Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2404-2423.doi: 10.3864/j.issn.0578-1752.2024.12.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characteristics of Root Growth, Carbon and Nitrogen Accumulation and Distribution in Winter Rapeseed in Different Ecological Regions

HUANG FangYuan1,2(), BIAN XiaoHua1,2, JIANG Zhan1,2, XIAO XiaoLu1,2, DUAN Bo1,2, CHEN Chang1,2, MA Ni1,2(), GUAN ZhouBo3()   

  1. 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062
    2 Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062
    3 Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi
  • Received:2023-07-28 Accepted:2024-01-30 Online:2024-06-16 Published:2024-06-25
  • Contact: MA Ni, GUAN ZhouBo

Abstract:

【Objective】 The crop yield is significantly affected by the ecological environment. In this study, the yield formation mechanism of winter rapeseed (Brassica napus L.) under different climatic conditions was studied to provide a theoretical basis for the high-yield breeding and cultivation of winter rapeseed. 【Method】The three different varieties of winter rapeseed were selected, including high-yield rapeseed (Qinyou 1618, Q1618), rapeseed materials (QF1), and conventional rapeseed (Zhongshuang 11, ZS11). Field experiments were conducted in the Huanghuai region (Yongshou, Shaanxi) and the middle reaches of the Yangtze River (Yangluo, Hubei) from 2020 to 2021 to study the characteristics of growth, development and physiological characteristics of the three different varieties of winter rapeseed in different ecological regions. 【Result】Different ecological regions significantly affected the root growth, dry matter accumulation and distribution, carbon and nitrogen metabolism response characteristics of winter rapeseed. The root growth of Q1618 was the most vigorous at the two sites, and its root length increased by 21.0% and 6.0% on average compared with ZS11 and QF1 during the overwintering period, respectively. In addition, the spatial distribution differences of root systems among the three varieties at the flowering stage were mainly concentrated in the shallow soil (0-15 cm) at Yangluo, while they were mainly concentrated in the deep soil (15-30 cm) at Yongshou. Compared with ZS11 and QF1, Q1618 showed an average increase of 138.1%, 78.8%, 24.2%, 83.3%, and 104.8%, 103.1%, 44.2%, 41.6% in root length, root surface area, root diameter, and root tip number of deep soil layer during flowering stage at the two sites, respectively. The root growth and yield of rapeseed during overwintering and flowering period were significantly positively correlated, and the correlation was stronger at Yongshou. During the overwintering period of rapeseed in the Huanghuai region, the dry matter accumulation in the aboveground parts slowed down, and the nitrogen content in the leaves was decreased, the soluble sugar content in roots were accumulated, and the sucrose and fructose content in various organs (roots, stems, and leaves) with the overall performance being QF1>Q1618>ZS11, and the soluble sugar content in all organs in this area was positively correlated with yield. The roots, stems and leaves of winter rapeseed in the middle reaches of Yangtze River were basically in a synchronous growth stage, and the dry matter accumulation during the overwintering period was 3.0 times higher than that in the Huanghuai region, and the dry matter accumulation during the overwintering period was significantly positively correlated with the effective pod number per plant in this area. After the bolting stage, the dry matter accumulation of Q1618 was the highest at the two sites. The dry matter accumulation of winter rapeseed at maturity and the dry matter distribution ratio were significantly increased by 10.3% and 39.0% at Yongshou, compared with that at Yangluo site, respectively. On the whole, although the effective number of pods per plant was increased in the middle reaches of the Yangtze River, the measured of winter rapeseed (except ZS11 which was reduced by freezing damage) increased by 21.1% on average by increasing the number of grains per pod and the 1000-grain weight in the Huanghuai region compared with that in the middle reaches of the Yangtze River. Correlation analysis also showed that the rapeseed yield at Yongshou site was significantly positively correlated with the seed number per pod and the 1000-grain weight, while the yield of rapeseed at Yangluo site was significantly positively correlated with the effective number of pods per plant【Conclusion】 The effective number of pod per plant was increased by promoting the growth of rapeseed before the overwintering period in the middle reaches of the Yangtze River. However, in the Huanghuai region, the vegetative growth of aboveground plants during the overwintering period was properly controlled, and the dry matter of roots and stems was promoted to be distributed to grains after bolting, and the number of grains per corner and 1000-grain weight were increased, which was conducive to achieving high yield of winter rapeseed.

