Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2336-2349.doi: 10.3864/j.issn.0578-1752.2024.12.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Drought Risk for Spring Maize in the Future and Response to Climate Change in the Northeast China

YANG WangHua1(), LIU ZhiJuan1(), GONG JingJin1, FU ZhenZhen1, ZHANG TaiLin1, ZHANG XiaoLong2, SHEN YanJun2, YANG XiaoGuang1   

  1. 1 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193
    2 Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022
  • Received:2023-10-12 Accepted:2024-03-27 Online:2024-06-16 Published:2024-06-25
  • Contact: LIU ZhiJuan

Abstract:

【Objective】 Drought was one of the main natural disasters which influencing agricultural production in China. As the largest maize production region in China, the frequent droughts caused by climate change have significantly affected the production of spring maize in the Northeast China. In this study, the risk of spring maize drought and its spatial pattern under future climate scenarios in the Northeast China was assessed, so as to provide a scientific basis for preventing spring maize drought and ensuring high-stable spring maize yield. 【Method】The spring maize potential planting area was focused on. Based on the daily weather data of three climate scenarios (shared socioeconomic pathways, SSPs), i.e., SSP1-2.6, SSP3-7.0, and SSP5-8.5 output from MPI-ESM1.2-HR model under the Inter Statistical Impact Model Intercomparision Project (ISIMIP) from 1981 to 2060 and the spring maize phenology data from 53 agro-meteorological observation stations, the Crop Water Deficit Index (CWDI) as the agricultural drought index was selected to analyze the spatio-temporal characteristics of different levels of drought in different growth periods of spring maize in Northeast China. The optimal probability theory distribution function was selected to estimate the probability of drought index series. The drought risk index was constructed by using different levels of drought risk for spring maize at each point estimated based on information diffusion theory. Then, spring maize drought risk in the Northeast China was assessed under different climate scenarios and future changes in the spatial pattern of risk areas by class. 【Result】(1) The drought index of spring maize in the whole growth period in research region from 1981 to 2014 was generally characterized by a high drought in the southwest and low in the northeast, showing that the four eastern leagues of Inner Mongolia (57.3%)>Heilongjiang Province (40.6%)>Liaoning Province (39.5%)>Jilin Province (38.9%). (2) The drought intensity in the middle of spring maize growth was overall higher than that in the early and late growth periods in the study area. In the 2030s and 2050s, the probability of drought risk in early growth was light drought>moderate drought ≈ severe drought>extreme drought. The probability of drought risk in middle growth was extreme drought>severe drought>light drought ≈ moderate drought. And the probability of drought risk in late growth was light drought>medium drought>heavy drought>exceptional drought. (3) From 1981 to 2060, under the SSP1-2.6 low emission scenario, the probability of occurrence of higher-grade drought risk for spring maize in Northeast China decreased, and the extremely high and higher drought risk zones was obviously shrink to the southwest, with the area share decreasing by 5.4% and 9.6% in the 2030s, and by 0.8% and 2.5% in the 2050s, respectively; while under the SSP3-7.0 and SSP5-8.5 two high emission scenarios, the probability of occurrence of higher-grade drought risk increased, and the higher drought risk area expanded to the northeast, with the area share increasing by 8.5% and 9.7% in the 2050s, respectively【Conclusion】 According to the spatial and temporal distribution pattern of future drought risk based on the drought risk index, the drought risk of spring maize in Northeast China decreased from southwest to northeast, and the higher-grade drought risk area expanded to northeast under the scenarios of SSP3-7.0 and SSP5-8.5 in the future, so it was necessary to pay attention to the critical growth period of maize to propose targeted defense measures.

