Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (22): 4431-4443.doi: 10.3864/j.issn.0578-1752.2024.22.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Difference of Grain Starch Accumulation Dynamics and Yield Formation of Spring Maize Under Different Nitrogen Application Rates in Black Soil

CAO WenZhuo1(), YU ZhenWen1, ZHANG YongLi1, ZHANG Zhen1, SHI Yu1(), WANG YongJun2   

  1. 1 College of Agronomy, Shandong Agricultural University/Key Laboratory of Crop Physiology, Ecology and Tillage, Ministry of Agriculture and Rural Affairs, Tai 'an 271018, Shandong
    2 Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033
  • Received:2024-01-23 Accepted:2024-10-16 Online:2024-11-16 Published:2024-11-22
  • Contact: SHI Yu

Abstract:

【Objective】The physiological mechanism of starch accumulation and yield formation of spring maize in black soil under suitable nitrogen application was studied, in order to provide the theoretical basis for high yield and high efficiency cultivation technology of spring maize.【Method】Field experiments were conducted in the spring maize growing seasons of 2022 and 2023 in Gongzhuling City, Jilin Province, Jilin Academy of Agricultural Sciences. Five nitrogen application treatments were set up: no nitrogen (N0), 90 kg·hm-2 (N90), 135 kg·hm-2 (N135),180 kg·hm-2 (N180), and 225 kg·hm-2 (N225). The synthesis capacity of sucrose in the ear leaf and the activity of key enzymes in sucrose metabolism were measured to investigate the sucrose synthesis capacity of the ear leaf and grain starch synthesis capacity under different nitrogen application rates. The accumulation characteristics of total starch and its components in maize grain were fitted by Logistic equation to clarify the impact of nitrogen application rate on the dynamic of starch accumulation in maize grain and grain yield formation.【Result】(1) With the escalation of nitrogen application rates, the yield of spring maize exhibited an initial increase followed by a subsequent decrease. The average yields under N0, N90, N135, N180, and N225 treatments over two years were 8 992.90, 11 199.47, 12 126.78, 14 049.42, and 13 213.21 kg·hm-2, respectively. Notably, the N180 treatment resulted in the highest yield. (2) The sucrose content, sucrose synthetase (SS) and sucrose phosphate synthetase (SPS) activities in ear leaves at 0, 12, 24, 36 and 48 days after flowering under N180 treatment were significantly higher than those under N0, N90 and N135 treatment, and there was no significant difference between N225 and N180 treatment. At 24, 36 and 48 days after flowering, the activity of soluble amylase (SSS) in grains treated under N180 was the highest, and the average SSS activity of grains under N0, N90, N135 and N225 was increased by 62.43%, 31.33%, 14.85% and 7.80%, respectively. (3) Logistic equation analysis showed that the accumulation rate and active accumulation period of total starch, branch chain and amylose in grains of each treatment first increased and then decreased with the increase of nitrogen application amount, and N180 treatment was the best. Compared with N0, N90, N135 and N225 treatments, the two-year average total starch accumulation rate and total starch accumulation active period under N180 treatment were 43.35%, 23.16%, 13.22%, 5.92% and 7.30%, 3.84%, 4.11%, 3.83%, respectively. When the average grain starch accumulation rate reached the maximum in two years, the grain starch accumulation amount was 12.90 g, and the total starch accumulation amount at each treatment maturity stage was 6 725.60, 8 510.17, 9 150.62, 10 387.35 and 9 604.04 kg·hm-2, respectively. (4) Correlation analysis results showed that spring maize yield was significantly positively correlated with sucrose content, sucrose synthase activity, sucrose phosphate synthase activity, soluble starch synthase activity in grains, total starch accumulation, amylopectin accumulation and amylose accumulation in grains at ear position at filling stage. Sucrose content, sucrose synthetase activity, sucrose phosphate synthetase activity and soluble starch synthetase activity in grain were also significantly positively correlated with starch and its component accumulation in grain.【Conclusion】Under the treatment of 180 kg·hm-2 nitrogen application, the spring maize during grain filling exhibited the highest activities of key sucrose metabolism enzymes in the ear sheath leaves, as well as the highest activity of starch synthesis enzymes in the soluble grains. Additionally, it showed the maximum rate of starch accumulation and longest period of active starch accumulation. Furthermore, this treatment resulted in the highest grain yield and starch accumulation, making it the optimal treatment under the experimental conditions.

