Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (10): 1943-1960.doi: 10.3864/j.issn.0578-1752.2024.10.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Model Simulation Research of Soil Organic Carbon Dynamics of Long-Term Conservation Tillage in Black Soil

WANG WenJun1,2(), LIANG AiZhen1,2(), ZHANG Yan1,2, CHEN XueWen1,2, HUANG DanDan1,2   

  1. 1 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences/Key Laboratory of Mollisols Agroecology, Changchun 130102
    2 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2023-06-12 Accepted:2023-08-03 Online:2024-05-16 Published:2024-05-23
  • Contact: LIANG AiZhen

Abstract:

【Objective】 Conservation tillage is an important measure for restoring and enhancing soil fertility, and soil organic carbon (SOC) plays a crucial role in maintaining soil fertility, supporting crop growth, and protecting soil environment. However, there is currently a lack of long-term monitoring platforms for conservation tillage in China, so using modeling methods can help study SOC dynamics under long-term conservation tillage. 【Method】 A long-term tillage experiment was established in the black soil region in 2001 with three treatments: no-tillage (NT), moldboard plow (MP), and ridge-tillage (RT). The structures and parameters of process-based models (RothC, AMG model) and statistical models (MLPNN model) were optimized. The changes in SOC under long-term conservation tillage were simulated and compared. The effectiveness of different models in simulating and predicting the SOC dynamics under conservation tillage was evaluated, and the long-term response and influencing factors of SOC in black soil in Northeast China to conservation tillage were revealed. 【Result】 After optimizing parameters for carbon pool allocation, errors of the RothC and AMG models were significantly reduced. During the first 11 years (2001-2012) of conservation tillage, there was no significant difference in the simulation of SOC between RothC and AMG models, indicating that the structural complexity of process models does not have significant impacts on the simulation results for relatively short term. The simulation results of the statistical model MLPNN were similar to process models, proving the application of statistical models in small-scale regions. Over the next 100 years, RothC and AMG models predicted similar trends in SOC changes, but AMG model significantly overestimated the increase in SOC stocks, which may be attributed to SOC saturation and the influence of tillage practices. Both RothC and AMG models showed high sensitivity to carbon input, but they responded differently to climate and soil factor changes. 【Conclusion】 It is necessary to choose appropriate models based on local conditions while using models to simulate SOC in long-term conservation tillage. For short-term prediction of SOC under conservation tillage, a relatively simple AMG modelcan be used, while for long-term prediction, a more complex RothC model can be used. Under specific conditions, statistical models show similar effects to process models in simulating soil organic carbon at a small-scale regions, such as plots and fields.

Key words: soil organic carbon, conservation tillage, model simulation, black soil, process-based model, statistical model, Northeast China

Fig. 1

Schematic of field trial plots Blank areas represent fields irrelevant with this research in long-term tillage experiment; NTMM, MPMM and RTMM represent no-tillage, moldboard plow and ridge-tillage under maize and soybean rotation, respectively"

Fig. 2

Structure of RothC model[24]"

Table 1

Parameters used in RothC model"

模型参数Model parameter 数值Value
月均温度
Monthly temperature (℃)
-14.1(一月 January),-9.4(二月 February),-1.6(三月 March),8.8(四月 April),16.4(五月 May),21.7(六月 June),23.4(七月 July),22.6(八月 August),17.1(九月 September),8.9(十月 October),-2.4(十一月 November),-12.3(十二月 December)
月降水量
Monthly precipitation (mm)
3.3(一月 January),6.1(二月 February),15.3(三月 March),26.8(四月 April),56(五月 May),100.7(六月 June),183(七月 July),127.5(八月 August),32.9(九月 September),27.6(十月 October),21.6(十一月 November),9.5(十二月 December)
月蒸散量
Monthly evaporation (mm)
0(一月 January),0(二月 February),2.45(三月 March),55.83(四月 April),101.85(五月 May),133.34(六月 June),143.44(七月 July),138.84(八月 August),106.11(九月 September),56.65(十月 October),0.031(十一月 November),0(十二月 December)
黏粒含量Clay content (%) 36.03(实测值 Measured value)
DPM/RPM 1.44(默认值 Default value)
年碳投入量
Plant residue input (t C·hm-2)
4.34(NT),4.25(MP),4.37(RT),由(2)式计算得来
4.34(NT),4.25(MP),4.37(RT),calculated from equation (2)
有机肥料月投入量 Manure input (FYM) 全年为0 0 for the whole year
取样深度 Depth of soil sample (cm) 0-20
土壤覆盖 Soil cover 详见1.2 不同耕作处理秸秆覆盖情况 Straw covering in different tillage treatments in 1.2