Key words: drought risk, climate change, Northeast China, spring maize, CMIP6, crop water deficit index

Fig. 1

Study region and agro-meteorological stations"

Table 1

The agricultural drought level of crop water deficit index (CWDI)"

等级
Grade
类型
Classification
作物水分亏缺指数数值
Values of CWDI (%)
0 无旱No drought CWDI≤35
1 轻旱Light drought 35<CWDI≤50
2 中旱Moderate drought 50<CWDI≤65
3 重旱Severe drought 65<CWDI≤80
4 特旱Extreme drought CWDI>80

Table 2

The classification of drought risk index"

等级
Grade
类型
Type
干旱风险指数M
Hazard index of drought
0 极低 Extremely low M≤0.94
1 较低 Lower 0.94<M≤1.39
2 中等 Moderate 1.39<M≤1.79
3 较高 Higher 1.79<M≤2.52
4 极高 Extremely high 2.52<M

Fig. 2

Drought index during entire growth period and each stage of spring maize in Northeast China from 1981 to 2060"

Fig. 3

Drought index (CWDI) during the entire growth period of spring maize in the Northeast China and each province"

Fig. 4

Drought risk probability during the entire growth period of spring maize in the Northeast China from 2015 to 2060"

Fig. 5

Drought risk probability during each growth stage of spring maize in the Northeast China from 2015 to 2060"

Fig. 6

Drought risk during the entire growth period in the Northeast China during 1981-2014, 2030s and 2050s"

Fig. 7

The proportion of drought risk area of each level at different growth stages in the Northeast China during 1981-2014, 2030s and 2050s"

[1]
IPCC第六次评估报告第一工作组报告发布. 中国气象报, 2021,08-10(001).
IPCC Sixth Assessment Report Working Group I Report Released. China Meteorological News, 2021,08-10(001). (in Chinese)
[2]
李芬, 于文金, 张建新, 朱凤琴, 刘英丽. 干旱灾害评估研究进展. 地理科学进展, 2011, 30(7): 891-898.
LI F, YU W J, ZHANG J X, ZHU F Q, LIU Y L. Review of drought disaster evaluation. Progress in Geography, 2011, 30(7): 891-898. (in Chinese)