Key words: spring maize, nitrogen application amount, grain starch filling, yield, sucrose synthetase, grain starch synthetase

Table 1

Effects of nitrogen application on yield and accumulation of starch and its components in grain at maturity"

年份
Year
处理
Treatment
产量
Yield
(kg·hm
-2)
支链淀粉积累量
Amylopectin accumulation
(kg·hm-2)
直链淀粉积累量
Amylose accumulation
(kg·hm-2)
籽粒总淀粉积累量
Grain starch accumulation
(kg·hm-2)
2022 N0 8765.02e 5178.81e 1383.46e 6562.27e
N90 11012.01d 6531.78d 1845.23d 8377.01d
N135 11951.47c 7186.44c 1922.19c 9108.69c
N180 14138.56a 7978.36a 2472.88a 10451.24a
N225 13407.19b 7548.62b 2089.66b 9638.29b
2023 N0 9220.77e 5268.64e 1620.28e 6888.92e
N90 11386.93d 6831.24d 1812.09d 8643.33d
N135 12302.08c 7126.56c 2066.04c 9192.54c
N180 13960.28a 7908.24a 2415.22a 10323.46a
N225 13019.22b 7420.64b 2149.14b 9070.98b

Fig. 1

Effect of nitrogen application on sucrose content in ear position leaves at filling stage Different lowercase letters indicate significant difference at the treatment level of 0.05"

Fig. 2

Effects of nitrogen application on the activity of key enzymes in sucrose metabolism"

Fig. 3

Effect of nitrogen application on the activity of soluble starch synthase"

Fig. 4

Effects of nitrogen application on starch filling accumulation and starch filling rate in grain"

Fig. 5

Effects of nitrogen application on amylopectin grouting accumulation and amylopectin grouting rate"

Fig. 6

Effect of nitrogen application on amylose grouting accumulation and amylose grouting rate"

Table 2

Effect of nitrogen application on grout parameters of total starch and its components"

年份
Year
项目
Item
处理
Treatment
生长曲线方程
Growth curve

parametric equation
相关系数
Correlation
coefficient
Tmax
(d)
Wmax
(g)
Gmax
(g·d
-1)
Gmean
(g·d
-1)
D
(d)
2022 总淀粉
Total starch
N0 y=16.89/(1+57.42e-0.16x) 0.9994 25.95 8.45 0.66 0.44 38.44
N90 y=20.22/(1+48.71e-0.15x) 0.9989 25.61 10.11 0.77 0.51 39.55
N135 y=21.78/(1+46.29e-0.15x) 0.9988 25.60 10.89 0.82 0.54 40.05
N180 y=25.54/(1+40.50e-0.15x) 0.9986 25.30 12.77 0.93 0.62 41.01
N225 y=23.42/(1+43.92e-0.15x) 0.9989 25.38 11.71 0.87 0.58 40.25
支链淀粉
Amylopectin
N0 y=12.07/(1+55.00e-0.17x) 0.9989 23.97 6.04 0.50 0.34 35.89
N90 y=14.41/(1+48.22e-0.17x) 0.9980 23.47 7.21 0.60 0.40 36.33
N135 y=15.55/(1+45.28e-0.16x) 0.9980 23.45 7.77 0.63 0.42 36.90
N180 y=18.45/(1+38.55e-0.16x) 0.9978 23.07 9.22 0.73 0.49 37.91
N225 y=16.88/(1+42.57e-0.16x) 0.9976 23.28 8.44 0.68 0.45 37.24
直链淀粉
Amylose
N0 y=4.79/(1+132.51e-0.16x) 0.9986 30.78 2.40 0.19 0.13 37.80
N90 y=5.78/(1+104.09e-0.15x) 0.9987 30.84 2.89 0.22 0.14 39.84
N135 y=6.18/(1+101.36e-0.15x) 0.9985 30.81 3.09 0.23 0.15 40.03
N180 y=7.05/(1+91.64e-0.15x) 0.9986 30.50 3.53 0.26 0.17 40.51
N225 y=6.48/(1+96.15e-0.15x) 0.9986 30.58 3.24 0.24 0.16 40.18
2023 总淀粉
Total starch
N0 y=16.65/(1+50.72e-0.15x) 0.9990 25.97 8.32 0.63 0.42 39.68
N90 y=20.12/(1+41.73e-0.15x) 0.9981 25.61 10.06 0.73 0.49 41.18
N135 y=22.01/(1+44.03e-0.15x) 0.9989 25.53 11.01 0.82 0.54 40.47
N180 y=26.06/(1+35.05e-0.14x) 0.9984 25.39 13.03 0.91 0.61 42.82
N225 y=23.52/(1+43.25e-0.15x) 0.9991 25.42 11.76 0.87 0.58 40.48
支链淀粉
Amylopectin
N0 y=11.84/(1+48.97e-0.16x) 0.9983 23.80 5.92 0.48 0.32 36.70
N90 y=14.28/(1+42.21e-0.16x) 0.9966 23.52 7.14 0.56 0.38 37.94
N135 y=15.71/(1+43.65e-0.16x) 0.9983 23.41 7.85 0.63 0.42 37.19
N180 y=18.70/(1+34.27e-0.15x) 0.9972 23.31 9.35 0.71 0.47 39.57
N225 y=16.80/(1+42.96e-0.16x) 0.9986 23.39 8.40 0.68 0.45 37.31
直链淀粉
Amylose
N0 y=4.74/(1+153.62e-0.16x) 0.9996 30.93 2.37 0.19 0.13 36.86
N90 y=5.72/(1+128.25e-0.16x) 0.9989 30.71 2.86 0.23 0.15 37.96
N135 y=6.00/(1+118.41e-0.16x) 0.9998 30.60 3.00 0.23 0.16 38.46
N180 y=7.24/(1+87.40e-0.15x) 0.9990 30.42 3.62 0.27 0.18 40.83
N225 y=6.69/(1+101.84e-0.15x) 0.9998 30.57 3.34 0.25 0.17 39.68