Key words: rapeseed (Brassica napus L.), root system, carbon and nitrogen accumulation, dry matter distribution, yield

Fig. 1

Average temperature during the experiment in different ecological regions"

Table 1

Growth period of winter rapeseed in different ecological regions"

地点
Sites
品种
Variety
播种期
Sowing period
出苗期
Seedling period
越冬期
Overwintering period
抽薹期
Bolting period
开花期
Flowering period
角果期
Pod period
成熟期
Mature period
生育期
Growth period (d)
永寿
Yongshou
Q1618 Sept. 18th Sept.27th Dec. 21th Mar.11th Mar.28th Apr. 23th Jun. 7th 263
QF1
ZS11
阳逻
Yangluo
Q1618 Oct. 13th Oct. 20th Jan. 26th Feb. 23th Mar. 10th Apr. 13th May. 3th 204
QF1
ZS11

Fig. 2

Root morphology characteristics of three varieties of winter rapeseed in different ecological regions The different lowercase letters indicate significant differences within winter rapeseed genotype at P<0.05 level. Site (S): Site; Variety (V): Variety; Date (D): Date; S×V, S×D, V×D, and S×V×D represent the interaction between factors. *: P<0.05, **: P<0.01, ns: P>0.05. The same as below"

Fig. 3

Spatial distribution characteristics of root system in 0-30 cm profile of three varieties of winter rapeseed at flowering stage in different ecological regions"

Fig. 4

Soluble sugar and starch concentration in leaves of three varieties of winter rapeseed in different ecological regions"

Fig. 5

Soluble sugar and starch concentration in stems of three varieties of winter rapeseed in different ecological regions"

Fig. 6

Soluable sugar and starch concentration in roots of three varieties of winter rapeseed in different ecological regions"

Table 2

Dry matter mass of different winter rapeseed in different ecological regions (g/plant)"

地点
Site
品种
Variety
冬前期
Before overwintering period
越冬期
Overwintering period
抽薹期
Bolting period
开花期
Flowering period
角果期
Pod period
成熟期
Mature period
永寿
Yongshou
Q1618 4.53a 2.97a 6.16a 28.86a 48.26a 65.68a
QF1 3.01b 2.66a 4.26b 22.68b 36.43b 44.40b
ZS11 2.79b 2.28a 4.26b 24.3b 43.42b 70.48a
平均Mean 3.44A 2.64B 4.89B 25.28A 42.70A 60.19A
阳逻
Yangluo
Q1618 4.07a 11.12a 19.26a 27.16a 37.65a 61.34a
QF1 3.99a 9.90a 13.47c 24.65b 36.04ab 43.41b
ZS11 3.45a 10.8a 16.79b 26.14a 34.18b 58.93a
平均Mean 3.84A 10.61A 16.51A 25.98A 35.96B 54.56B
因素显著性
Significance
of ANOVA
Site (S) ns ** * ns * *
Genotype (G) * ns ** * * **
S×G ns ns ns ns ns ns

Fig. 7

Dynamics distribution of dry matter during the growth period of winter rapeseed in different ecological regions"

Fig. 8

Changes of nitrogen accumulation in winter rapeseed organs (leaves, stems, and roots) during overwintering in different ecological regions"

Fig. 9

Changes of percentage of nitrogen distribution in winter rapeseed organs (leaves, stems, and roots) during overwintering period in different ecological regions"

Table 3

Winter rapeseed yield and its components in different ecological regions"

地点
Site
品种
Variety
收获指数
Harvest index (%)
单株分枝数
Number of branches per plant
单株有效角果数
Effective pod number per plant
每角粒数
Seed number
per pod
千粒重
1000-grain
weight (g)
产量
Yield
(kg·hm-2)
永寿
Yongshou
Q1618 0.36 a 6.4 b 209.9 a 19.1 a 4.77 a 4219.5 a
QF1 0.35 a 7.7 a 185.5 b 21.6 a 4.05 b 3358.5 b
ZS11 0.20 b 4.8 c 115.5 c 17.7 b 4.24 ab 1662.6 c
平均Mean 0.30 A 6.29 A 170.30 B 19.5 A 4.35 A 3080.2 A
阳逻
Yangluo
Q1618 0.25 a 6.5 a 250.0 a 17.6 a 3.89 a 3595.5 a
QF1 0.24 a 7.0 a 216.5 b 14.9 c 3.46 b 2493.0 b
ZS11 0.23 a 5.9 a 216.0 b 15.8 b 3.84 a 3097.5 a
平均Mean 0.24 B 6.5 A 227.5 A 16.4 B 3.73 B 3172.0 A
因素显著性
Significance
of ANOVA
地点Site (S) ** * ** ** * *
品种Variety (V) * * ** * * **
S×V ns ns ns ns ns ns