doi: 10.11820/dlkxjz.2011.07.015
[3]
LI L S, ZHAO L L, LI Y B. Spatiotemporal characteristics of meteorological and agricultural droughts in China: change patterns and causes. Agriculture, 2023, 13(2): 265.
[4]
ZHANG Q, YAO Y B, LI Y H, HUANG J P, MA Z G, WANG Z L, WANG S P, WANG Y, ZHANG Y. Causes and changes of drought in China: research progress and prospects. Journal of Meteorological Research, 2020, 34(3): 460-481.
[5]
韩冬荟, 赵金媛, 胡琦, 潘学标, 王萍, 易国庆, 郭颖达, 王浩然, 和骅芸, 陈立新. 东北地区粮食作物产量变化特征及其对气象干旱的响应研究. 中国农业大学学报, 2021, 26(3): 188-200.
HAN D H, ZHAO J Y, HU Q, PAN X B, WANG P, YI G Q, GUO Y D, WANG H R, HE H Y, CHEN L X. Analysis of crop yield variation characteristics in Northeast China and the response to meteorological drought. Journal of China Agricultural University, 2021, 26(3): 188-200. (in Chinese)
[6]
刘志娟, 杨晓光, 吕硕, 王静, LIN XiaoMao. 东北三省春玉米产量差时空分布特征. 中国农业科学, 2017, 50(9): 1606-1616. doi: 10.3864/j.issn.0578-1752.2017.09.006.
LIU Z J, YANG X G, S, WANG J, LIN X M. Spatial-temporal variations of yield gaps of spring maize in Northeast China. Scientia Agricultura Sinica, 2017, 50(9): 1606-1616. doi: 10.3864/j.issn.0578-1752.2017.09.006. (in Chinese)
[7]
李明, 王贵文, 张莲芝. 基于SPEI的中国东北地区干旱分区及其气候特征分析. 干旱区资源与环境, 2016, 30(6): 65-70.
LI M, WANG G W, ZHANG L Z. Drought characteristics analysis and the zoning based on standardized precipitation evapotranspiration index in Northeast China. Journal of Arid Land Resources and Environment, 2016, 30(6): 65-70. (in Chinese)
[8]
马建勇, 许吟隆, 潘婕. 基于SPI与相对湿润度指数的1961—2009年东北地区5—9月干旱趋势分析. 气象与环境学报, 2012, 28(3): 90-95.
MA J Y, XU Y L, PAN J. Drought tendency based on standardized precipitation index(SPI)and relative moisture index over Northeast China from May to September during 1961-2009. Journal of Meteorology and Environment, 2012, 28(3): 90-95. (in Chinese)
[9]
邹旭恺, 张强. 近半个世纪我国干旱变化的初步研究. 应用气象学报, 2008, 19(6): 679-687.
ZOU X K, ZHANG Q. Preliminary studies on variations in droughts over China during past 50 years. Journal of Applied Meteorological Science, 2008, 19(6): 679-687. (in Chinese)
[10]
曲美慧, 涂钢, 冯喜媛. 1961—2019年东北地区作物生长不同阶段极端干期时空分布特征分析. 自然灾害学报, 2022, 31(2): 242-251.
QU M H, TU G, FENG X Y. Analysis of spatial and temporal variation characteristics of extreme dry spells for different crop growth stages in Northeast China from 1961 to 2019. Journal of Natural Disasters, 2022, 31(2): 242-251. (in Chinese)
[11]
MONTELEONE B, BORZÍ I, BONACCORSO B, MARTINA M. Developing stage-specific drought vulnerability curves for maize: the case study of the Po River Basin. Agricultural Water Management, 2022, 269: 107713.
[12]
李莎. 春玉米产量年际变化影响因素及施肥对策. 哈尔滨: 东北农业大学, 2011.
LI S. Factors influencing interannual variation of spring corn yield and fertilization stragedy. Harbin: Northeast Agricultural University, 2011. (in Chinese)
[13]
WAN W, LIU Z, LI J H, XU J N, WU H Q, XU Z H. Spatiotemporal patterns of maize drought stress and their effects on biomass in the Northeast and North China Plain from 2000 to 2019. Agricultural and Forest Meteorology, 2022, 315: 108821.
[14]
KHODARAHMPOUR Z, HAMIDI J. Study of yield and yield components of corn (Zea mays L.) inbred lines to drought stress. African Journal of Biotechnology, 2012, 11(13): 3099-3105.
[15]
MIAO Z Y, HAN Z X, ZHANG T, CHEN S Y, MA C. A systems approach to a spatio-temporal understanding of the drought stress response in maize. Scientific Reports, 2017, 7(1): 6590.