Fig. 7

Correlation analysis of yield with sucrose content in panear leaves, key enzyme activities of sucrose metabolism, soluble starch synthetase activity in grain, starch and its component accumulation in grain"

[1]
李保国, 刘忠, 黄峰, 杨晓光, 刘志娟, 万炜, 汪景宽, 徐英德, 李子忠, 任图生. 巩固黑土地粮仓保障国家粮食安全. 中国科学院院刊, 2021, 36(10): 1184-1193.
LI B G, LIU Z, HUANG F, YANG X G, LIU Z J, WAN W, WANG J K, XU Y D, LI Z Z, REN T S. Ensuring national food security by strengthening high-productivity black soil granary in Northeast China. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1184-1193. (in Chinese)
[2]
苏浩, 吴次芳. 东北黑土区耕地系统健康诊断及其演化特征: 以克山县为例. 经济地理, 2023, 43(6): 166-175.

doi: 10.15957/j.cnki.jjdl.2023.06.017
SU H, WU C F. Diagnosis and evolution characteristics of cultivated land system health condition in the black soil region of Northeast China: A case study of Keshan County. Economic Geography, 2023, 43(6): 166-175. (in Chinese)

doi: 10.15957/j.cnki.jjdl.2023.06.017
[3]
徐小千, 汪景宽, 李双异, 裴久渤, 杨骥, 张维俊. 基于生态位理论的东北黑土区耕地整治适宜性评价: 以公主岭市为例. 中国生态农业学报, 2018, 26(3): 432-441.
XU X Q, WANG J K, LI S Y, PEI J B, YANG J, ZHANG W J. Evaluation of cultivated land consolidation suitability in Northeast China black soil zone using niche-fitness model: A case study of Gongzhuling City. Chinese Journal of Eco-Agriculture, 2018, 26(3): 432-441. (in Chinese)
[4]
路梦莉, 张雅婷, 任红, 王土金, 韩一鸣, 李文阳, 李从锋. 增密对春玉米籽粒胚乳淀粉粒度分布与黏度参数的影响. 中国农业科学, 2023, 56(9): 1646-1657. doi: 10.3864/j.issn.0578-1752.2023.09.003.
LU M L, ZHANG Y T, REN H, WANG T J, HAN Y M, LI W Y, LI C F. Effects of increasing density on the granule size distribution and viscosity parameters of endosperm starch in spring maize kernel. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657. doi: 10.3864/j.issn.0578-1752.2023.09.003. (in Chinese)
[5]
左振朋, 田凤龙, 姜朋, 王婧, 马登超, 马强, 李栋, 孙庆泉, 董树亭. 六个不同产量玉米品种籽粒淀粉积累及相关酶活性的比较. 作物学报, 2011, 37(3): 529-536.
ZUO Z P, TIAN F L, JIANG P, WANG J, MA D C, MA Q, LI D, SUN Q Q, DONG S T. Comparison of kernel starch accumulation and related enzyme activities among six maize cultivars of different yield types. Acta Agronomica Sinica, 2011, 37(3): 529-536. (in Chinese)
[6]
高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响. 作物学报, 2023, 49(3): 821-832.