Table 2

Parameters needed for calculation of parameter k in AMG model"

模型参数 Model parameter 含义Meaning
T 年平均气温 Average temperature (℃)
a1 温度函数参数,取20 Temperature function parameter, take 20
b1 温度函数参数,取0.120 K-1 Temperature function parameter, take 0.120 K-1
Tref 对照温度,取15 ℃ Control temperature, take 15 ℃
A 土壤黏粒含量 Soil clay content (g·kg-1)
a2 黏土函数参数,取2.519×10-3 Clay function parameter, take 2.519×10-3
H 土壤湿度,取降水量P和灌溉水量IW之和与潜在蒸散量PET的差值
Soil moisture, taken as the difference between the sum of precipitation P and irrigation water IW and the potential evapotranspiration PET (mm)
a3 湿度函数参数,取 3.0×10-2 Moisture function parameter, take 3.0×10-2
b3 湿度函数参数,取5.247 m-1 Moisture function parameter, take 5.247 m-1
CaCO3 土壤CaCO3含量 Soil CaCO3 content (g·kg-1)
a4 碳酸钙函数参数,取1.50×10-3 CaCO3 function parameter, take 1.50×10-3
pH 土壤pH Soil pH
a5 pH函数参数,取0.112 pH function parameter, take 0.112
b5 pH函数参数,取8.5 pH function parameter, take 8.5
C/N 土壤碳氮比 Soil carbon to nitrogen ratio
a6 C/N函数参数,取0.060 C/N function parameter, take 0.060
b6 C/N函数参数,取11 C/N function parameter, take 11

Fig. 3

Structure of neural network model Ax, Bx, Cx represent different parameters in the same type respectively, i.e. soil factors, nutrient factors and climate factors"

Table 3

Parameters used by MLPNN model"

参数类型
Type of parameter
参数
Parameter
土壤因素
Soil factor
土壤氮含量 Soil nitrogen content (t C·hm-2)
年碳投入量 Carbon input per year (t C·hm-2)
养分投入因素
Nutrient factor
氮施入量 Nitrogen input (t C·hm-2)
磷施入量Phosphorus input (t C·hm-2)
钾施入量 Potassium input (t C·hm-2)
气候因素
Climate factor
平均温度 Average temperature (℃)
平均降水 Average precipitation (mm)
平均蒸散量 Average evaporation (mm)

Fig. 4

Results of optimization of RothC model Grey lines represent RMSE values of default DPM/RPM; Dashed lines represent RMSE value of optimized DPM/RPM"

Table 4

Comparation between optimized parameters and default parameters in AMG model"

处理 Treatment 参数 Parameter 默认值Default value 优化值 Optimized value RMSE RMSE0
NT Cs/C0 0.65 0.65 2.388597 2.393864
k0 0.29 0.26
h0 0.21 0.21
MP Cs/C0 0.65 0.175 1.204417 2.681656
k0 0.29 0.2925
h0 0.21 0.2075
RT Cs/C0 0.65 0.75 2.754996 3.008224
k0 0.29 0.175
h0 0.21 0.2175

Fig. 5

Errors of simulation of conservation tillage’s SOC using the MLPNN model varying with the number of neurons in the hidden layer The data was normalized before putting into model, thus TMSE values are no more than 0.06"