doi: 10.1038/s41598-017-06929-y pmid: 28747711
[16]
MAITI R K, MAITI L E, MAITI S, MAITI A M, MAITI M, MAITI H. Genotypic variability in maize (Cultivars Zea mays L.) for resistance to drought and salinity at the seedling stage. Journal of Plant Physiology, 1996, 148(6): 741-744.
[17]
ZENDA T, LIU S T, WANG X, JIN H Y, LIU G, DUAN H J. Comparative proteomic and physiological analyses of two divergent maize inbred lines provide more insights into drought-stress tolerance mechanisms. International Journal of Molecular Sciences, 2018, 19(10): 3225.
[18]
李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞. 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015, 23(4): 383-391.
LI Y B, TAO H B, WANG R N, ZHANG P, WU C J, LEI M, ZHANG X, WANG P. Effect of drought on ear development and yield of maize. Chinese Journal of Eco-Agriculture, 2015, 23(4): 383-391. (in Chinese)
[19]
张继权, 荣广智, 李天涛, 方伟华. 多致灾因子诱发地质灾害链综合风险评价技术. 中国减灾, 2022(7): 23-26.
ZHANG J Q, RONG G Z, LI T T, FANG W H. Comprehensive risk assessment technology of geological disaster chain induced by multiple disaster factors. Disaster Reduction in China, 2022(7): 23-26. (in Chinese)
[20]
刘庚山, 郭安红, 安顺清, 刘巍巍. 帕默尔干旱指标及其应用研究进展. 自然灾害学报, 2004, 13(4): 21-27.
LIU G S, GUO A H, AN S Q, LIU W W. Research progress in Palmer drought severity index and it’s application. Journal of Natural Disasters, 2004, 13(4): 21-27. (in Chinese)
[21]
LOHANI V K, LOGANATHAN G V. An early warning system for drought management using the palmer drought index. Journal of the American Water Resources Association, 1997, 33(6): 1375-1386.
[22]
OGUNRINDE A T, OGUNTUNDE P G, OLASEHINDE D A, FASINMIRIN J T, AKINWUMIJU A S. Drought spatiotemporal characterization using self-calibrating Palmer Drought Severity Index in the northern region of Nigeria. Results in Engineering, 2020, 5: 100088.
[23]
PALMER W C. Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise, 1968, 21(4): 156-161.
[24]
HAYES M J, SVOBODA M D, WILHITE D A, VANYARKHO O V. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society, 1999, 80(3): 429-438.
[25]
KALISA W, ZHANG J H, IGBAWUA T, UJOH F, EBOHON O J, NAMUGIZE J N, YAO F M. Spatio-temporal analysis of drought and return periods over the East African Region using Standardized Precipitation Index from 1920 to 2016. Agricultural Water Management, 2020, 237: 106195.
[26]
BAHRAMI M, BAZRKAR S, ZAREI A R. Modeling, prediction and trend assessment of drought in Iran using standardized precipitation index. Journal of Water and Climate Change, 2019, 10(1): 181-196.
[27]
MOKHTAR A, JALALI M, HE H M, AL-ANSARI N, ELBELTAGI A, ALSAFADI K, ABDO H G, SAMMEN S S, GYASI-AGYEI Y, RODRIGO-COMINO J. Estimation of SPEI meteorological drought using machine learning algorithms. IEEE Access, 2021, 9: 65503-65523.
[28]
BLAUHUT V, STAHL K, STAGGE J H, TALLAKSEN L M, DE STEFANO L, VOGT J. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrology and Earth System Sciences, 2016, 20(7): 2779-2800.
[29]
BALTING D F, AGHAKOUCHAK A, LOHMANN G, IONITA M. Northern Hemisphere drought risk in a warming climate. NPJ Climate and Atmospheric Science, 2021, 4: 61.
[30]
姚玉璧, 董安祥, 王毅荣, 张秀云, 杨金虎. 基于帕默尔干旱指数的中国春季区域干旱特征比较研究. 干旱区地理, 2007, 30(1): 22-29. (in Chinese)
YAO Y B, DONG A X, WANG Y R, ZHANG X Y, YANG J H. Compare research of the regional arid characteristic base on Palmer drought severity index in spring over China. Arid Land Geography, 2007, 30(1): 22-29. (in Chinese)
[31]
李尚飞, 戈文艳, 王飞. 1982—2019年中国北方干旱事件特征及其对植被的影响. 水土保持研究, 2023, 30(3): 251-259.
LI S F, GE W Y, WANG F. Characteristics of drought events and their impacts on vegetation in Northern China from 1982 to 2019. Research of Soil and Water Conservation, 2023, 30(3): 251-259. (in Chinese)
[32]
周丹, 张勃, 任培贵, 张春玲, 杨尚武, 季定民. 基于标准化降水蒸散指数的陕西省近50a干旱特征分析. 自然资源学报, 2014, 29(4): 677-688.
ZHOU D, ZHANG B, REN P G, ZHANG C L, YANG S W, JI D M. Analysis of drought characteristics of Shaanxi Province in recent 50 years based on standardized precipitation evapotranspiration index. Journal of Natural Resources, 2014, 29(4): 677-688. (in Chinese)

doi: 10.11849/zrzyxb.2014.04.012
[33]
张强, 姚玉璧, 李耀辉, 黄建平, 马柱国, 王芝兰, 王素萍, 王莺, 张宇. 中国干旱事件成因和变化规律的研究进展与展望. 气象学报, 2020, 78(3): 500-521.
ZHANG Q, YAO Y B, LI Y H, HUANG J P, MA Z G, WANG Z L, WANG S P, WANG Y, ZHANG Y. Progress and prospect on the study of causes and variation regularity of droughts in China. Acta Meteorologica Sinica, 2020, 78(3): 500-521. (in Chinese)
[34]
李忆平, 李耀辉. 气象干旱指数在中国的适应性研究进展. 干旱气象, 2017, 35(5): 709-723.

