Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (22): 4467-4477.doi: 10.3864/j.issn.0578-1752.2023.22.009


Standardized Establishment and Improvement of Accounting System of Agriculture Greenhouse Gas Emission

ZHANG WeiJian1,2(), SHANG ZiYin1,2, ZHANG Jun1,2, YAN ShengJi1, DENG AiXing1, ZHANG Xin1, ZHENG ChengYan1, SONG ZhenWei1,2   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 Center of Carbon Peak and Carbon Neutralization, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2022-12-08 Accepted:2023-02-03 Online:2023-11-16 Published:2023-11-17


Agriculture is not only the dominant source of human food and clothing, but also the potential sector of global anthropogenic greenhouse gas (GHG) emissions and mitigation, especially methane (CH4) and nitrous oxide (N2O). To standardize GHG accounting is an urgent need for agricultural carbon emission inventory compilation, carbon trading of emission reduction verification, carbon reduction subsidy and low-carbon agricultural product certification, as well as the basis for the policy making and technology selection of agricultural carbon reduction and sequestration, which is of great significance for the green-low-carbon and high-quality development of agriculture. Based on a systematic review of the relevant global specifications, guidelines, methodologies and standards of agricultural GHG accounting, this paper aimed to address the problems of imperfect monitoring and reporting systems, unsystematic accounting and calculating methods, and uncertain accounting results, by providing the following four suggestions for the establishment and improvement of agricultural GHG accounting systems. Firstly, we should further establish and improve the institutional system of the accounting system, to better clarify the subject of the main responsibility. On the existing basis of China's agricultural statistics and non-point source pollution monitoring and reporting systems, we should strengthen the construction of agricultural GHG emission monitoring (M), reporting (R) and verifying (V) system (i.e. MRV system), and supplement and improve the policy making and institutional setting, so as to clarify the main responsibilities of agricultural GHG statistical accounting and carbon reduction and sequestration. Secondly, we should further supplement and improve the accounting standards and methodologies. According to the newly issued international standards and methodologies, and the actual situation of China’s agricultural production and future development, we need to revise the agricultural components of China's Guidelines of Provincial GHG Emission Inventories. For example, the farmland carbon sequestrations of biochar application, ecological farm and well-facilitated farmland construction, photovoltaic farms and crop straw comprehensive utilization, as well as the carbon emissions of lime and urea application, ruminant livestock feeding and freshwater aquaculture, need to be supplemented into the guidelines. The accounting standards and methods of agricultural indirect GHG emissions need to be revised, and some new CCER (Chinese certified emission reduction) methodologies need to be developed for agricultural carbon trading. Thirdly, the database needs to be further renewed and upgraded. We need to strengthen scientific and technological innovations and accounting data accumulation of agricultural carbon reduction and sequestration, to renew and upgrade the basic data, action data and emission factor data of the existing accounting systems in combination with field monitoring, model estimation and literature synthesis. Fourthly, at last, it is also necessary to develop the application software supporting the accounting standards and methodologies, and carry out science popularization, technical training and application demonstration. Our suggestions could provide the references for the guideline revision of agricultural greenhouse gas emission inventories, and supports to the methodology development for trading verification of agricultural voluntary emission reduction and carbon footprint assessment of low-carbon agricultural product certification.

Key words: food security, climate change, green and low-carbon development, carbon emission inventory, carbon trading for emission reduction, MRV methodologies

Fig. 1

Representative guidelines of greenhouse gas emission inventory compilation at home and abroad"

张卫建, 张俊, 张会民. 稻田土壤培肥与丰产增效耕作理论和技术. 北京: 科学出版社, 2021.
ZHANG W J, ZHANG J, ZHANG H M. Theory and Technology of Soil Fertility Improvement and High Yield and Efficiency Farming in Paddy Field. Beijing: Science Press, 2021. (in Chinese)
CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514(7523): 486-489.

