Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (18): 3642-3653.doi: 10.3864/j.issn.0578-1752.2024.18.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Nitrogen Application Patterns on Yield and Nitrous Oxide Emission of Spring Maize in Dryland Farming of the Loess Plateau

LU KeDan1,2,3(), LU Yuan4, WANG Rui1,5, DANG TingHui1,5()   

  1. 1 The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, Shaanxi
    2 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi
    3 University of Chinese Academy of Sciences, Beijing 100049
    4 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi
    5 Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2023-10-09 Accepted:2023-12-18 Online:2024-09-16 Published:2024-09-29
  • Contact: DANG TingHui

Abstract:

【Objective】 Investigating the impacts of different N application regimes on crop (spring maize) yield and nitrous oxide (N2O) emission provided the basis for reasonable N (Nitrogen) application and GHG (Greenhouse Gas) emission mitigation in dryland farming of the Loess Plateau. 【Method】 In this study, the impacts of five N application regimes on spring maize (Xianyu 335) yield and N2O emission were investigated in a short-term (2 years) experiment in Changwu Agro-Ecological Experimental Station, and the treatments included: no fertilizer; conventional N fertilization (Con, 250 kg N•hm-2); optimized N fertilization (Opt, 200 kg N•hm-2); optimized N fertilization with slow-release fertilizer (Opt+SR, 200 kg N•hm-2); optimized N fertilization with dicyandiamide (Opt+DCD, 200 kg N•hm-2). The N2O emission fluxes were monitored using sealed static chambers, and the gas chromatograph and the global warming potential (GWP) was calculated. 【Result】 (1) N2O emissions increased rapidly after N application, reaching a peak on the second day, and rapidly decreased after 10 days of maintenance. Optimized N fertilization significantly decreased N2O emissions (P<0.05). Compared with Con, the reductions in N2O emissions under Opt, Opt+DCD, and Opt+SR were 21.4%, 27.6%, and 26.0%, respectively. The GWP of N2O emissions under Con, Opt, Opt+DCD, and Opt+SR were 425.01, 334.01, 307.83, and 314.57 kgCO2-eq•hm-2, respectively. Opt+DCD significantly reduced N2O emission intensity by 27.8% than that under Con (P<0.05). (2) N2O emissions were highly correlated with surface soil NH4+-N content (P<0.01), but showed no significant correlation with soil moisture and temperature. (3) Compared with Con, Opt, Opt+DCD, and Opt+SR significantly improved N fertilizer agronomic efficiency (with increases of 25.5%, 25.7%, and 22.2%, respectively) and nitrogen fertilizer partial factor productivity (with increases of 29.9%, 28.7%, and 25.4%, respectively) (P<0.05), whereas they had no significant impact on spring maize yield. 【Conclusion】 In dryland farming of the Loess Plateau, reducing N fertilizer application, applying slow-release fertilizer, and adding nitrification inhibitors properly could promote N2O emission reduction and increase spring maize yield. Notably, reducing N fertilizer application by 20% and adding nitrification inhibitors not only ensured spring maize yield but also had the best effect on N2O emission reduction.

Key words: reduced nitrogen application, low-release fertilizer, dicyandiamide, spring maize, yield, nitrous oxide emission, dryland farming of the Loess Plateau

Fig. 1

Soil N2O emission flux under different nitrogen management modes in 2019-2020"

Table 1

The comprehensive N2O emission characteristics during the maize growing season"

处理
Treatment
累积排放量
Accumulated emission
(kg·hm-2)
排放系数
Emission factor
(%)
增温潜势
Global warming potential
(kg CO2-eq•hm-2)
排放强度
Greenhouse gas intensity
(kg CO2-eq•kg-1)
No fertilizer 0.77c - 229.35c 0.032a
Con 1.43a 0.26a 426.14a 0.018b
Opt 1.12bc 0.18b 333.76bc 0.014c
Opt+DCD 1.03b 0.13b 306.94b 0.013c
Opt+SR 1.06bc 0.11b 315.88bc 0.014c

Fig. 2

Characteristics of rainfall, temperature, and soil moisture dynamic changes in 2019-2020"

Fig. 3

Variations in NH4+-N and NO3--N content at depths of 0-20 cm soil layer under different treatments"

Table 2

The relationship between N2O emission flux and temperature and nitrogen substrate"