Fig. 10

Relationship between dry matter accumulation, root growth, carbon and nitrogen accumulation in various organs (leaves, stems, and roots) and yield of winter rapeseed in different ecological regions"

[1]
王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40(5): 613-617.

doi: 10.7505/j.issn.1007-9084.2018.05.001
WANG H Z. New-demand oriented oilseed rape industry developing strategy. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 613-617. (in Chinese)
[2]
刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41(4): 485-489.

doi: 10.7505/j.issn.1007-9084.2019.04.001
LIU C, FENG Z C, XIAO T H, MA X M, ZHOU G S, HUANG F H, LI J N, WANG H Z. Development, potential and adaptation of Chinese rapeseed industry. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 485-489. (in Chinese)

doi: 10.7505/j.issn.1007-9084.2019.04.001
[3]
官春云. 论油菜“冬发”. 中国农业科学, 1978, 11(4): 40-45.
GUAN C Y. Discussion on "cultivating strong seedlings in winter" of rapeseed. Scientia Agricultura Sinica, 1978, 11(4): 40-45. (in Chinese)
[4]
刘自刚, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 史鹏飞, 杨刚, 李学才, 武军艳, 方彦, 曾秀存. 冬前低温胁迫下白菜型冬油菜抗寒性的形态及生理特征. 中国农业科学, 2013, 46(22): 4679-4687. doi: 10.3864/j.issn.0578-1752.2013.22.005.
LIU Z G, SUN W C, YANG N N, WANG Y, HE L, ZHAO C X, SHI P F, YANG G, LI X C, WU J Y, FANG Y, ZENG X C. Morphology and physiological characteristics of cultivars with different levels of cold-resistance in winter rapeseed(Brassica campestris L.) during cold acclimation. Scientia Agricultura Sinica, 2013, 46(22): 4679-4687. doi: 10.3864/j.issn.0578-1752.2013.22.005. (in Chinese)
[5]
张瑛, 丁广大, 蔡红梅, 徐芳森, 石磊. 不同栽培方式对油菜根系形态构型和产量的影响. 华中农业大学学报, 2014, 33(4): 25-32.
ZHANG Y, DING G D, CAI H M, XU F S, SHI L. Effects of different planting methods on root system architecture and yield of oilseed rape. Journal of Huazhong Agricultural University, 2014, 33(4): 25-32. (in Chinese)
[6]
MEISTER R, RAJANI M S, RUZICKA D, SCHACHTMAN D P. Challenges of modifying root traits in crops for agriculture. Trends in Plant Science, 2014, 19(12): 779-788.