doi: 10.11755/j.issn.1006-7639(2017)-05-0709
LI Y P, LI Y H. Advances in adaptability of meteorological drought indices in China. Journal of Arid Meteorology, 2017, 35(5): 709-723. (in Chinese)
[35]
沈国强, 郑海峰, 雷振锋. SPEI指数在中国东北地区干旱研究中的适用性分析. 生态学报, 2017, 37(11): 3787-3795.
SHEN G Q, ZHENG H F, LEI Z F. Applicability analysis of SPEI for drought research in Northeast China. Acta Ecologica Sinica, 2017, 37(11): 3787-3795. (in Chinese)
[36]
朱自玺, 刘荣花, 方文松, 王友贺. 华北地区冬小麦干旱评估指标研究. 自然灾害学报, 2003, 12(1): 145-150.
ZHU Z X, LIU R H, FANG W S, WANG Y H. Evaluation indices of drought of winter wheat in North China. Journal of Natural Disasters, 2003, 12(1): 145-150. (in Chinese)
[37]
张艳红, 吕厚荃, 李森. 作物水分亏缺指数在农业干旱监测中的适用性. 气象科技, 2008, 36(5): 596-600.
ZHANG Y H, H Q, LI S. Applicability of crop water deficit index in agricultural drought monitoring. Meteorological Science and Technology, 2008, 36(5): 596-600. (in Chinese)
[38]
董朝阳, 刘志娟, 杨晓光. 北方地区不同等级干旱对春玉米产量影响. 农业工程学报, 2015, 31(11): 157-164.
DONG C Y, LIU Z J, YANG X G. Effects of different grade drought on grain yield of spring maize in Northern China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 157-164. (in Chinese)
[39]
杨晓晨, 明博, 陶洪斌, 王璞. 中国东北春玉米区干旱时空分布特征及其对产量的影响. 中国生态农业学报, 2015, 23(6): 758-767.
YANG X C, MING B, TAO H B, WANG P. Spatial distribution characteristics and impact on spring maize yield of drought in Northeast China. Chinese Journal of Eco-Agriculture, 2015, 23(6): 758-767. (in Chinese)
[40]
董朝阳, 杨晓光, 杨婕, 解文娟, 叶清, 赵锦, 李克南. 中国北方地区春玉米干旱的时间演变特征和空间分布规律. 中国农业科学, 2013, 46(20): 4234-4245. doi: 10.3864/j.issn.0578-1752.2013.20.006.
DONG C Y, YANG X G, YANG J, XIE W J, YE Q, ZHAO J, LI K N. The temporal variation characteristics and spatial distribution laws of drought of spring maize in northern China. Scientia Agricultura Sinica, 2013, 46(20): 4234-4245. doi: 10.3864/j.issn.0578-1752.2013.20.006. (in Chinese)
[41]
黄晚华, 杨晓光, 曲辉辉, 冯利平, 黄彬香, 王靖, 施生锦, 武永峰, 张晓煜, 肖小平, 杨光立, 李茂松. 基于作物水分亏缺指数的春玉米季节性干旱时空特征分析. 农业工程学报, 2009, 25(8): 28-34.
HUANG W H, YANG X G, QU H H, FENG L P, HUANG B X, WANG J, SHI S J, WU Y F, ZHANG X Y, XIAO X P, YANG G L, LI M S. Analysis of spatio-temporal characteristic on seasonal drought of spring maize based on crop water deficit index. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8): 28-34. (in Chinese)
[42]
ALLEN R G, PEREIRA L S, RAES D, SMITH M. Crop evapotranspiration-guidelines for computing crop water requirements. Rome: FAO Irrigation and Drainage Paper 56, 1998: 15-86.
[43]
孙滢悦, 张立峰, 陈鹏. 基于信息扩散理论的吉林省旅游地资源灾害风险评价. 湖北农业科学, 2014, 53(20): 5007-5010.
SUN Y Y, ZHANG L F, CHEN P. Evaluating disaster risks of tourism destination in Jilin provice based on the information diffusion theory. Hubei Agricultural Sciences, 2014, 53(20): 5007-5010. (in Chinese)
[44]
LIU X F, ZHU X F, PAN Y Z, LI S S, LIU Y X, MA Y Q. Agricultural drought monitoring: progress, challenges, and prospects. Journal of Geographical Sciences, 2016, 26(6): 750-767.
[45]
王素萍, 张存杰, 李耀辉, 冯建英, 王劲松. 基于标准化降水指数的1960—2011年中国不同时间尺度干旱特征. 中国沙漠, 2014, 34(3): 827-834.
WANG S P, ZHANG C J, LI Y H, FENG J Y, WANG J S. Analysis of multi-timescale drought variation based on standardized precipitation index in China during 1960-2011. Journal of Desert Research, 2014, 34(3): 827-834. (in Chinese)