项目
Item
处理 Treatment
No fertilizer Con Opt Opt+DCD Opt+SR
WFPS -0.065 -0.134 -0.05 -0.189 -0.063
箱温 Box temperature -0.086 -0.163 -0.303 -0.555** -0.435*
10 cm地温
10 cm underground temperature
-0.099 -0.042 -0.405* -0.520** -0.469*
NO3--N 0.027 -0.211 0.097 -0.338 -0.197
NH4+-N 0.200 0.465** 0.606** 0.738** 0.621**

Table 3

The effects of different nitrogen fertilization management modes on maize yield and nitrogen fertilizer agronomic efficiency"

处理
Treatment
2019 2020
产量Yield (t•hm-2) NAE (kg•kg-1) NPFP (kg•kg-1) 产量Yield (t•hm-2) NAE (kg•kg-1) NPFP (kg•kg-1)
No fertilizer 3.20±1.99a 3.86±1.57a
Con 12.43±0.53b 36.95a 49.74a 10.57±0.59b 26.85a 42.29a
Opt 12.50±0.43b 46.52b 62.51b 11.35±1.19b 37.43a 56.74b
Opt +DCD 13.87±0.41b 53.36c 69.35c 9.98±1.25b 30.61a 49.91ab
Opt +SR 13.21±0.33b 50.05bc 66.04bc 9.99±2.96b 30.63a 49.94ab
[1]
李长生, 肖向明, S.Frolking, B.MooreIII, W.Salas, 邱建军, 张宇, 庄亚辉, 王效科, 戴昭华, 刘纪远, 秦小光, 廖柏寒, R. Sass. 中国农田的温室气体排放. 第四纪研究, 2003, 23(5): 493-503.
LI C S, XIAO X M, FROLKING S, MOOREⅢ B, SALAS W, QIU J J, ZHANG Y, ZHUANG Y H, WANG X K, DAI Z H, LIU J Y, QIN X G, LIAO B H, SASS R. Greenhouse gas emissions from croplands of China. Quaternary Sciences, 2003, 23(5): 493-503. (in Chinese)
[2]
IPCC. Climate Change 2007-Mitigation of Climate Change: Working Group III Contribution to the Forth Assessment Report of the IPCC. Cambridge: Cambridge University Press, 2007.
[3]
TIAN H Q, XU R T, CANADELL J G, THOMPSON R L, WINIWARTER W, SUNTHARALINGAM P, DAVIDSON E A, CIAIS P, JACKSON R B, JANSSENS-MAENHOUT G, PRATHER M J, REGNIER P, PAN N Q, PAN S F, PETERS G P, SHI H, TUBIELLO F N, ZAEHLE S, ZHOU F, ARNETH A, BATTAGLIA G, BERTHET S, BOPP L, BOUWMAN A F, BUITENHUIS E T, CHANG J F, CHIPPERFIELD M P, DANGAL S R S, DLUGOKENCKY E, ELKINS J W, EYRE B D, FU B J, HALL B, ITO A, JOOS F, KRUMMEL P B, LANDOLFI A, LARUELLE G G, LAUERWALD R, LI W, LIENERT S, MAAVARA T, MACLEOD M, MILLET D B, OLIN S, PATRA P K, PRINN R G, RAYMOND P A, RUIZ D J, VAN DER WERF G R, VUICHARD N, WANG J J, WEISS R F, WELLS K C, WILSON C, YANG J, YAO Y Z. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586(7828): 248-256.
[4]
史常亮, 李赟, 朱俊峰. 劳动力转移、化肥过度使用与面源污染. 中国农业大学学报, 2016, 21(5): 169-180.
SHI C L, LI Y, ZHU J F. Rural labor transfer, excessive fertilizer use and agricultural non-point source pollution. Journal of China Agricultural University, 2016, 21(5): 169-180. (in Chinese)
[5]
胡雅杰, 朱大伟, 邢志鹏, 龚金龙, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 改进施氮运筹对水稻产量和氮素吸收利用的影响. 植物营养与肥料学报, 2015, 21(1): 12-22.
HU Y J, ZHU D W, XING Z P, GONG J L, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, GUO B W. Modifying nitrogen fertilization ratio to increase the yield and nitrogen uptake of super japonica rice. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 12-22. (in Chinese)
[6]
ZHAO Z, CAO L K, DENG J, SHA Z M, CHU C B, ZHOU D P, WU S H, LV W G. Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model. Agricultural Systems, 2020, 178: 102743.
[7]
YANG Y Y, LIU L, ZHANG F, ZHANG X Y, XU W, LIU X J, LI Y, WANG Z, XIE Y W. Enhanced nitrous oxide emissions caused by atmospheric nitrogen deposition in agroecosystems over China. Environmental Science and Pollution Research International, 2021, 28(12): 15350-15360.