doi: 10.3724/SP.J.1006.2023.21016
GAO C H, FENG B, LI G F, LI Z X, LI S D, CAO F, CI W L, ZHAO H J. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis. Acta Agronomica Sinica, 2023, 49(3): 821-832. (in Chinese)
[7]
张玉芹, 杨恒山, 张瑞富, 李从锋, 提俊阳, 葛选良, 杨镜宏. 浅埋滴灌下水氮运筹对春玉米根系衰减特性及产量的影响. 作物学报, 2023, 49(11): 3074-3089.

doi: 10.3724/SP.J.1006.2023.33009
ZHANG Y Q, YANG H S, ZHANG R F, LI C F, TI J Y, GE X L, YANG J H. Effects of water and nitrogen application on root attenuation characteristics and yield of spring maize under shallow buried drip irrigation. Acta Agronomica Sinica, 2023, 49(11): 3074-3089. (in Chinese)
[8]
LU J S, GENG C M, CUI X L, LI M Y, CHEN S H, HU T T. Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts. Agricultural Water Management, 2021, 258: 107220.
[9]
邹铁祥, 戴廷波, 姜东, 荆奇, 曹卫星. 氮素和钾素对小麦籽粒淀粉合成关键酶活性的影响. 中国农业科学, 2008, 41(11): 3858-3864. doi: 10.3864/j.issn.0578-1752.2008.11.056.
ZOU T X, DAI T B, JIANG D, JING Q, CAO W X. Effects of nitrogen and potassium on key regulatory enzyme activities for grain starch in winter wheat. Scientia Agricultura Sinica, 2008, 41(11): 3858-3864. doi: 10.3864/j.issn.0578-1752.2008.11.056. (in Chinese)
[10]
NING P, YANG L, LI C J, FRITSCHI F B. Post-silking carbon partitioning under nitrogen deficiency revealed sink limitation of grain yield in maize. Journal of Experimental Botany, 2018, 69(7): 1707-1719.

doi: 10.1093/jxb/erx496 pmid: 29361032
[11]
LIU X M, GU W R, LI C F, LI J, WEI S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang Province, China. Journal of Integrative Agriculture, 2021, 20(2): 511-526.
[12]
张海艳, 董树亭, 高荣岐, 李玉全. 玉米籽粒淀粉积累及相关酶活性分析. 中国农业科学, 2008, 41(7): 2174-2181. doi: 10.3864/j.issn.0578-1752.2008.07.041.
ZHANG H Y, DONG S T, GAO R Q, LI Y Q. Starch accumulation and enzymes activities associated with starch synthesis in maize kernels. Scientia Agricultura Sinica, 2008, 41(7): 2174-2181. doi: 10.3864/j.issn.0578-1752.2008.07.041. (in Chinese)
[13]
YUE K, LI L L, XIE J H, LIU Y Q, XIE J H, ANWAR S, FUDJOE S K. Nitrogen supply affects yield and grain filling of maize by regulating starch metabolizing enzyme activities and endogenous hormone contents. Frontiers in Plant Science, 2022, 12: 798119.
[14]
孟瑶, 刘赵月, 李晶, 顾万荣, 魏湜. 施氮量对高密春玉米籽粒关键酶及产量品质的影响. 西南农业学报, 2020, 33(6): 1146-1152.
MENG Y, LIU Z Y, LI J, GU W R, WEI S. Effects of nitrogen rate on grain yield and quality and key enzyme metabolism of spring maize under high density. Southwest China Journal of Agricultural Sciences, 2020, 33(6): 1146-1152. (in Chinese)
[15]
许瑞, 徐新朋, 侯云鹏, 张佳佳, 黄少辉, 丁文成, 刘迎夏, 何萍. 生态集约化管理提高东北春玉米产量和氮素利用率. 植物营养与肥料学报, 2020, 26(3): 461-471.
XU R, XU X P, HOU Y P, ZHANG J J, HUANG S H, DING W C, LIU Y X, HE P. Increasing yield and nitrogen use efficiency of spring maize in Northeast China through ecological intensification management. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 461-471. (in Chinese)
[16]
张志良, 瞿伟菁. 植物生理学实验指导. 3版. 北京: 高等教育出版社, 2003: 128-129.
ZHANG Z L, QU W J. The experimental guide for plant physiology. 3rd ed. Beijing: Higher Education Press, 2003: 128-129. (in Chinese)
[17]
陈洋, 赵宏伟. 氮素用量对春玉米穗位叶蔗糖合成关键酶活性的影响. 玉米科学, 2008, 16(1): 115-118.
CHEN Y, ZHAO H W. Effect of nitrogen application on activities of key enzymes of sucrose synthesis in the leaf located near the ear of spring maize. Journal of Maize Sciences, 2008, 16(1): 115-118. (in Chinese)
[18]
赵宏伟, 赵景云. 钾素用量对春玉米淀粉合成酶活性及产量的影响. 玉米科学, 2010, 18(3): 140-143, 146.
ZHAO H W, ZHAO J Y. Effects of potassium application on enzyme activity of starch synthesis and yield in spring maize. Journal of Maize Sciences, 2010, 18(3): 140-143, 146. (in Chinese)
[19]
何照范. 粮油品质分析. 北京: 科学出版社, 1986: 76-115.
HE Z F. Grain and oil quality analysis. Beijing: Science Press, 1986:76-115. (in Chinese)
[20]
YANG H, GU X T, DING M Q, LU W P, LU D L. Activities of starch synthetic enzymes and contents of endogenous hormones in waxy maize grains subjected to post-silking water deficit. Scientific Reports, 2019, 9: 7059.