Fig. 6

Trends of SOC stock of long-term conservation tillage in black soil of Northeast China simulated by RothC, AMG and MLPNN models In the legend, the number after each treatment represents the repetition of that treatment. For example, NT1 represents the first repetition of the NT treatment. The treatment number followed by “-O” represents the observed value for that treatment. The simulated values and observed values of the same repetition have the same color"

Fig. 7

Comparison of simulation performance between RothC, AMG and MLPNN model"

Fig. 8

Responses of SOC stock in black soil in Northeast China after several years of conservation tillage predicted by RothC and AMG model The solid lines in the graph represent the means of each treatment and repetition; Grey points represent time points when SOC stock has reached equilibrium"

Fig. 9

The sensitivity analysis of RothC and AMG model"

[1]
苑亚茹, 李禄军, 李娜, 尤孟阳, 韩晓增. 长期施肥对东北黑土不同活性有机碳库的影响. 生态学杂志, 2016, 35(6): 1435-1439.
YUAN Y R, LI L J, LI N, YOU M Y, HAN X Z. Effect of long-term fertilization on soil organic carbon pools in Mollisols of Northeast China. Chinese Journal of Ecology, 2016, 35(6): 1435-1439. (in Chinese)
[2]
马超. 黑龙江省黑土地保护性耕作实施基本情况及问题研究. 中国农学通报, 2022, 38(17): 143-147.

doi: 10.11924/j.issn.1000-6850.casb2022-0092
MA C. Basic situation and problems of conservation tillage in black soil in Heilongjiang Province. Chinese Agricultural Science Bulletin, 2022, 38(17): 143-147. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0092
[3]
CAMPBELL E E, PAUSTIAN K. Current developments in soil organic matter modeling and the expansion of model applications: A review. Environmental Research Letters, 2015, 10(12): 123004.
[4]
SHI Z, CROWELL S, LUO Y Q, MOORE B. Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 2018, 9: 2171.