doi: 10.1007/s11356-020-11591-5 pmid: 33236298
[8]
HAN W Y, XU J M, WEI K, SHI Y Z, MA L F. Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in Eastern China. Environmental Earth Sciences, 2013, 70(6): 2495-2500.
[9]
杜梦寅, 袁建钰, 李广, 闫丽娟, 刘兴宇, 祁小平, 庞晔. 保护性耕作对黄土高原半干旱区农田土壤N2O排放的影响. 干旱区研究, 2022, 39(2): 493-501.

doi: 10.13866/j.azr.2022.02.17
DU M Y, YUAN J Y, LI G, YAN L J, LIU X Y, QI X P, PANG Y. Effects of protective measures on N2O emission from farmland soil in a semi-arid area of the Loess Plateau. Arid Zone Research, 2022, 39(2): 493-501. (in Chinese)
[10]
XU C, HAN X, RU S H, CARDENAS L, REES R M, WU D, WU W L, MENG F Q. Crop straw incorporation interacts with N fertilizer on N2O emissions in an intensively cropped farmland. Geoderma, 2019, 341: 129-137.
[11]
刘高远, 和爱玲, 杜君, 吕金岭, 聂胜委, 潘秀燕, 许纪东, 李珏, 杨占平. 有机肥替代化肥对砂姜黑土区小麦-玉米轮作系统N2O排放的影响. 中国农业科学, 2023, 56(16): 3156-3167. doi: 10.3864/j.issn.0578-1752.2023.16.009.
LIU G Y, HE A L, DU J, J L, NIE S W, PAN X Y, XU J D, LI J, YANG Z P. Effect of organic fertilizer replacing chemical fertilizer on nitrous oxide emission from wheat-maize rotation system in lime concretion black soil. Scientia Agricultura Sinica, 2023, 56(16): 3156-3167. doi: 10.3864/j.issn.0578-1752.2023.16.009. (in Chinese)
[12]
雷豪杰, 李贵春, 柯华东, 魏崃, 丁武汉, 徐驰, 李虎. 滴灌施肥对两种典型作物系统土壤N2O排放的影响及其调控差异. 中国农业科学, 2021, 54(4): 768-779. doi: 10.3864/j.issn.0578-1752.2021.04.009.
LEI H J, LI G C, KE H D, WEI L, DING W H, XU C, LI H. Analysis of impacts and regulation differences on soil N2O emissions from two typical crop systems under drip irrigation and fertilization. Scientia Agricultura Sinica, 2021, 54(4): 768-779. doi: 10.3864/j.issn.0578-1752.2021.04.009. (in Chinese)
[13]
张闻汉, 陈照明, 张金萍, 林海忠, 何杰, 张耿苗, 赵钰杰, 王强, 马军伟. 硝化抑制剂对稻田土壤氧化亚氮排放及硝化作用的影响. 浙江农林大学学报, 2023, 40(4): 820-827.
ZHANG W H, CHEN Z M, ZHANG J P, LIN H Z, HE J, ZHANG G M, ZHAO Y J, WANG Q, MA J W. Effects of nitrification inhibitors on soil N2O emission and nitrification in a paddy soil. Journal of Zhejiang A & F University, 2023, 40(4): 820-827. (in Chinese)
[14]
曾科, 王书伟, 朱文彬, 田玉华, 尹斌. 不同硝化抑制剂对稻季N2O排放、NH3挥发和水稻产量的影响. 土壤, 2023, 55(3): 503-511.
ZENG K, WANG S W, ZHU W B, TIAN Y H, YIN B. Effects of different nitrification inhibitors on N2O emission, NH3 volatilization and yield in rice season. Soils, 2023, 55(3): 503-511. (in Chinese)
[15]
DOBBIE K E, SMITH K A. Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. Global Change Biology, 2003, 9(2): 204-218.
[16]
ZHANG C, SONG X T, ZHANG Y Q, WANG D, REES R M, JU X T. Using nitrification inhibitors and deep placement to tackle the trade-offs between NH3 and N2O emissions in global croplands. Global Change Biology, 2022, 28(14): 4409-4422.
[17]
胡小康, 黄彬香, 苏芳, 巨晓棠, 江荣风, 张福锁. 氮肥管理对夏玉米土壤CH4和N2O排放的影响. 中国科学: 化学, 2011, 41(1): 117-128.
HU X K, HUANG B X, SU F, JU X T, JIANG R F, ZHANG F S. Effects of nitrogen management on methane and nitrous oxide emissions from summer maize soil in North China Plain. Scientia Sinica (Chimica), 2011, 41(1): 117-128. (in Chinese)
[18]
JIANG J Y, HU Z H, SUN W J, HUANG Y. Nitrous oxide emissions from Chinese cropland fertilized with a range of slow-release nitrogen compounds. Agriculture, Ecosystems & Environment, 2010, 135(3): 216-225.