doi: 10.1038/s41598-019-43484-0 pmid: 31065011
[21]
葛选良, 杨恒山, 张雨珊, 张瑞富, 刘晶, 李维敏, 刘欣博. 浅埋滴灌下不同施氮量对玉米产量和花后氮代谢的影响. 植物营养与肥料学报, 2022, 28(9): 1603-1613.
GE X L, YANG H S, ZHANG Y S, ZHANG R F, LIU J, LI W M, LIU X B. Effects of nitrogen application rate on maize yield and nitrogen metabolism after anthesis under shallow buried drip irrigation. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1603-1613. (in Chinese)
[22]
张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响. 作物学报, 2022, 48(9): 2366-2376.

doi: 10.3724/SP.J.1006.2022.13056
ZHANG Z B, QU X Y, YU N N, REN B Z, LIU P, Zhao B, ZHANG J W. Effects of nitrogen application on grain filling characteristics and endogenous hormone action of summer maize. Acta Agronomica Sinica, 2022, 48(9): 2366-2376. (in Chinese)
[23]
于宁宁, 任佰朝, 赵斌, 刘鹏, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和营养品质的影响. 应用生态学报, 2019, 30(11): 3771-3776.

doi: 10.13287/j.1001-9332.201911.021
YU N N, REN B Z, ZHAO B, LIU P, ZHANG J W. Effects of nitrogen application rate on grain filling characteristics and nutritional quality of summer maize. Chinese Journal of Applied Ecology, 2019, 30(11): 3771-3776. (in Chinese)

doi: 10.13287/j.1001-9332.201911.021
[24]
张鹤宇. 增密减氮对不同耐密性春玉米品种产量及氮肥利用效率的影响[D]. 呼和浩特: 内蒙古农业大学, 2018.
ZHANG H Y. Effects of densification and nitrogen reduction on yield and nitrogen use efficiency of spring maize varieties with different densification tolerance[D]. Hohhot: Master Thesis of Inner Mongolia Agricultural University, 2018. (in Chinese)
[25]
刘海龙, 何萍, 金继运, 李文娟, 张宽, 王秀芳, 谢佳贵, 尹彩侠, 侯云鹏. 施氮对高淀粉玉米和普通玉米子粒可溶性糖和淀粉积累的影响. 植物营养与肥料学报, 2009, 15(3): 493-500.
LIU H L, HE P, JIN J Y, LI W J, ZHANG K, WANG X F, XIE J G, YIN C X, HOU Y P. Effects of nitrogen nutrition on sugar and starch accumulation of high starch maize and common maize. Plant Nutrition and Fertilizer Science, 2009, 15(3): 493-500. (in Chinese)
[26]
王龙飞, 杨倩, 李广浩, 陆卫平, 陆大雷. 吐丝后不同阶段干旱胁迫对糯玉米子粒产量和淀粉品质的影响. 玉米科学, 2021, 29(1): 69-76.
WANG L F, YANG Q, LI G H, LU W P, LU D L. Effect of drought stress at different post-silking stages on grain yield and starch quality of waxy maize. Journal of Maize Sciences, 2021, 29(1): 69-76. (in Chinese)
[27]
THOMA H, OUGHAM H. The stay-green trait. Journal of Experimental Botany, 2014, 65(14): 3889-3900.

