Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (11): 2176-2188.doi: 10.3864/j.issn.0578-1752.2024.11.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Zinc Concentration and Distribution in Wheat Grain to Soil Zinc Fertilization in Dryland of Loess Plateau

DING YuLan1(), HUANG Cui1, WANG XingShu1, ZHANG XueMei1, XU JunFeng1, HUANG Ning1, DANG HaiYan1, GUO ZiKang1, SUN RuiQing1, WANG ZhaoHui1,2()   

  1. 1 College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2 State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2023-07-26 Accepted:2023-10-06 Online:2024-06-01 Published:2024-06-07
  • Contact: WANG ZhaoHui

Abstract:

【Objective】The changes in available soil zinc (Zn), wheat grain yield and grain Zn concentration were identified, so as to provide the important basis for optimizing Zn biofortification of wheat grain technology.【Method】Based on the location-fixed field trial initiated in 2017 in drylands of the Loess Plateau, the samples were collected to analyze the available soil Zn, wheat yield, yield components, Zn concentrations in grain and its tissues, Zn uptake and distribution in various plant parts under different Zn application rates in the wheat growing seasons of 2020-2021 and 2021-2022.【Result】Zn application did not significantly affect the wheat yield and yield components, but Zn concentration was increased by 28.8%-46.0% in grain and maximized to 31.1 mg·kg-1 at Zn application rate of 24.9 kg·hm-2; Zn concentration was increased by 31.8%-58.8% in bran and maximized to 87.6 mg·kg-1 at Zn application rate of 27.3 kg·hm-2; Zn concentration was increased by 26.3%-41.3% in flour and maximized to 11.3 mg·kg-1 at Zn application rate of 24.0 kg·hm-2. The grain Zn was found mainly distributed in bran, accounting for 77.7%-80.0%, with the average Zn concentration of 78.9 mg·kg-1; and 20.0%-22.3% Zn in flour, with the average Zn concentration of 10.8 mg·kg-1. With the Zn application rate increase, Zn concentration increased much more in bran than that in the flour. Available soil Zn was increased by 235.2%-1233.8% and 207.4%-825.9% in the 0-20 and 20-40 cm soil, respectively, and reached 9.47 and 2.50 mg·kg-1 at the maximum Zn application rate of 27.3 kg·hm-2, respectively. Available Zn of 0-100 cm soil layers contributed differently to wheat Zn uptake, with that in top soil contributed much more than that in deep soil layers.【Conclusion】Obviously, soil Zn application significantly increased soil available Zn and wheat grain Zn concentrations in drylands of the Loess Plateau, and for further improvement of wheat grained Zn nutritional and explore the increase potential in wheat grain Zn concentration, an integrative optimization should be implemented on Zn rates and application methods, and other agronomical measures, such as water, N and phosphorus supply, as well as green manure planting.

Key words: dryland, wheat, grain, flour, Zn concentration, available soil Zn

Fig. 1

Precipitation during the fallow (Jul.-Sept.) and growing seasons (Oct.-Jun in next year) of winter wheat in 2020-2021 and 2021-2022"

Table 1

Basic chemical properties of the 0-20 cm layer soil treated with different Zn rates at wheat sowing of the location-fixed field experiment in 2017 and 2022"

年份
Year
施锌量
Zn rate
(kg·hm-2)
pH 有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
硝态氮
NO3--N
(mg·kg-1)
铵态氮
NH4+-N
(mg·kg-1)
有效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
有效锌
Available Zn
(mg·kg-1)
2017 8.30 11.8 0.8 9.42 0.27 10.83 123 0.24
2022 0.0 8.49 12.2 0.8 2.56 0.46 11.93 131 0.38
6.8 8.48 13.0 0.8 3.62 0.44 14.19 141 1.66
13.6 8.50 12.2 0.8 3.29 0.46 12.91 127 2.01
20.5 8.47 12.8 0.8 2.86 0.53 13.38 137 4.20
27.3 8.54 12.6 0.8 3.24 0.50 12.11 128 4.41

Table 2

Effects of Zn application rates on the yield and yield components of wheat"