doi: 10.1038/s41467-018-04526-9 pmid: 29867087
[5]
高崇升, 杨国亭, 王建国, 张兴义. 利用Century模型模拟不同农业经营模式下黑土农田土壤有机碳的演变. 生态学杂志, 2008, 27(6): 911-915.
GAO C S, YANG G T, WANG J G, ZHANG X Y. The changing trend of organic carbon in black soil under different farming systems: A prediction by using Century model. Chinese Journal of Ecology, 2008, 27(6): 911-915. (in Chinese)
[6]
LI S M, LI J M, LI C S, HUANG S M, LI X Y, LI S X, MA Y B. Testing the RothC and DNDC models against long-term dynamics of soil organic carbon stock observed at cropping field soils in North China. Soil and Tillage Research, 2016, 163: 290-297.
[7]
ODEBIRI O, ODINDI J, MUTANGA O. Basic and deep learning models in remote sensing of soil organic carbon estimation: A brief review. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102389.
[8]
ZHANG L J, SHAO Z, LIU J C, CHENG Q. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data. Remote Sens, 2019, 11: 1459.
[9]
GAO C, GOVIND R, TABAK H H. Predicting soil sorption coefficients of organic chemicals using a neural network model. Environmental Toxicology and Chemistry, 1996, 15(7): 1089-1096.
[10]
WERE K, BUI D T, DICK Ø B, SINGH B R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 2015, 52: 394-403.
[11]
杨学明, 张晓平, 方华军, 朱平, 任军, 王立春, 梁爱珍. 用RothC-26.3模型模拟玉米连作下长期施肥对黑土有机碳的影响. 中国农业科学, 2003, 36(11): 1318-1324.
YANG X M, ZHANG X P, FANG H J, ZHU P, REN J, WANG L C, LIANG A Z. RothC-26.3 model simulating long-term effects of fertilization on changes of soil organic carbon in continuous cultivation of corn in northeast China. Scientia Agricultura Sinica, 2003, 36(11): 1318-1324. (in Chinese)
[12]
赵雅雯. RothC模型在我国北方农田作物残体提升土壤有机碳中的应用[D]. 北京: 中国农业科学院, 2017.
ZHAO Y W. RothC model simulation of soil organic carbon on farmland crop residue in North China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[13]
AYANABA A, JENKINSON D S. Decomposition of carbon-14 labeled ryegrass and maize under tropical conditions. Soil Science Society of America Journal, 1990, 54(1): 112-115.
[14]
SHIRATO Y, YOKOZAWA M. Acid hydrolysis to partition plant material into decomposable and resistant fractions for use in the Rothamsted carbon model. Soil Biology and Biochemistry, 2006, 38(4): 812-816.
[15]
ANDRIULO A, MARY B, GUERIF J. Modelling soil carbon dynamics with various cropping sequences on the rolling pampas. Agronomie, 1999, 19(5): 365-377.
[16]
SAFFIH-HDADI K, MARY B. Modeling consequences of straw residues export on soil organic carbon. Soil Biology and Biochemistry, 2008, 40(3): 594-607.
[17]
张杨航, 吕锋, 李锋军, 张雷雷, 苏建新. 基于网格搜索与交叉验证的SVR大型拖拉机销量预测. 农业科技与装备, 2022(5): 34-37, 41.
ZHANG Y H, F, LI F J, ZHANG L L, SU J X. Large tractor sales prediction of SVR based on grid search and cross validation. Agricultural Science & Technology and Equipment, 2022(5): 34-37, 41. (in Chinese)
[18]
CHESHMBERAH F, FATHIZAD H, PARAD G A, SHOJAEIFAR S. Comparison of RBF and MLP neural network performance and regression analysis to estimate carbon sequestration. International Journal of Environmental Science and Technology, 2020, 17(9): 3891-3900.
[19]
陈磊, 王金洲, 郝小雨, 马星竹, 魏丹, 周磊, 刘荣乐, 汪洪. DayCent模型模拟黑土长期施肥下土壤碳氮变化. 黑龙江农业科学, 2021(10): 23-31.