doi: 10.7522/j.issn.1000-694X.2013.00382
[46]
张晨霞, 陈方正, 黄明霞, 李林超, 肖登攀, 冯璞玉, 刘德立, 胡克林. 基于CMIP6气候模式的东北三省农业水热资源时空变化特征. 地理与地理信息科学, 2023, 39(3): 94-103.
ZHANG C X, CHEN F Z, HUANG M X, LI L C, XIAO D P, FENG P Y, LIU D L, HU K L. Spatial and temporal change characteristics of agricultural precipitation and heat resources in Northeast China based on CMIP6. Geography and Geo-Information Science, 2023, 39(3): 94-103. (in Chinese)
[47]
王莹, 张舒, 徐永清, 阙粼婧, 李新华, 黄英伟, 陈雪, 王蕾. 近50a黑龙江省5—9月气象干旱及大气环流异常特征. 干旱气象, 2023, 41(4): 540-549.

doi: 10.11755/j.issn.1006-7639(2023)-04-0540
WANG Y, ZHANG S, XU Y Q, QUE L J, LI X H, HUANG Y W, CHEN X, WANG L. Meteorological drought and atmospheric circulation anomalies characteristics in Heilongjiang Province from May to September in recent 50 years. Journal of Arid Meteorology, 2023, 41(4): 540-549. (in Chinese)
[48]
裴志方. 东北松嫩平原春玉米干旱灾害监测及风险评估研究[D]. 成都: 成都理工大学, 2021.
PEI Z F. Study on drought disaster monitoring and risk assessment of spring maize in Songnen Plain of Northeast China[D]. Chengdu: Chengdu University of Technology, 2021. (in Chinese)
[49]
王晓煜, 杨晓光, 孙爽, 解文娟. 气候变化背景下东北三省主要粮食作物产量潜力及资源利用效率比较. 应用生态学报, 2015, 26(10): 3091-3102.
WANG X Y, YANG X G, SUN S, XIE W J. Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change. Chinese Journal of Applied Ecology, 2015, 26(10): 3091-3102. (in Chinese)
[50]
赵彦茜, 肖登攀, 唐建昭, 柏会子. 气候变化对我国主要粮食作物产量的影响及适应措施. 水土保持研究, 2019, 26(6): 317-326.
ZHAO Y X, XIAO D P, TANG J Z, BAI H Z. Effects of climate change on the yield of major grain crops and its adaptation measures in China. Research of Soil and Water Conservation, 2019, 26(6): 317-326. (in Chinese)
[51]
MÜLLER W A, JUNGCLAUS J H, MAURITSEN T, BAEHR J, BITTNER M, BUDICH R, BUNZEL F, ESCH M, GHOSH R, HAAK H, ILYINA T, KLEINE T, KORNBLUEH L, LI H, MODALI K, NOTZ D, POHLMANN H, ROECKNER E, STEMMLER I, TIAN F, MAROTZKE J. A higher-resolution version of the max Planck institute earth system model (MPI-ESM1.2-HR). Journal of Advances in Modeling Earth Systems, 2018, 10(7): 1383-1413.
[52]
GUTJAHR O, PUTRASAHAN D, LOHMANN K, JUNGCLAUS J H, VON STORCH J S, BRÜGGEMANN N, HAAK H, STÖSSEL A. Max Planck institute earth system model (MPI-ESM1.2) for the high-resolution model intercomparison project (HighResMIP). Geoscientific Model Development, 2019, 12(7): 3241-3281.
[53]
段青云, 夏军, 缪驰远, 孙巧红. 全球气候模式中气候变化预测预估的不确定性. 自然杂志, 2016, 38(3): 182-188.