doi: 10.1016/j.tplants.2014.08.005 pmid: 25239776
[7]
白非, 白桂萍, 王春云, 李真, 龚德平, 黄威, 程雨贵, 汪波, 王晶, 徐正华, 蒯婕, 周广生. 翻耕深度对遮阴油菜根系生长和养分吸收利用的影响. 中国农业科学, 2022, 55(14): 2726-2739. doi: 10.3864/j.issn.0578-1752.2022.14.004.
BAI F, BAI G P, WANG C Y, LI Z, GONG D P, HUANG W, CHENG Y G, WANG B, WANG J, XU Z H, KUAI J, ZHOU G S. Effects of tillage depth and shading on root growth and nutrient utilization of rapeseed. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739. doi: 10.3864/j.issn.0578-1752.2022.14.004. (in Chinese)
[8]
谷晓博, 李援农, 杜娅丹, 任全茂, 吴国军, 银敏华. 施肥深度对冬油菜产量、根系分布和养分吸收的影响. 农业机械学报, 2016, 47(6): 120-128.
GU X B, LI Y N, DU Y D, REN Q M, WU G J, YIN M H. Effects of fertilization depth on yield, root distribution and nutrient uptake of winter oilseed rape (Brassica napus L.). Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(6): 120-128. (in Chinese)
[9]
王永华, 王玉杰, 冯伟, 王晨阳, 胡卫丽, 轩红梅, 郭天财. 两种气候年型下不同栽培模式对冬小麦根系时空分布及产量的影响. 中国农业科学, 2012, 45(14): 2826-2837. doi: 10.3864/j.issn.0578-1752.2012.14.005.
WANG Y H, WANG Y J, FENG W, WANG C Y, HU W L, XUAN H M, GUO T C. Effects of different cultivation patterns on the spatial-temporal distribution characteristics of roots and grain yield of winter wheat in two climatic years. Scientia Agricultura Sinica, 2012, 45(14): 2826-2837. doi: 10.3864/j.issn.0578-1752.2012.14.005. (in Chinese)
[10]
王敬锋, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵明, 杨吉顺, 李耕. 不同基因型玉米根系特性与氮素吸收利用的差异. 中国农业科学, 2011, 44(4): 699-707. doi: 10.3864/j.issn.0578-1752.sas-2010-06754.
WANG J F, LIU P, ZHAO B Q, DONG S T, ZHANG J W, ZHAO M, YANG J S, LI G. Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes. Scientia Agricultura Sinica, 2011, 44(4): 699-707. doi: 10.3864/j.issn.0578-1752.sas-2010-06754. (in Chinese)
[11]
刘海卿, 孙万仓, 刘自刚, 王治江, 袁金海, 方园, 郭仁迪, 米超, 陈奇. 北方不同生态区白菜型冬油菜农艺性状变化分析. 中国生态农业学报, 2015, 23(6): 694-704.
LIU H Q, SUN W C, LIU Z G, WANG Z J, YUAN J H, FANG Y, GUO R D, MI C, CHEN Q. Analysis of agronomic traits of winter rapeseed (Brassica campestris L.) in different ecological areas of North China. Chinese Journal of Eco-Agriculture, 2015, 23(6): 694-704. (in Chinese)
[12]
刘自刚, 张长生, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 武军艳, 方彦. 不同生态区冬前低温下白菜型冬油菜不同抗寒品种(系)的比较. 作物学报, 2014, 40(2): 346-354.
LIU Z G, ZHANG C S, SUN W C, YANG N N, WANG Y, HE L, ZHAO C X, WU J Y, FANG Y. Comparison of winter rapeseed varieties (lines) with different cold resistance planted in the northern-extending regions in China under low temperature before winter. Acta Agronomica Sinica, 2014, 40(2): 346-354. (in Chinese)
[13]
DIETZE M C, SALA A N, CARBONE M S, CZIMCZIK C I, MANTOOTH J A, RICHARDSON A D, VARGAS R. Nonstructural carbon in woody plants. Annual Review of Plant Biology, 2014, 65: 667-687.

doi: 10.1146/annurev-arplant-050213-040054 pmid: 24274032
[14]
LI N N, HE N P, YU G R, WANG Q F, SUN J. Leaf non-structural carbohydrates regulated by plant functional groups and climate: Evidences from a tropical to cold-temperate forest transect. Ecological Indicators, 2016, 62: 22-31.
[15]
WILEY E, HUEPENBECKER S, CASPER B B, HELLIKER B R. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage? Tree Physiology, 2013, 33(11): 1216-1228.