[19]
HU X K, SU F, JU X T, GAO B, OENEMA O, CHRISTIE P, HUANG B X, JIANG R F, ZHANG F S. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. Environmental Pollution, 2013, 176: 198-207.
[20]
ZHANG Y L, LI C H, WANG Y W, HU Y M, CHRISTIE P, ZHANG J L, LI X L. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil and Tillage Research, 2016, 155: 85-94.
[21]
吴得峰, 姜继韶, 高兵, 刘燕, 王蕊, 王志齐, 党廷辉, 郭胜利, 巨晓棠. 添加DCD对雨养区春玉米产量、氧化亚氮排放及硝态氮残留的影响. 植物营养与肥料学报, 2016, 22(1): 30-39.
WU D F, JIANG J S, GAO B, LIU Y, WANG R, WANG Z Q, DANG T H, GUO S L, JU X T. Effects of DCD addition on grain yield, N2O emission and residual nitrate-N of spring maize in rain-fed agriculture. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 30-39. (in Chinese)
[22]
赵笃勤, 刘淑慧, 赵凯超. 玉米-大豆间作和减量施氮对玉米生长、产量及土壤硝态氮含量的影响. 西北农业学报, 2020, 29(8): 1159-1166.
ZHAO D Q, LIU S H, ZHAO K C. Effect of maize-soybean intercropping and reduced nitrogen application on maize growth, yield and soil nitrate content. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(8): 1159-1166. (in Chinese)
[23]
郑利芳, 吴三鼎, 党廷辉. 不同施肥模式对春玉米产量、水分利用效率及硝态氮残留的影响. 水土保持学报, 2019, 33(4): 221-227.
ZHENG L F, WU S D, DANG T H. Effects of different fertilization modes on spring maize yield, water use efficiency and nitrate nitrogen residue. Journal of Soil and Water Conservation, 2019, 33(4): 221-227. (in Chinese)
[24]
GU J X, ZHENG X H, WANG Y H, DING W X, ZHU B, CHEN X, WANG Y Y, ZHAO Z C, SHI Y, ZHU J G. Regulatory effects of soil properties on background N2O emissions from agricultural soils in China. Plant and Soil, 2007, 295(1): 53-65.
[25]
路远. 黄土旱塬春玉米不同氮素管理模式下N2O排放与氮素利用[D]. 杨凌: 西北农林科技大学, 2021.
LU Y. Relationship between N2O emission and nitrogen utilization under different nitrogen management modes of spring maize in the semiarid of Loess Plateau[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
[26]
刘敏, 张翀, 巨晓棠, 苏芳, 陈新平, 江荣风. 箱体结构及计算方法对夏玉米农田N2O排放测定结果的影响. 农业环境科学学报, 2018, 37(6): 1284-1290.
LIU M, ZHANG C, JU X T, SU F, CHEN X P, JIANG R F. Effects of chamber size and calculation method on N2O emissions during the summer maize growing season. Journal of Agro-Environment Science, 2018, 37(6): 1284-1290. (in Chinese)
[27]
吴得峰. 黄土旱塬区减氮条件下氮素利用及温室气体排放特征[D]. 杨凌: 西北农林科技大学, 2016.
WU D F. Nitrogen utilization and GHG emissions under reduced nitrogen fertilization in the semiarid Loess Plateau[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[28]
徐玉秀, 郭李萍, 谢立勇, 云安萍, 李迎春, 张璇, 赵迅, 刁田田. 中国主要旱地农田N2O背景排放量及排放系数特点. 中国农业科学, 2016, 49(9): 1729-1743. doi: 10.3864/j.issn.0578-1752.2016.09.009.
XU Y X, GUO L P, XIE L Y, YUN A P, LI Y C, ZHANG X, ZHAO X, DIAO T T. Characteristics of background emissions and emission factors of N2O from major upland fields in China. Scientia Agricultura Sinica, 2016, 49(9): 1729-1743. doi: 10.3864/j.issn.0578-1752.2016.09.009. (in Chinese)
[29]
WANG Q H, ZHOU F, SHANG Z Y, CIAIS P, WINIWARTER W, JACKSON R B, TUBIELLO F N, JANSSENS-MAENHOUT G, TIAN H Q, CUI X Q, CANADELL J G, PIAO S L, TAO S. Data-driven estimates of global nitrous oxide emissions from croplands. National Science Review, 2020, 7(2): 441-452.