doi: 10.1038/nature13609
MASSON-DELMOTTE V, ZHAI P, PIRANI A, CONNORS S L, PEAN C, BERGER S, CAUD N, CHEN Y, GOLDFARB L, GOMIS M I, HUANG M. LEITZELL K, LONNOY E, MATHHEWS J B R, MAYCOCK T K, WATERFIELD T, YELEKCI O, YU R, ZHOU B. Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.
United Nations Environment Programme, 2022. Emissions Gap Report 2022:The Closing Window—Climate crisis calls for rapid transformation of societies. Nairobi.
生态环境部应对气候变化司. 中华人民共和国气候变化第三次国家信息通报. 2020-07-01.
Department of Climate Change, Ministry of Ecology and Environment. The third national communication on climate change of the people's Republic of China. 2020-07-01. Chinese)
习近平. 坚持把解决好“三农”问题作为全党工作重中之重举全党全社会之力推动乡村振兴. 求是, 2022/07.
XI J P. Insist on making the solution of the "agriculture, rural areas and farmers" issues the priority of the whole Party, and promote the revitalization of the countryside with the efforts of the whole Party and society. Qiushi, 2022/07. Chinese)
张福锁. 发展绿色生态种养殖业加强绿色食品认证管理. 中国食品, 2021(8): 32-35.
ZHANG F S. Developing green ecological breeding industry and strengthening green food certification management. China Food, 2021(8): 32-35. (in Chinese)
谭淑豪, 张卫建. 中国稻田节能减排的技术模式及其配套政策探讨. 科技导报, 2009, 27(23): 96-100.
TAN S H, ZHANG W J. Technical patterns and incentive policies for energy saving and emission mitigation in the paddy field in China. Science & Technology Review, 2009, 27(23): 96-100. (in Chinese)
刘学军, 沙志鹏, 宋宇, 董红敏, 潘月鹏, 高志岭, 李玉娥, 马林, 董文旭, 胡春胜, 王文林, 王悦, 耿红, 郑云昊, 顾梦娜. 我国大气氨的排放特征、减排技术与政策建议. 环境科学研究, 2021, 34(1): 149-157.
LIU X J, SHA Z P, SONG Y, DONG H M, PAN Y P, GAO Z L, LI Y E, MA L, DONG W X, HU C S, WANG W L, WANG Y, GENG H, ZHENG Y H, GU M N. China’s atmospheric ammonia emission characteristics, mitigation options and policy recommendations. Research of Environmental Sciences, 2021, 34(1): 149-157. (in Chinese)
IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2006.
IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2019.
ISO. International Standard ISO 14064, First edition, 2006.
ISO. International Standard ISO 14064, Second edition, 2019.
国家发展和改革委员会. 省级温室气体排放清单编制指南(试行), 2011/03.
National Development and Reform Commission, China. Compiling guidelines of provincial greenhouse gas inventories (Trial), 2011/03. (in Chinese)
国家发展改革委. 温室气体自愿减排交易管理暂行办法. 2012/06.
National Development and Reform Commission, China. Interim measures for the trading administration of voluntary reduction of greenhouse gas emission, 2012/06. (in Chinese)
董红敏, 左玲玲, 魏莎, 朱志平, 尹福斌. 建立畜禽废弃物养分管理制度促进种养结合绿色发展. 中国科学院院刊, 2019, 34(2): 180-189.
DONG H M, ZUO L L, WEI S, ZHU Z P, YIN F B. Establish manure nutrient management plan to promote green development of integrated crop-livestock production system. Bulletin of Chinese Academy of Sciences, 2019, 34(2): 180-189. (in Chinese)
蔡博峰, 朱松丽, 于胜民, 董红敏, 张称意, 王长科, 朱建华, 高庆先, 方双喜, 潘学标, 郑循华. 《IPCC 2006年国家温室气体清单指南2019修订版》解读. 环境工程, 2019, 37(8): 1-11.
CAI B F, ZHU S L, YU S M, DONG H M, ZHANG C Y, WANG C K, ZHU J H, GAO Q X, FANG S X, PAN X B, ZHENG X H. The interpretation of 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory. Environmental Engineering, 2019, 37(8): 1-11. (in Chinese)
EMEP/EEA. EMEP/EEA Guidebook, Additional Guidance: 2D3 Solvent and Product Use, 2022.
World Resources Institute. The GHG Protocol Corporate Accounting and Reporting Standard, A Corporate Accounting and Reporting Standard, Revised edition, 2002.
蔡祖聪, 徐华, 马静. 稻田生态系统CH4和N2O排放. 合肥: 中国科学技术大学出版社, 2009.
CAI Z C, XU H, MA J. Methane and Nitrous Oxide Emissions from Rice-Based Ecosystems. Hefei: University of Science and Technology of China Press, 2009. (in Chinese)
张广斌, 马静, 徐华, 颜晓元. 中国农田非CO2温室气体减排的研究现状与建议. 中国科学院院刊, 2023, 38(3): 504-517.
ZHANG G B, MA J, XU H, YAN X Y. Status quo of research and suggestions on reduction of non-CO2greenhouse gas emission from Chinese farmland. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 504-517. (in Chinese)
张俊, 邓艾兴, 尚子吟, 唐志伟, 严圣吉, 张卫建. 秸秆还田下水稻丰产与甲烷减排的技术模式. 作物杂志, 2021(6): 230-235.
ZHANG J, DENG A X, SHANG Z Y, TANG Z W, YAN S J, ZHANG W J. Innovative rice cropping for higher yield and less CH4 emission under crop straw incorporation. Crops, 2021(6): 230-235. (in Chinese)
张卫建, 张艺, 邓艾兴, 张俊. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析. 中国稻米, 2021, 27(4): 53-57.