doi: 10.1093/treephys/tpt093 pmid: 24271085
[16]
LIU Z B, CHENG R M, XIAO W F, GUO Q S, WANG Y H, WANG N, WANG Y R. Leaf gas exchange, chlorophyll fluorescence, non-structural carbohydrate content and growth responses of Distylium chinense during complete submergence and subaerial re-emergence. Aquatic Botany, 2015, 124: 70-77.
[17]
JOHN R, ANJUM N A, SOPORY S K, AKRAM N A, ASHRAF M. Some key physiological and molecular processes of cold acclimation. Biologia Plantarum, 2016, 60(4): 603-618.
[18]
蒲媛媛, 赵玉红, 武军艳, 刘丽君, 白静, 马骊, 牛早霞, 金姣姣, 方彦, 李学才, 孙万仓. 北方强冬性甘蓝型冬油菜品种(系)抗寒性评价. 中国农业科学, 2019, 52(19): 3291-3308. doi: 10.3864/j.issn.0578-1752.2019.19.002.
PU Y Y, ZHAO Y H, WU J Y, LIU L J, BAI J, MA L, NIU Z X, JIN J J, FANG Y, LI X C, SUN W C. Comprehensive assessment on cold tolerance of the strong winter Brassica napus L. cultivated in northern China. Scientia Agricultura Sinica, 2019, 52(19): 3291-3308. doi: 10.3864/j.issn.0578-1752.2019.19.002. (in Chinese)
[19]
李鹏, 马骊, 徐芳, 刘丽君, 姚彦林, 蒲媛媛, 王旺田, 李学才, 方彦, 孙万仓, 武军艳. 越冬前北方不同类型强冬性冬油菜形态及生理响应研究. 干旱地区农业研究, 2022, 40(5): 42-51.
LI P, MA L, XU F, LIU L J, YAO Y L, PU Y Y, WANG W T, LI X C, FANG Y, SUN W C, WU J Y. Comparison of morphological and physiological responses of two different species of northern winter rapeseed before overwintering. Agricultural Research in the Arid Areas, 2022, 40(5): 42-51. (in Chinese)
[20]
左青松, 刘荣, 石剑飞, 唐瑶, 杨光, 冷锁虎. 油菜不同氮素籽粒生产效率类型品种干物质生产及农艺性状差异. 中国油料作物学报, 2010, 32(2): 235-239.
ZUO Q S, LIU R, SHI J F, TANG Y, YANG G, LENG S H. Differences of dry matter production and agronomic characters of rapeseed (Brassica napus L.) with different types of nitrogen utilization efficiency for grain production. Chinese Journal of Oil Crop Sciences, 2010, 32(2): 235-239. (in Chinese)
[21]
朱明川, 武军艳, 马骊, 郭世乾, 崔小茹, 曾秀存, 刘丽君, 蒲媛媛, 李学才, 孙万仓. 北方冬油菜养分积累特点及与产量性状的灰色关联度分析. 中国油料作物学报, 2023, 45(1): 72-82.

doi: 10.19802/j.issn.1007-9084.2021317
ZHU M C, WU J Y, MA L, GUO S Q, CUI X R, ZENG X C, LIU L J, PU Y Y, LI X C, SUN W C. Grey correlation analysis of nutrient accumulation characteristics and yield traits of winter rapeseed in North China. Chinese Journal of Oil Crop Sciences, 2023, 45(1): 72-82. (in Chinese)
[22]
BERRY P, SPINK J. ‘Canopy management’ and late nitrogen applications to improve yield of oilseed rape. HGCA Project Report, 2009, (447): 212.
[23]
严红梅, 段秋宇, 彭霄, 李虹桥, 郭世星, 吴永成. 油菜的氮素吸收、分配与利用特性研究. 四川农业大学学报, 2022, 40(02): 227-232.
YAN H M, DUAN Q Y, PENG X, LI H Q, GUO S X, WU Y C. Study on the characteristics of nitrogen absorption,distribution and utilization in rapeseed. Journal of Sichuan Agricultural University, 2022, 40(02): 227-232. (in Chinese)
[24]
王海娣, 吴兵, 高玉红, 李瑛, 李文珍, 剡斌, 崔政军, 王瑛泽, 赵邦庆. 旱地胡麻同化物积累和分配与产量形成对轮作模式的响应. 中国油料作物学报, 2022, 44(1): 158-167.