doi: 10.1093/jxb/eru037 pmid: 24600017
[28]
KUMAR R, MUKHERJEE S, AYELE B T. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: A comprehensive review. Biotechnology Advances, 2018, 36(4): 954-967.

doi: S0734-9750(18)30036-3 pmid: 29499342
[29]
REN X D, ZHANG J J. Research progresses on the key enzymes involved in sucrose metabolism in maize. Carbohydrate Research, 2013, 368: 29-34.

doi: 10.1016/j.carres.2012.10.016 pmid: 23318271
[30]
ZHAO M, MENG Y, WANG Y, SUN G Y, LIU X M, LI J, WEI S, GU W R. Exogenous Hemin alleviates cadmium stress in maize by enhancing sucrose and nitrogen metabolism and regulating endogenous hormones. International Journal of Phytoremediation, 2023, 25(3): 368-380.
[31]
LI W Y, TAN Z, LI R, YUAN J X, YAN S H, LI C F. Starch accumulation, size distribution and related enzyme activity in superior and inferior kernels of maize under different nitrogen rates. Pakistan Journal of Botany, 2021, 53(1): 105-111.
[32]
吴云飞, 陆文艺, 段玉仁, 安本泽, 熊飞. 小麦籽粒淀粉合成内在影响因素研究进展. 麦类作物学报, 2023, 43(8): 1005-1012.
WU Y F, LU W Y, DUAN Y R, AN B Z, XIONG F. Research progress on internal factors affecting starch synthesis in wheat grains. Journal of Triticeae Crops, 2023, 43(8): 1005-1012. (in Chinese)
[33]
张川, 刘栋, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘存辉, 刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响. 中国农业科学, 2022, 55(19): 3710-3722. doi: 10.3864/j.issn.0578-1752.2022.19.003.
ZHANG C, LIU D, WANG H Z, REN H, ZHAO B, ZHANG J W, REN B Z, LIU C H, LIU P. Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722. doi: 10.3864/j.issn.0578-1752.2022.19.003. (in Chinese)
[34]
董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响. 作物学报, 2021, 47(12): 2459-2470.

doi: 10.3724/SP.J.1006.2021.04252
DONG E W, WANG J S, WU A L, WANG Y, WANG L G, HAN X, GUO J, JIAO X Y. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of Sorghum grain of different parts of panicle. Acta Agronomica Sinica, 2021, 47(12): 2459-2470. (in Chinese)
[35]
张家桦, 杨恒山, 张玉芹, 李从锋, 张瑞富, 邰继承, 周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响. 中国农业科学, 2022, 55(7): 1332-1345. doi: 10.3864/j.issn.0578-1752.2022.07.006.
ZHANG J H, YANG H S, ZHANG Y Q, LI C F, ZHANG R F, TAI J C, ZHOU Y C. Effects of different drip irrigation modes on starch accumulation and activities of starch synthesis-related enzyme of spring maize grain in Northeast China. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345. doi: 10.3864/j.issn.0578-1752.2022.07.006. (in Chinese)
[36]
张恒栋, 黄敏, 邹应斌, 陈佳娜, 单双吕. 米粉稻籽粒直链淀粉积累特性. 中国农业科学, 2021, 54(7): 1354-1364. doi: 10.3864/j.issn.0578-1752.2021.07.004.
ZHANG H D, HUANG M, ZOU Y B, CHEN J N, SHAN S L. Amylose accumulation properties in the grains of noodle rice. Scientia Agricultura Sinica, 2021, 54(7): 1354-1364. doi: 10.3864/j.issn.0578-1752.2021.07.004. (in Chinese)
[37]
FEI L W, YANG S C, MA A, LUNZHU C L, WANG M, WANG G J, GUO S W. Grain chalkiness is reduced by coordinating the biosynthesis of protein and starch in fragrant rice (Oryza sativa L.) grain under nitrogen fertilization. Field Crops Research, 2023, 302: 109098.
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[6] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[7] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[8] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[9] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[10] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[11] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[12] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[13] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[14] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[15] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!