doi: 10.3969/j.issn.0253-9608.2016.03.004
DUAN Q Y, XIA J, MIAO C Y, SUN Q H. The uncertainty in climate change projections by global climate models. Chinese Journal of Nature, 2016, 38(3): 182-188. (in Chinese)

doi: 10.3969/j.issn.0253-9608.2016.03.004
[54]
王蕾, 张百超, 石英, 韩振宇, 陆波. IPCC AR6报告关于气候变化影响和风险主要结论的解读. 气候变化研究进展, 2022, 18(4): 389-394.
WANG L, ZHANG B C, SHI Y, HAN Z Y, LU B. Interpretation of the IPCC AR6 on the impacts and risks of climate change. Climate Change Research, 2022, 18(4): 389-394. (in Chinese)
[55]
ZOU Y F, SUN P, MA Z C, LV Y F, ZHANG Q. Snow cover in the three stable snow cover areas of China and spatio-temporal patterns of the future. Remote Sensing, 2022, 14(13): 3098.
[56]
LEI X N, XU C C, LIU F, SONG L L, CAO L L, SUO N J. Evaluation of CMIP6 models and multi-model ensemble for extreme precipitation over arid central Asia. Remote Sensing, 2023, 15(9): 2376.
[57]
侯云鹏, 孔丽丽, 蔡红光, 刘慧涛, 高玉山, 王永军, 王立春. 东北半干旱区滴灌施肥条件下高产玉米干物质与养分的积累分配特性. 中国农业科学, 2019, 52(20): 3559-3572. doi: 10.3864/j.issn.0578-1752.2019.20.007.
HOU Y P, KONG L L, CAI H G, LIU H T, GAO Y S, WANG Y J, WANG L C. The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High- Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China. Scientia Agricultura Sinica, 2019, 52(20): 3559-3572. doi: 10.3864/j.issn.0578-1752.2019.20.007. (in Chinese)
[58]
黄志刚, 肖烨, 张国, 曹云, 彭保发. 气候变化背景下松嫩平原玉米灌溉需水量估算及预测. 生态学报, 2017, 37(7): 2368-2381.
HUANG Z G, XIAO Y, ZHANG G, CAO Y, PENG B F. Estimation and prediction of maize irrigation water requirement based on climate change in Songnen Plain, NE China. Acta Ecologica Sinica, 2017, 37(7): 2368-2381. (in Chinese)
[59]
马丹阳, 尹云鹤, 吴绍洪, 郑度. 中国干湿格局对未来高排放情景下气候变化响应的敏感性. 地理学报, 2019, 74(5): 857-874.

doi: 10.11821/dlxb201905002
MA D Y, YIN Y H, WU S H, ZHENG D. Sensitivity of arid/humid patterns in China to future climate change under high emission scenario. Acta Geographica Sinica, 2019, 74(5): 857-874. (in Chinese)

doi: 10.11821/dlxb201905002
[60]
李英歌. 东北地区玉米干旱的时空分布及风险评估[D]. 沈阳: 沈阳农业大学, 2020.
LI Y G. Temporal-spatial characteristics and risk assessment of maize drought in Northeast China[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[61]
霍治国, 李世奎, 王素艳, 刘锦銮, 薛昌颖. 主要农业气象灾害风险评估技术及其应用研究. 自然资源学报, 2003, 18(6): 692-703.
HUO Z G, LI S K, WANG S Y, LIU J L, XUE C Y. Study on the risk evaluation technologies of main agrometeorological disasters and their application. Journal of Natural Resources, 2003, 18(6): 692-703. (in Chinese)