doi: 10.3969/j.issn.1006-8082.2021.04.011
ZHANG W J, ZHANG Y, DENG A X, ZHANG J. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China. China Rice, 2021, 27(4): 53-57. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2021.04.011
朱松丽, 蔡博峰, 朱建华, 高庆先, 张称意, 于胜民, 方双喜, 潘学标. IPCC国家温室气体清单指南精细化的主要内容和启示. 气候变化研究进展, 2018, 14(1): 86-94.
ZHU S L, CAI B F, ZHU J H, GAO Q X, ZHANG C Y, YU S M, FANG S X, PAN X B. The main content and insights of 2019 refinements to IPCC 2006 Guidelines. Climate Change Research, 2018, 14(1): 86-94. (in Chinese)
马心怡, 黄文晶, 胡凝, 肖薇, 胡诚, 张弥, 曹畅, 赵佳玉. 基于不同排放清单的长三角人为CO2排放模拟. 环境科学, 2023, 44(4): 2009-2021.
MA X Y, HUANG W J, HU N, XIAO W, HU C, ZHANG M, CAO C, ZHAO J Y. Simulation of anthropogenic CO2 emissions in the Yangtze River Delta based on different emission inventories. Environmental Science, 2023, 44(4): 2009-2021. (in Chinese)
李玉娥, 董红敏, 万运帆, 秦晓波, 高清竹. 规模化猪场沼气工程CDM项目的减排及经济效益分析. 农业环境科学学报, 2009, 28(12): 2580-2583.
LI Y E, DONG H M, WAN Y F, QIN X B, GAO Q Z. Emission reduction and financial analysis of intensive swine farm using biogas digester to treat manure and developed as a CDM projects. Journal of Agro-Environment Science, 2009, 28(12): 2580-2583. (in Chinese)
朱永官, 王晓辉, 杨小茹, 徐会娟, 贾炎. 农田土壤N2O产生的关键微生物过程及减排措施. 环境科学, 2014, 35(2): 792-800.
ZHU Y G, WANG X H, YANG X R, XU H J, JIA Y. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies. Environmental Science, 2014, 35(2): 792-800. (in Chinese)
曹娜, 王睿, 廖婷婷, 陈诺, 郑循华, 姚志生, 张海, Klaus Butterbach-Bahl. 厌氧条件下砂壤水稻土N2、N2O、NO、CO2和CH4排放特征. 环境科学, 2015, 36(9): 3373-3382.
CAO N, WANG R, LIAO T T, CHEN N, ZHENG X H, YAO Z S, ZHANG H, BUTTERBACH-BAHL K. Characteristics of N2, N2O, NO, CO2 and CH4 emissions in anaerobic condition from sandy loam paddy soil. Environmental Science, 2015, 36(9): 3373-3382. (in Chinese)
董红敏, 朱志平, 黄宏坤, 陈永杏, 尚斌, 陶秀萍, 周忠凯. 畜禽养殖业产污系数和排污系数计算方法. 农业工程学报, 2011, 27(1): 303-308.
DONG H M, ZHU Z P, HUANG H K, CHEN Y X, SHANG B, TAO X P, ZHOU Z K. Pollutant generation coefficient and discharge coefficient in animal production. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 303-308. (in Chinese)
严圣吉, 尚子吟, 邓艾兴, 张卫建. 我国农田氧化亚氮排放的时空特征及减排途径. 作物杂志, 2022(3): 1-8.
YAN S J, SHANG Z Y, DENG A X, ZHANG W J. Spatiotemporal characteristics and reduction approaches of farmland N2O emission in China. Crops, 2022(3): 1-8. (in Chinese)
唐志伟, 张俊, 邓艾兴, 张卫建. 我国稻田甲烷排放的时空特征与减排途径. 中国生态农业学报(中英文), 2022, 30(4) : 582-591.
TANG Z W, ZHANG J, DENG A X, ZHANG W J. Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China. Chinese Journal of Eco-Agriculture, 2022, 30(4): 582-591. (in Chinese)
UNFCCC, 1997. Kyoto Protocol. Geneva: UNFCCC.
刘海燕, 于胜民, 李明珠. 中国国家温室气体自愿减排交易机制优化途径初探. 中国环境管理, 2022, 14(5): 22-27.
LIU H Y, YU S M, LI M Z. Optimization suggestions on the management and reboot of national greenhouse gas voluntary emission reduction trading mechanism in China. Chinese Journal of Environmental Management, 2022, 14(5): 22-27. (in Chinese)
张卫建, 严圣吉, 张俊, 江瑜, 邓艾兴. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021, 54(18): 3892-3902. doi: 10.3864/j.issn.0578-1752.2021.18.009.
ZHANG W J, YAN S J, ZHANG J, JIANG Y, DENG A X. Win-win strategy for national food security and agricultural double-carbon goals. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902. doi:10.3864/j.issn.0578-1752.2021.18.009. (in Chinese)
严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径. 作物学报, 2022, 48(4): 930-941.