CHEN L, WANG J Z, HAO X Y, MA X Z, WEI D, ZHOU L, LIU R L, WANG H. Using DayCent model to simulate black soil organic carbon and total nitrogen dynamics under long-term different fertilization. Heilongjiang Agricultural Sciences, 2021(10): 23-31. (in Chinese)
[20]
CLIVOT H, MOUNY J C, DUPARQUE A, DINH J L, DENOROY P, HOUOT S, VERTÈS F, TROCHARD R, BOUTHIER A, SAGOT S, MARY B. Modeling soil organic carbon evolution in long-term arable experiments with AMG model. Environmental Modelling & Software, 2019, 118: 99-113.
[21]
LIANG A Z, ZHANG X P, FANG H J, YANG X M, DRURY C F. Short-term effects of tillage practices on organic carbon in clay loam soil of northeast China. Pedosphere, 2007, 17(5): 619-623.
[22]
ZHANG Y, LI X J, GREGORICH E G, MCLAUGHLIN N B, ZHANG X P, GUO Y F, LIANG A Z, FAN R Q, SUN B J. No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China. Geoderma, 2018, 330: 204-211.
[23]
ELLERT B H, BETTANY J R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, 1995, 75(4): 529-538.
[24]
COLEMAN K, JENKINSON D S. ROTHC-26. 3: A Model for the Turnover of Carbon in Soil Model Description and Windows Users’ Guide: Lawes Agricultural Trust, 1999.
[25]
TRAJKOVIC S, GOCIC M, PONGRACZ R, BARTHOLY J. Adjustment of Thornthwaite equation for estimating evapotranspiration in Vojvodina. Theoretical and Applied Climatology, 2019, 138(3): 1231-1240.
[26]
韩其晟, 任宏刚, 刘建军. 秦岭主要森林凋落物中易分解和难分解植物残体含量及比值研究. 西北林学院学报, 2012, 27(5): 6-10.
HAN Q S, REN H G, LIU J J. Contents and ratios of the decomposable and resistant plant material in the litters of the main trees in Qinling Mountains. Journal of Northwest Forestry University, 2012, 27(5): 6-10. (in Chinese)
[27]
赵雅雯, 王金洲, 王士超, 武红亮, 黄绍敏, 卢昌艾. 潮土区小麦、玉米残体对土壤有机碳的贡献: 基于改进的RothC模型. 中国农业科学, 2016, 49(21): 4160-4168. doi: 10.3864/j.issn.0578-1752.2016.21.010.
ZHAO Y W, WANG J Z, WANG S C, WU H L, HUANG S M, LU C A. Contributions of wheat and corn residues to soil organic carbon under fluvo-aquic soil area—Based on the modified RothC model. Scientia Agricultura Sinica, 2016, 49(21): 4160-4168. doi: 10.3864/j.issn.0578-1752.2016.21.010. (in Chinese)
[28]
LEVAVASSEUR F, MARY B, CHRISTENSEN B T, DUPARQUE A, FERCHAUD F, KÄTTERER T, LAGRANGE H, MONTENACH D, RESSEGUIER C, HOUOT S. The simple AMG model accurately simulates organic carbon storage in soils after repeated application of exogenous organic matter. Nutrient Cycling in Agroecosystems, 2020, 117(2): 215-229.
[29]
NICOLARDOT B, RECOUS S, MARY B. Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C: N ratio of the residues. Plant and Soil, 2001, 228(1): 83-103.
[30]
ESCAMILLA-GARCÍA A, SOTO-ZARAZÚA G M, TOLEDANO- AYALA M, RIVAS-ARAIZA E, GASTÉLUM-BARRIOS A. Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Applied Sciences, 2020, 10(11): 3835.
[31]
GUO W W, XUE H R. Crop yield forecasting using artificial neural networks: A comparison between spatial and temporal models. Mathematical Problems in Engineering, 2014, 2014: 1-7.
[32]
POEPLAU C. Estimating root: shoot ratio and soil carbon inputs in temperate grasslands with the RothC model. Plant and Soil, 2016, 407(1): 293-305.
[33]
于永强, 黄耀, 张稳. 华东地区农田土壤有机碳动态模拟研究: 模型的验证与灵敏度分析. 地理与地理信息科学, 2006, 22(6): 83-88, 93.
YU Y Q, HUANG Y, ZHANG W. Modeling farmland soil organic carbon dynamics in eastern China: Model validation and sensitivity analysis. Geography and Geo-Information Science, 2006, 22(6): 83-88, 93. (in Chinese)