doi: 10.11849/zrzyxb.2003.06.007
[1] CAO WenZhuo, YU ZhenWen, ZHANG YongLi, ZHANG Zhen, SHI Yu, WANG YongJun. The Difference of Grain Starch Accumulation Dynamics and Yield Formation of Spring Maize Under Different Nitrogen Application Rates in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(22): 4431-4443.
[2] LU KeDan, LU Yuan, WANG Rui, DANG TingHui. Effects of Different Nitrogen Application Patterns on Yield and Nitrous Oxide Emission of Spring Maize in Dryland Farming of the Loess Plateau [J]. Scientia Agricultura Sinica, 2024, 57(18): 3642-3653.
[3] XUE Wei, XU LiJun, NIE YingYing, WU XinJia, YAN YiDan, YE LiMing, LIU XinWei. Study on Dominant Factors Affecting Spatial Variation of Soil Organic Carbon in Hulunbuir Grassland [J]. Scientia Agricultura Sinica, 2024, 57(12): 2378-2389.
[4] WANG WenJun, LIANG AiZhen, ZHANG Yan, CHEN XueWen, HUANG DanDan. Model Simulation Research of Soil Organic Carbon Dynamics of Long-Term Conservation Tillage in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(10): 1943-1960.
[5] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[6] ZHANG WeiJian, SHANG ZiYin, ZHANG Jun, YAN ShengJi, DENG AiXing, ZHANG Xin, ZHENG ChengYan, SONG ZhenWei. Standardized Establishment and Improvement of Accounting System of Agriculture Greenhouse Gas Emission [J]. Scientia Agricultura Sinica, 2023, 56(22): 4467-4477.
[7] ZHOU Ying, YANG Peng, WANG LiGang, LEI QiuLiang, ZHANG YaNan. Optimization Path of the Ecological Compensation Mechanism for Conservation Tillage in the Northeast Black Soil Region [J]. Scientia Agricultura Sinica, 2023, 56(22): 4478-4489.
[8] SHI XinRui, HAN BaiShu, WANG ZiQian, ZHANG YuanLing, LI Ping, ZONG YuZheng, ZHANG DongSheng, GAO ZhiQiang, HAO XingYu. Investigation on the Effects of Climate Change on the Growth and Yield of Different Maturity Winter Wheat Varieties in Northern China Based on the APSIM Model [J]. Scientia Agricultura Sinica, 2023, 56(19): 3772-3787.
[9] WANG YongLiang, XU ZiHang, LI Shen, LIANG ZheMing, XUE XiaoRong, BAI Ju, YANG ZhiPing. Straw Returning and Post-Silking Irrigating Improve the Grain Yield and Utilization of Water and Nitrogen of Spring Maize [J]. Scientia Agricultura Sinica, 2023, 56(18): 3599-3614.
[10] ZHANG ZhiLiang, HE ZhiHao, RU XiaoYa, JIANG TengCong, HE YingBin, FENG Hao, YU Qiang, HE JianQiang. Influence of Future Climate Change on the Climate Suitability of Potato Cultivation in China [J]. Scientia Agricultura Sinica, 2023, 56(18): 3530-3542.
[11] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[12] ZHANG WenJing, ZHAO Jin, CUI WenQian, LI ManYao, LI E, GONG XiaoYa, YANG XiaoGuang. Effects of Changing Normal and Extreme Climate States on Maize Meteorological Yield in Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1859-1870.
[13] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[14] XIONG WeiYi, XU KaiWei, LIU MingPeng, XIAO Hua, PEI LiZhen, PENG DanDan, CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[15] GUO ShiBo, ZHANG FangLiang, ZHANG ZhenTao, ZHOU LiTao, ZHAO Jin, YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!