doi: 10.1093/nsr/nwz087 pmid: 34692059
[30]
YAO P W, LI X S, LIU J C, SHEN Y F, YUE S C, LI S Q. The role of maize plants in regulating soil profile dynamics and surface emissions of nitrous oxide in a semiarid environment. Biology and Fertility of Soils, 2018, 54(1): 119-135.
[31]
JIANG J S, WANG R, WANG Z Q, GUO S L, JU X T. Nitrous oxide and methane emissions in spring maize field in the semi-arid regions of loess plateau. Clean - Soil, Air, Water, 2017, 45(1): 271.
[32]
LIU C Y, HU X X, ZHANG W, ZHENG X H, WANG R, YAO Z S, CAO G M. Year-round measurements of nitrous oxide emissions and direct emission factors in extensively managed croplands under an alpine climate. Agricultural and Forest Meteorology, 2019, 274: 18-28.
[33]
严圣吉, 尚子吟, 邓艾兴, 张卫建. 我国农田氧化亚氮排放的时空特征及减排途径. 作物杂志, 2022(3): 1-8.
YAN S J, SHANG Z Y, DENG A X, ZHANG W J. Spatiotemporal characteristics and reduction approaches of farmland N2O emission in China. Crops, 2022(3): 1-8. (in Chinese)
[34]
郑蕾, 王学东, 郭李萍, 张馨月, 汪东炎, 牛晓光, 云安萍, 李迎春. 施肥对露地菜地氨挥发和氧化亚氮排放的影响. 应用生态学报, 2018, 29(12): 4063-4070.

doi: 10.13287/j.1001-9332.201812.023
ZHENG L, WANG X D, GUO L P, ZHANG X Y, WANG D Y, NIU X G, YUN A P, LI Y C. Impact of fertilization on ammonia volatilization and N2O emissions in an open vegetable field. Chinese Journal of Applied Ecology, 2018, 29(12): 4063-4070. (in Chinese)
[35]
姚志生, 王燕, 王睿, 刘春岩, 郑循华. 中国茶园N2O排放及其影响因素. 农业环境科学学报, 2020, 39(4): 715-725.
YAO Z S, WANG Y, WANG R, LIU C Y, ZHENG X H. Nitrous oxide emissions and controlling factors of tea plantations in China. Journal of Agro-Environment Science, 2020, 39(4): 715-725. (in Chinese)
[36]
许宏伟, 李娜, 冯永忠, 任广鑫, 谢呈辉, 吕宏菲, 马星霞, 郝嘉琪. 氮肥和秸秆还田方式对麦玉轮作土壤N2O排放的影响. 环境科学, 2020, 41(12): 5668-5676.
XU H W, LI N, FENG Y Z, REN G X, XIE C H, H F, MA X X, HAO J Q. Effects of nitrogen fertilizer and straw returning methods on N2O emissions in wheat-maize rotational soils. Environmental Science, 2020, 41(12): 5668-5676. (in Chinese)
[37]
廖欢, 王方斌, 刘凯, 殷星, 侯振安. 不同施氮措施配合硝化抑制剂对滴灌棉田土壤NH3挥发和N2O排放的影响. 西北农业学报, 2020, 29(9): 1378-1388.
LIAO H, WANG F B, LIU K, YIN X, HOU Z A. Effects of nitrogen application combined with nitrification inhibitors on NH3 volatilization and N2O emission in drip-irrigated cotton field. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(9): 1378-1388. (in Chinese)
[38]
张楠, 潘仕球, 乔云发, 朱保国, 苗淑杰. 秸秆还田及添加生物炭对黑土玉米生长季N2O排放的影响. 中国农学通报, 2022, 38(27): 79-85.