[34]
王金州, 卢昌艾, 张金涛, 单鹤翔, 张文菊, 黄绍敏, 徐明岗. RothC模型模拟华北潮土区的土壤有机碳动态. 中国土壤与肥料, 2010(6): 16-21, 49.
WANG J Z, LU C A, ZHANG J T, SHAN H X, ZHANG W J, HUANG S M, XU M G. RothC model simulation of soil organic carbon dynamics of fluvo-aquic soil in Northern China. Soil and Fertilizer Sciences in China, 2010(6): 16-21, 49. (in Chinese)
[35]
GUPTA CHOUDHURY S, SRIVASTAVA S, SINGH R, CHAUDHARI S K, SHARMA D K, SINGH S K, SARKAR D. Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice-wheat cropping system under reclaimed sodic soil. Soil and Tillage Research, 2014, 136: 76-83.
[36]
彭娟, 符卓旺, 朱洁, 慈恩, 高明, 谢德体. 耕作制度对紫色水稻土有机碳累积及矿化动态的影响. 水土保持学报, 2011, 25(4): 175-178, 182.
PENG J, FU Z W, ZHU J, CI E, GAO M, XIE D T. Effects of tillage systems on accumulation and mineralization of organic carbon in purple paddy soil. Journal of Soil and Water Conservation, 2011, 25(4): 175-178, 182. (in Chinese)
[37]
熊瑛, 王龙昌, 杜娟, 赵琳璐, 周泉, 张赛. 垄作秸秆覆盖下西南地区蚕豆田土壤呼吸与有机碳特征. 环境科学, 2017, 38(5): 2102-2110.
XIONG Y, WANG L C, DU J, ZHAO L L, ZHOU Q, ZHANG S. Characteristics of soil respiration and soil organic carbon in fava bean farmland under ridge tillage and straw mulching in southwest China. Environmental Science, 2017, 38(5): 2102-2110. (in Chinese)
[38]
SZOPLIK J. Forecasting of natural gas consumption with artificial neural networks. Energy, 2015, 85: 208-220.
[39]
ALJARAH I, FARIS H, MIRJALILI S. Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Computing, 2018, 22(1): 1-15.
[40]
苏子友, 杨正礼, 王德莲, 蔡典雄, 姚宇卿, 吕军杰, 张洁. 豫西黄土坡耕地保护性耕作保水效果研究. 干旱地区农业研究, 2004, 22(3): 6-8, 18.
SU Z Y, YANG Z L, WANG D L, CAI D X, YAO Y Q, J J, ZHANG J. Effect of conservation tillage on water conserving on loess slope-land in West Henan Province. Agricultural Research in the Arid Areas, 2004, 22(3): 6-8, 18. (in Chinese)
[41]
肖霜霜, 叶莹莹, 陈武荣, 肖丹, 毛兵, 张伟, 王克林. 翻耕扰动下喀斯特耕地N2O排放规律及影响因素. 农业现代化研究, 2022, 43(4): 738-746.
XIAO S S, YE Y Y, CHEN W R, XIAO D, MAO B, ZHANG W, WANG K L. N2O emission law and its affecting factors under tillage disturbance in cultivated land of Karst region. Research of Agricultural Modernization, 2022, 43(4): 738-746. (in Chinese)
[42]
YANG M H, XU D Y, CHEN S C, LI H Y, SHI Z. Evaluation of machine learning approaches to predict soil organic matter and pH using vis-NIR spectra. Sensors, 2019, 19(2): 263.
[43]
李悦, 郭李萍, 谢立勇, 黄树青, 徐玉秀, 赵迅. 不同农作管理措施对东北地区农田土壤有机碳未来变化的模拟研究. 中国农业科学, 2015, 48(3): 501-513. doi: 10.3864/j.issn.0578-1752.2015.03.10.
LI Y, GUO L P, XIE L Y, HUANG S Q, XU Y X, ZHAO X. Modeling the future changes of soil organic carbon under different management practices in upland soils of northeast China. Scientia Agricultura Sinica, 2015, 48(3): 501-513. doi: 10.3864/j.issn.0578-1752.2015.03.10. (in Chinese)
[44]
STEWART C E, PAUSTIAN K, CONANT R T, PLANTE A F, SIX J. Soil carbon saturation: evaluation and corroboration by long-term incubations. Soil Biology and Biochemistry, 2008, 40(7): 1741-1750.
[45]
STEWART C E, PLANTE A F, PAUSTIAN K, CONANT R T, SIX J. Soil carbon saturation: Linking concept and measurable carbon pools. Soil Science Society of America Journal, 2008, 72(2): 379-392.
[46]
CARUSO T, DE VRIES F T, BARDGETT R D, LEHMANN J. Soil organic carbon dynamics matching ecological equilibrium theory. Ecology and Evolution, 2018, 8(22): 11169-11178.