doi: 10.3724/SP.J.1006.2022.12073
YAN S J, DENG A X, SHANG Z Y, TANG Z W, CHEN C Q, ZHANG J, ZHANG W J. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production. Acta Agronomica Sinica, 2022, 48(4): 930-941. (in Chinese)

doi: 10.3724/SP.J.1006.2022.12073
夏龙龙, 颜晓元, 蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望. 农业环境科学学报, 2020, 39(4): 834-841.
XIA L L, YAN X Y, CAI Z C. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China. Journal of Agro-Environment Science, 2020, 39(4): 834-841. (in Chinese)
李楠, 刘盈, 王震. 国际标准差异对产品碳足迹核算的影响分析: 以胶版印刷纸为例. 环境科学学报, 2020, 40(2): 707-715.
LI N, LIU Y, WANG Z. Analyze the impact of different international standards on product carbon footprint assessment: an example of uncoated printing paper. Acta Scientiae Circumstantiae, 2020, 40(2): 707-715. (in Chinese)
ZHANG Y, JIANG Y, TAI A P K, FENG J F, LI Z J, ZHU X C, CHEN J, ZHANG J, SONG Z W, DENG A X, LAL R, ZHANG W J. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Environmental Research Letters, 2019, 14(11): 114020.

doi: 10.1088/1748-9326/ab488d
CHEN C Q, VAN GROENIGEN K J, YANG H Y, HUNGATE B A, YANG B, TIAN Y L, CHEN J, DONG W J, HUANG S, DENG A X, JIANG Y, ZHANG W J. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security, 2020, 24: 100359.