doi: 10.11924/j.issn.1000-6850.casb2021-0943
ZHANG N, PAN S Q, QIAO Y F, ZHU B G, MIAO S J. The response of N2O emissions to straw returning and biochar addition during maize growing season in black soil. Chinese Agricultural Science Bulletin, 2022, 38(27): 79-85. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2021-0943
[39]
郑循华, 王明星, 王跃思, 沈壬兴, 龚宴邦, 骆冬梅, 张文, 金继生, 李老土. 稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响. 应用生态学报, 1996, 7(3): 273-279.
ZHENG X H, WANG M X, WANG Y S, SHEN R X, GONG Y B, LUO D M, ZHANG W, LIN J S, LI L T. Impact of soil humidity on N2O production and emission from a rice-wheat rotation ecosystem. Chinese Journal of Applied Ecology, 1996, 7(3): 273-279. (in Chinese)
[40]
叶宗辉, 郑宁国, 姚槐应. 茶园土壤N2O产出与排放研究进展. 茶叶通讯, 2021, 48(1): 1-6.
YE Z H, ZHENG N G, YAO H Y. Research progress on N2O production and emission from tea garden soil. Journal of Tea Communication, 2021, 48(1): 1-6. (in Chinese)
[41]
王赟峰. 植物材料和水分管理对稻田土壤pH和碳氮矿化的影响[D]. 杭州: 浙江大学.
WANG Y F. Effects of plant materials and water management on pH and carbon/nitrogen mineralization in paddy soils[D]. Hangzhou: Zhejiang University. (in Chinese)
[42]
吴龙龙, 虞轶俊, 田仓, 张露, 黄晶, 朱练峰, 朱春权, 孔亚丽, 张均华, 曹小闯, 金千瑜. 干湿交替灌溉下施氮模式对水稻光合产物和氮转运的影响. 中国水稻科学, 2022, 36(3): 295-307.

doi: 10.16819/j.1001-7216.2022.210507
WU L L, YU Y J, TIAN C, ZHANG L, HUANG J, ZHU L F, ZHU C Q, KONG Y L, ZHANG J H, CAO X C, JIN Q Y. Effects of different nitrogen application regimes on translocation of rice photosynthetic products and nitrogen under alternate wetting and drying irrigation. Chinese Journal of Rice Science, 2022, 36(3): 295-307. (in Chinese)

doi: 10.16819/j.1001-7216.2022.210507
[43]
李保艳, 邱炜红, 惠晓丽, 曹寒冰, 包明, 王朝辉, 郑险峰. 长期施用化肥氮对黄土高原麦田N2O排放的影响. 西北农林科技大学学报(自然科学版), 2018, 46(5): 50-58.
LI B Y, QIU W H, HUI X L, CAO H B, BAO M, WANG Z H, ZHENG X F. Effect of nitrogen fertilizer on N2O emissions from winter wheat field in the Loess Plateau. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(5): 50-58. (in Chinese)
[44]
郝耀旭, 刘继璇, 袁梦轩, 周应田, 杨学云, 顾江新. 长期定位有机物料还田对关中平原冬小麦-玉米轮作土壤N2O排放的影响. 环境科学, 2017, 38(6): 2586-2593.
HAO Y X, LIU J X, YUAN M X, ZHOU Y T, YANG X Y, GU J X. Effects of long-term organic amendments on soil N2O emissions from winter wheat-maize cropping systems in the GuanZhong plain. Environmental Science, 2017, 38(6): 2586-2593. (in Chinese)
[45]
符春敏, 尹黎燕, 邓燕, 兰超杰, 韩忠钰, 金鑫, 李长江, 黄家权. 施肥模式对菠萝产量及农田氧化亚氮排放的影响. 热带生物学报, 2020, 11(3): 331-340.
FU C M, YIN L Y, DENG Y, LAN C J, HAN Z Y, JIN X, LI C J, HUANG J Q. Effects of fertilizer application on pineapple yield and nitrous oxide emission from the pineapple field. Journal of Tropical Biology, 2020, 11(3): 331-340. (in Chinese)
[46]
朱永官, 王晓辉, 杨小茹, 徐会娟, 贾炎. 农田土壤N2O产生的关键微生物过程及减排措施. 环境科学, 2014, 35(2): 792-800.
ZHU Y G, WANG X H, YANG X R, XU H J, JIA Y. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies. Environmental Science, 2014, 35(2): 792-800. (in Chinese)
[47]
郝小雨, 周宝库, 马星竹, 高中超. 氮肥管理措施对黑土玉米田温室气体排放的影响. 中国环境科学, 2015, 35(11): 3227-3238.
HAO X Y, ZHOU B K, MA X Z, GAO Z C. Effects of nitrogen fertilizer management on greenhouse gas emissions from maize field in black soil. China Environmental Science, 2015, 35(11): 3227-3238. (in Chinese)
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[6] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[7] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[8] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[9] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[10] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[11] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[12] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[13] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[14] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[15] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!