doi: 10.19802/j.issn.1007-9084.2020323
WANG H D, WU B, GAO Y H, LI Y, LI W Z SHAN/YAN B, CUI Z J, WANG Y Z, ZHAO B Q. Responses of assimilation accumulation and distribution and grain yield formation of oilseed flax to crop rotation patterns in dry land. Chinese Journal of Oil Crop Sciences, 2022, 44(1): 158-167. (in Chinese)
[25]
LI X H, LI Q B, YANG T W, NIE Z N, CHEN G X, HU L Y. Responses of plant development, biomass and seed production of direct sown oilseed rape (Brassica napus) to nitrogen application at different stages in Yangtze River Basin. Field Crops Research, 2016, 194: 12-20.
[26]
KUAI J, LI X Y, JI J L, LI Z, XIE Y, WANG B, ZHOU G S. Response of leaf carbon metabolism and dry matter accumulation to density and row spacing in two rapeseed (Brassica napus L.) genotypes with differing plant architectures. The Crop Journal, 2022, 10(3): 680-691.
[27]
WANG R, CHENG T, HU L Y. Effect of wide-narrow row arrangement and plant density on yield and radiation use efficiency of mechanized direct-seeded canola in Central China. Field Crops Research, 2015, 172: 42-52.
[28]
SU W, LIU B, LIU X W, LI X K, REN T, CONG R H, LU J W. Effect of depth of fertilizer banded-placement on growth, nutrient uptake and yield of oilseed rape (Brassica napus L.). European Journal of Agronomy, 2015, 62: 38-45.
[29]
NOWOSAD K, LIERSCH A, POPŁAWSKA W, BOCIANOWSKI J. Genotype by environment interaction for seed yield in rapeseed (Brassica napus L.) using additive main effects and multiplicative interaction model. Euphytica, 2016, 208(1): 187-194.
[30]
丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41(6): 894-903.

doi: 10.19802/j.issn.1007-9084.2019046
CONG R H, ZHANG Z, LU J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chinese Journal of Oil Crop Sciences, 2019, 41(6): 894-903. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2019046
[31]
周冬梅, 张仁陟, 孙万仓, 张军, 王鹤龄. 北方旱寒区冬油菜种植气候适宜性研究. 中国农业科学, 2014, 47(13): 2541-2551. doi: 10.3864/j.issn.0578-1752.2014.13.006.
ZHOU D M, ZHANG R Z, SUN W C, ZHANG J, WANG H L. Study on Climatic Suitability for Winter Rapeseed Planting in Arid and Cold Regions in North China. Scientia Agricultura Sinica, 2014, 47(13): 2541-2551. doi: 10.3864/j.issn.0578-1752.2014.13.006. (in Chinese)
[32]
ZHAO D L, MACKOWN C T, STARKS P J, KINDIGER B K. Rapid analysis of nonstructural carbohydrate components in grass forage using microplate enzymatic assays. Crop Science, 2010, 50(4): 1537-1545.
[33]
邱新强, 高阳, 黄玲, 李新强, 孙景生, 段爱旺. 冬小麦根系形态性状及分布. 中国农业科学, 2013, 46(11): 2211-2219. doi: 10.3864/j.issn.0578-1752.2013.11.004.
QIU X Q, GAO Y, HUANG L, LI X Q, SUN J S, DUAN A W. Temporal and spatial distribution of root morphology of winter wheat. Scientia Agricultura Sinica, 2013, 46(11): 2211-2219. doi: 10.3864/j.issn.0578-1752.2013.11.004. (in Chinese)
[34]
HAMMER G L, DONG Z S, MCLEAN G, DOHERTY A, MESSINA C, SCHUSSLER J, ZINSELMEIER C, PASZKIEWICZ S, COOPER M. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Science, 2009, 49(1): 299-312.
[35]
武军艳, 方彦, 张朋飞, 杨月蓉, 孙万仓, 刘自刚, 李学才. 北方旱寒区冬油菜根系抗寒指标分析. 干旱地区农业研究, 2014, 32(6): 250-255.
WU J Y, FANG Y, ZHANG P F, YANG Y R, SUN W C, LIU Z G, LI X C. Analysis of cold-tolerant characters of winter rape roots in northern arid-cold area. Agricultural Research in the Arid Areas, 2014, 32(6): 250-255. (in Chinese)
[36]
徐明霞, 董小云, 刘自刚, 邹娅, 徐春梅, 米文博. 白菜型冬油菜根系形态与抗寒性的相关分析. 分子植物育种, 2021, 19(5): 1640-1648.
XU M X, DONG X Y, LIU Z G, ZOU Y, XU C M, MI W B. Analysis on the relationship between roots and cold tolerance of winter turnip rape (Brassica rapa). Molecular Plant Breeding, 2021, 19(5): 1640-1648. (in Chinese)
[37]
LIU L P, GAN Y T, BUECKERT R, VAN REES K. Rooting systems of oilseed and pulse crops. II: vertical distribution patterns across the soil profile. Field Crops Research, 2011, 122(3): 248-255.
[38]
王小娟, 宋海星, 陈历儒, 刘强, 荣湘民, 张振华, 官春云. 不同供氮水平下油菜根系的反应差异. 湖南农业大学学报(自然科学版), 2011, 37(6): 592-597.
WANG X J, SONG H X, CHEN L R, LIU Q, RONG X M, ZHANG Z H, GUAN C Y. Response difference to nitrogen in roots of different varieties of oilseed rape. Journal of Hunan Agricultural University (Natural Sciences), 2011, 37(6): 592-597. (in Chinese)
[39]
李国辉, 崔克辉. 水稻蔗糖转运及其与产量形成的关系. 植物生理学报, 2014, 50(6): 735-740.
LI G H, CUI K H. Sucrose translocation and its relationship with grain yield formation in rice. Plant Physiology Journal, 2014, 50(6): 735-740. (in Chinese)
[40]
杨宁宁, 孙万仓, 刘自刚, 史鹏辉, 方彦, 武军艳, 曾秀存, 孔德晶, 鲁美宏, 王月. 北方冬油菜抗寒性的形态与生理机制. 中国农业科学, 2014, 47(3): 452-461. doi: 10.3864/j.issn.0578-1752.2014.03.005.
YANG N N, SUN W C, LIU Z G, SHI P H, FANG Y, WU J Y, ZENG X C, KONG D J, LU M H, WANG Y. Morphological characters and physiological mechanisms of cold resistance of winter rapeseed in northern China. Scientia Agricultura Sinica, 2014, 47(3): 452-461. doi: 10.3864/j.issn.0578-1752.2014.03.005. (in Chinese)
[41]
孙万仓, 武军艳, 方彦, 刘秦, 杨仁义, 马维国, 李学才, 张俊杰, 张鹏飞, 曹建明, 孙佳. 北方旱寒区北移冬油菜生长发育特性. 作物学报, 2010, 36(12): 2124-2134.

