fertilizer application times on yield formation and N use efficiency of machine-transplated rice. Soil and Fertilizer Sciences in China, 2016(5): 45-49. (in Chinese)
[26]
ZHANG Z J, CHU G, LIU L J, WANG Z Q, WANG X M, ZHANG H, YANG J C, ZHANG J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Research, 2013, 150: 9-18.
[27]
董明辉, 顾俊荣, 陈培峰, 韩立宇, 乔中英. 麦秸还田与氮肥互作对大穗型杂交粳稻不同部位枝梗和颖花形成的影响. 中国农业科学, 2015, 48(22): 4437-4449. doi: 10.3864/j.issn.0578-1752.2015.22.005.
DONG M H, GU J R, CHEN P F, HAN L Y, QIAO Z Y. Effects of interaction of wheat straw residue with field and nitrogen applications on branches and spikelets formation at different positions in large panicle hybrid rice. Scientia Agricultura Sinica, 2015, 48(22): 4437-4449. doi: 10.3864/j.issn.0578-1752.2015.22.005. (in Chinese)
[28]
LIU Y, ZHU X G, HE X E, LI C, CHANG T G, CHANG S Q, ZHANG H Q, ZHANG Y Z. Scheduling of nitrogen fertilizer topdressing during panicle differentiation to improve grain yield of rice with a long growth duration. Scientific Reports, 2020, 10: 15197.

doi: 10.1038/s41598-020-71983-y pmid: 32938952
[29]
KAMIJI Y, YOSHIDA H, PALTA J A, SAKURATANI T, SHIRAIWA T. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crops Research, 2011, 122(3): 242-247.
[30]
ZHANG W Y, ZHU K Y, WANG Z Q, ZHANG H, GU J F, LIU L J, YANG J C, ZHANG J H. Brassinosteroids function in spikelet differentiation and degeneration in rice. Journal of Integrative Plant Biology, 2019, 61(8): 943-963.

doi: 10.1111/jipb.12722
[31]
刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展. 作物学报, 2023, 49(3): 585-596.

doi: 10.3724/SP.J.1006.2023.22035
LIU L J, ZHOU S Q, LIU K, ZHANG W Y, YANG J C. Research progress on the formation of large panicles in rice and its regulation. Acta Agronomica Sinica, 2023, 49(3): 585-596. (in Chinese)
[32]
姚友礼, 王余龙, 蔡建中. 水稻大穗形成机理的研究Ⅰ. 品种间每穗颖花分化数的差异及其与穗部性状的关系. 江苏农学院学报, 1994, 15(2): 33-38.
YAO Y L, WANG Y L, CAI J Z. Formation of large panicle in riceⅠ. Varietal differences of differentiated spikelet number per panicle and its relations with other panicle characteristics. Journal of Jiangsu Agricultural College, 1994, 15(2): 33-38. (in Chinese)
[33]
LIU J, ZHONG Y, JIA X Y, YAN W M, CAO J, SHANGGUAN Z P. Wheat straw decomposition patterns and control factors under nitrogen fertilization. Journal of Soil Science and Plant Nutrition, 2021, 21(4): 3110-3121.
[34]
ZHAO S C, QIU S J, XU X P, CIAMPITTI I A, ZHANG S Q, HE P. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Applied Soil Ecology, 2019, 138: 123-133.
[35]
LIU B, XIA H, JIANG C C, RIAZ M, YANG L, CHEN Y F, FAN X P, XIA X G. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. The Science of the Total Environment, 2022, 841: 156608.
[36]
SHARMA S, SINGH P, KUMAR S. Responses of soil carbon pools, enzymatic activity, and crop yields to nitrogen and straw incorporation in a rice-wheat cropping system in north-western India. Frontiers in Sustainable Food Systems, 2020, 4: 532704.
[37]
蔡立群, 牛怡, 罗珠珠, 武均, 岳丹, 周欢, 董博, 张仁陟. 秸秆促腐还田土壤养分及微生物量的动态变化. 中国生态农业学报, 2014, 22(9): 1047-1056.
CAI L Q, NIU Y, LUO Z Z, WU J, YUE D, ZHOU H, DONG B, ZHANG R Z. Dynamic characteristics of soil nutrients and soil microbial biomass of field-returned straws at different decay accretion conditions. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1047-1056. (in Chinese)
[38]
朱远芃, 金梦灿, 马超, 广敏, 高敏, 郜红建. 外源氮肥和腐熟剂对小麦秸秆腐解的影响. 生态环境学报, 2019, 28(3): 612-619.

doi: 10.16258/j.cnki.1674-5906.2019.03.023
ZHU Y P, JIN M C, MA C, GUANG M, GAO M, GAO H J. Impacts of exogenous nitrogen and effective microorganism on the decomposition of wheat straw residues. Ecology and Environmental Sciences, 2019, 28(3): 612-619. (in Chinese)
[39]
武际, 郭熙盛, 鲁剑巍, 万水霞, 王允青, 许征宇, 张晓玲. 不同水稻栽培模式下小麦秸秆腐解特征及对土壤生物学特性和养分状况的影响. 生态学报, 2013, 33(2): 565-575.
WU J, GUO X S, LU J W, WAN S X, WANG Y Q, XU Z Y, ZHANG X L. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation. Acta Ecologica Sinica, 2013, 33(2): 565-575. (in Chinese)
[40]
ZHANG Y H, HU T L, WANG H, JIN H Y, LIU Q, CHEN Z, XIE Z B. Nitrogen content and C/N ratio in straw are the key to affect biological nitrogen fixation in a paddy field. Plant and Soil, 2022, 481(1/2): 535-546.
[41]
SINGH B, BRONSON K F, SINGH Y, KHERA T S, PASUQUIN E. Nitrogen-15 balance as affected by rice straw management in a rice- wheat rotation in northwest India. Nutrient Cycling in Agroecosystems, 2001, 59(3): 227-237.
[42]
SHINDO H, NISHIO T. Immobilization and remineralization of N following addition of wheat straw into soil: determination of gross N transformation rates by 15N-ammonium isotope dilution technique. Soil Biology and Biochemistry, 2005, 37(3): 425-432.
[43]
RAN C, GAO D P, LIU W Y, GUO L Y, BAI T Q, SHAO X W, GENG Y Q. Straw and nitrogen amendments improve soil, rice yield, and roots in a saline sodic soil. Rhizosphere, 2022, 24: 100606.
[44]
WANG Z Q, ZHANG W Y, YANG J C. Physiological mechanism underlying spikelet degeneration in rice. Journal of Integrative Agriculture, 2018, 17(7): 1475-1481.
[45]
FU G F, SONG J, LI Y R, YUE M K, XIONG J, TAO L X. Alterations of panicle antioxidant metabolism and carbohydrate content and pistil water potential involved in spikelet sterility in rice under water-deficit stress. Rice Science, 2010, 17(4): 303-310.
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[6] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[7] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[8] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[9] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[10] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[11] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[12] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[13] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[14] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[15] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!