doi: 10.1016/j.gfs.2020.100359
陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46(16): 3324-3333. doi: 0.3864/j.issn.0578-1752.2013.16.003.
CHEN W F, ZHANG W M, MENG J. Advances and prospects in research of biochar utilization in agriculture. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333. doi:0.3864/j.issn.0578-1752.2013.16.003. (in Chinese)
董红敏, 李玉娥, 陶秀萍, 彭小培, 李娜, 朱志平. 中国农业源温室气体排放与减排技术对策. 农业工程学报, 2008, 24(10): 269-273.
DONG H M, LI Y E, TAO X P, PENG X P, LI N, ZHU Z P. China greenhouse gas emissions from agricultural activities and its mitigation strategy. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269-273. (in Chinese)
李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮. 农业环境科学学报, 2020, 39(4): 842-851.
LI Y, JU X T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission. Journal of Agro-Environment Science, 2020, 39(4): 842-851. (in Chinese)
[1] SHI XinRui, HAN BaiShu, WANG ZiQian, ZHANG YuanLing, LI Ping, ZONG YuZheng, ZHANG DongSheng, GAO ZhiQiang, HAO XingYu. Investigation on the Effects of Climate Change on the Growth and Yield of Different Maturity Winter Wheat Varieties in Northern China Based on the APSIM Model [J]. Scientia Agricultura Sinica, 2023, 56(19): 3772-3787.
[2] ZHANG ZhiLiang, HE ZhiHao, RU XiaoYa, JIANG TengCong, HE YingBin, FENG Hao, YU Qiang, HE JianQiang. Influence of Future Climate Change on the Climate Suitability of Potato Cultivation in China [J]. Scientia Agricultura Sinica, 2023, 56(18): 3530-3542.
[3] ZHANG WenJing, ZHAO Jin, CUI WenQian, LI ManYao, LI E, GONG XiaoYa, YANG XiaoGuang. Effects of Changing Normal and Extreme Climate States on Maize Meteorological Yield in Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1859-1870.
[4] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[5] GUO ShiBo, ZHANG FangLiang, ZHANG ZhenTao, ZHOU LiTao, ZHAO Jin, YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[6] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[7] YANG ShiQi. Thought of Pollution Comprehensive Prevention and Control System of Non-Point Sources Based on National Food Security [J]. Scientia Agricultura Sinica, 2022, 55(17): 3380-3394.
[8] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[9] ZHANG WeiJian, YAN ShengJi, ZHANG Jun, JIANG Yu, DENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[10] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[11] KaiYuan GONG, Liang HE, DingRong WU, ChangHe LÜ, Jun LI, WenBin ZHOU, Jun DU, Qiang YU. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau [J]. Scientia Agricultura Sinica, 2020, 53(4): 720-733.
[12] WANG MingLei,SHI WenJiao. Spatial-Temporal Changes of Newly Cultivated Land in Northern China and Its Zoning Based on Driving Factors [J]. Scientia Agricultura Sinica, 2020, 53(12): 2435-2449.
[13] CHEN Kevin,BI JieYing,NIE FengYing,FANG XiangMing,FAN ShengGen. New Vision and Policy Recommendations for Nutrition-Oriented Food Security in China [J]. Scientia Agricultura Sinica, 2019, 52(18): 3097-3107.
[14] SUN JianFei,ZHENG JuFeng,CHENG Kun,YE Yi,ZHUANG Yuan,PAN GenXing. Quantifying Carbon Sink by Biochar Compound Fertilizer Project for Domestic Voluntary Carbon Trading in Agriculture [J]. Scientia Agricultura Sinica, 2018, 51(23): 4470-4484.
[15] ZHANG ZhenTao, YANG XiaoGuang, GAO JiQing, WANG XiaoYu, BAI Fan, SUN Shuang, LIU ZhiJuan, MING Bo, XIE RuiZhi, WANG KeRu, LI ShaoKun. Analysis of Suitable Sowing Date for Summer Maize in North China Plain Under Climate Change [J]. Scientia Agricultura Sinica, 2018, 51(17): 3258-3274.
Full text



No Suggested Reading articles found!