doi: 10.1002/ece3.4586 pmid: 30519434
[47]
RIGGERS C, POEPLAU C, DON A, BAMMINGER C, HÖPER H, DECHOW R. Multi-model ensemble improved the prediction of trends in soil organic carbon stocks in German croplands. Geoderma, 2019, 345: 17-30.
[48]
WANG G S, POST W M, MAYES M A. Development of microbial- enzyme-mediated decomposition model parameters through steady- state and dynamic analyses. Ecological Applications: A Publication of the Ecological Society of America, 2013, 23(1): 255-272.
[49]
LIPSON D A, SCHMIDT S K. Seasonal changes in an alpine soil bacterial community in the Colorado rocky mountains. Applied and Environmental Microbiology, 2004, 70(5): 2867-2879.

doi: 10.1128/AEM.70.5.2867-2879.2004 pmid: 15128545
[50]
CLIVOT H, MARY B, VALÉ M, COHAN J P, CHAMPOLIVIER L, PIRAUX F, LAURENT F, JUSTES E. Quantifying in situ and modeling net nitrogen mineralization from soil organic matter in arable cropping systems. Soil Biology and Biochemistry, 2017, 111: 44-59.
[1] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[2] SHEN WenYan, ZHANG NaiYu, LI TianJiao, SONG TianHao, ZHANG XiuZhi, PENG Chang, LIU HongFang, ZHANG ShuXiang, DUAN BiHua. Characteristics of phoD-Harboring Microbial Communities Under Long-Term Fertilization and Its Effects on Organic Phosphorus Fractions in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(20): 4082-4093.
[3] SUN Yue, REN KeYu, ZOU HongQin, GAO HongJun, ZHANG ShuiQing, LI DeJin, LI BingJie, LIAO ChuQian, DUAN YingHua, XU MingGang. Effect of Long-Term Straw Returning on the Soil Organic Carbon Bound to Iron Oxides in Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3823-3834.
[4] LI TianJiao, ZHANG NaiYu, SHEN WenYan, SONG TianHao, LIU HongFang, LIU XiaoYan, ZHANG XiuZhi, PENG Chang, YANG JinFeng, ZHANG ShuXiang. Effects of Long-Term Fertilization on Soil Aggregate Stability and Its Driving Factors in Black Soil and Brown Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3835-3847.
[5] LIU YaJie, ZHANG TianJiao, ZHANG XiangQian, LU ZhanYuan, LIU ZhanYong, CHENG YuChen, WU Di, LI JinLong. Effects of Tillage Methods Under Straw Returning on the Labile Organic Carbon Fractions and Carbon Pool Management Index in Black Soil Farmland [J]. Scientia Agricultura Sinica, 2024, 57(17): 3408-3423.
[6] YANG WangHua, LIU ZhiJuan, GONG JingJin, FU ZhenZhen, ZHANG TaiLin, ZHANG XiaoLong, SHEN YanJun, YANG XiaoGuang. Drought Risk for Spring Maize in the Future and Response to Climate Change in the Northeast China [J]. Scientia Agricultura Sinica, 2024, 57(12): 2336-2349.
[7] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[8] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[9] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[10] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[11] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[12] YU BoWei, ZHANG QingWen, HAO Zhuo, SHI YuLong, LI XueLiang, LI MengNi, JING XueKai. Interaction Between Transverse Ridge Tillage and Topography on Soil Erodibility Along the Long Gentle Slope in a Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(23): 4706-4716.
[13] ZHOU Ying, YANG Peng, WANG LiGang, LEI QiuLiang, ZHANG YaNan. Optimization Path of the Ecological Compensation Mechanism for Conservation Tillage in the Northeast Black Soil Region [J]. Scientia Agricultura Sinica, 2023, 56(22): 4478-4489.
[14] MEI XiuWen, ZHU TengXiao, LI YuPing, LI ShuangYi, SUN LiangJie, AN TingTing, WANG JingKuan. Effects of Rhizodeposition on Straw Carbon and Nitrogen Sequestration in Soil Profile Under Different Fertilization Conditions [J]. Scientia Agricultura Sinica, 2023, 56(19): 3856-3868.
[15] XIE Xue, LU YanHong, LIAO YuLin, NIE Jun, ZHANG JiangLin, SUN YuTao, CAO WeiDong, GAO YaJie. Effects of Returning Chinese Milk Vetch and Rice Straw to Replace Partial Fertilizers on Double Season Rice Yield and Soil Labile Organic Carbon [J]. Scientia Agricultura Sinica, 2023, 56(18): 3585-3598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!