doi: 10.3724/SP.J.1006.2010.02124
SUN W C, WU J Y, FANG Y, LIU Q, YANG R Y, MA W G, LI X C, ZHANG J J, ZHANG P F, CAO J M, SUN J. Growth and development characteristics of winter rapeseed northern-extended from the cold and arid regions in China. Acta Agronomica Sinica, 2010, 36(12): 2124-2134. (in Chinese)
[42]
穆心愿, 赵霞, 谷利敏, 冀保毅, 丁勇, 张凤启, 张君, 齐建双, 马智艳, 夏来坤, 唐保军. 秸秆还田量对不同基因型夏玉米产量及干物质转运的影响. 中国农业科学, 2020, 53(1): 29-41. doi: 10.3864/j.issn.0578-1752.2020.01.003.
MU X Y, ZHAO X, GU L M, JI B Y, DING Y, ZHANG F Q, ZHANG J, QI J S, MA Z Y, XIA L K, TANG B J. Effects of straw returning amount on grain yield, dry matter accumulation and transfer in summer maize with different genotypes. Scientia Agricultura Sinica, 2020, 53(1): 29-41. doi: 10.3864/j.issn.0578-1752.2020.01.003. (in Chinese)
[43]
PAUL M J, FOYER C H. Sink regulation of photosynthesis. Journal of Experimental Botany, 2001, 52(360): 1383-1400.

doi: 10.1093/jexbot/52.360.1383 pmid: 11457898
[44]
殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016, 42(5): 751-757.
YIN W, FENG F X, ZHAO C, YU A Z, CHAI Q, HU F L, GUO Y. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agronomica Sinica, 2016, 42(5): 751-757. (in Chinese)
[45]
王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响. 中国农业科学, 2023, 56(7): 1283-1294. doi: 10.3864/j.issn.0578-1752.2023.07.007.
WANG P F, YU A Z, WANG Y L, SU X X, LI Y, H Q, CHAI J, YANG H W. Effects of returning green manure to field combined with reducing nitrogen application on the dry matter accumulation, distribution and yield of maize. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294. doi: 10.3864/j.issn.0578-1752.2023.07.007. (in Chinese)
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[3] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[4] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[5] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[6] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[7] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[8] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[9] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[10] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[11] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[12] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[13] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[14] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[15] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!