年份
Year
施锌量
Zn rate
(kg·hm-2)
产量
Yield
(kg·hm-2)
生物量
Biomass
(kg·hm-2)
收获指数
Harvest index
(%)
穗数
Spike number
(×104·hm-2)
穗粒数
Grain number
per spike
千粒重
Thousand grain weight (g)
2021 0 7404a 15970a 46a 574bc 28a 46a
6.8 7048a 15178a 46a 534c 29a 45ab
13.6 7459a 16661a 45a 641ab 28a 42b
20.5 6851a 14953a 46a 543c 28a 44ab
27.3 7799a 17499a 45a 672a 27a 44ab
2022 0 10356a 21099a 49a 634a 31a 52ab
6.8 10690a 21130a 51a 640a 32a 52a
13.6 10399a 20990a 50a 620a 32a 52a
20.5 10568a 21564a 49a 641a 32a 53a
27.3 10924a 21864a 50a 654a 33a 51b
年度均值 Annual average
2021 7312 16052 46 593 28 44
2022 10587* 21329* 50* 638* 32* 52*
处理均值
Treatment
average
0 8880a 18535a 48a 604a 30a 49a
6.8 8869a 18154a 48a 587a 31a 49a
13.6 8929a 18826a 47a 631a 30a 47a
20.5 8710a 18259a 47a 592a 30a 48a
27.3 9362a 19682a 47a 663a 30a 47a

Fig. 2

Effects of Zn application rates on the Zn concentration in different organs and different grain tissues of wheat The regression equation between Zn concentrations of different organs of wheat or tissues of grain and Zn application rates. Straw: y=-0.0012x2+ 0.1684x+3.7284; Chaff: y=-0.0047x2+0.2834x+22.09; Grain: y=-0.0146x2+0.7261x+22.098; Bran: y=-0.0268x2+1.8052x+57.049; Flour: y=-0.0055x2+0.2639x+ 8.1732. The average Zn concentrations over 2020-2021 and 2021-2022 were shown in Fig.2-A, and those of 2021-2022 was shown in Fig.2-B. The different lowercase letters indicate significant differences among treatments by the LSD test at P<0.05"

Table 3

Effects of Zn application rates on the Zn uptake of wheat"

施锌量
Zn rate (kg·hm-2)
锌吸收量Zn uptake (g·hm-2)
地上部 Shoot 茎叶 Straw 颖壳 Chaff 籽粒 Grain 面粉 Flour 麸皮 Bran
0 250c 28c 10b 212c 55b 149c
6.8 340b 44bc 14b 283b 72a 196b
13.6 329b 35bc 14b 279b 74b 197b
20.5 379ab 53ab 17ab 310ab 78a 219ab
27.3 417a 63a 23a 331a 81a 250a

Fig. 3

Effects of Zn application rates on the Zn distribution proportion in different organs and different grain tissues of wheat Data are the average over the two years of 2020-2021 and 2021-2022 in Fig.3-A, and that are one year of 2021-2022 in Fig.3-B. Different lowercase letters indicate significant difference among treatments by the LSD test at P<0.05"

Table 4

Effects of Zn application rates on the soil available Zn concentration (mg·kg-1)"

年份
Year
施锌量
Zn rate (kg·hm-2)
土层 Soil layer (cm)
0-20 20-40 40-60 60-80 80-100
播前
Pre-sowing in 2021-2022
0 0.38±0.05c 0.31±0.04d 0.10±0.01c 0.07±0.01b 0.05±0.02c
6.8 1.66±0.19c 0.78±0.18cd 0.16±0.02bc 0.10±0.01b 0.09±0.01bc
13.6 2.01±0.33b 1.72±0.22bc 0.23±0.03b 0.11±0.02b 0.08±0.01bc
20.5 4.20±0.56a 2.51±0.21ab 0.26±0.04b 0.14±0.02ab 0.12±0.02ab
27.3 4.41±0.10a 2.83±0.32a 0.42±0.06a 0.24±0.08a 0.14±0.01a
均值 Average 2.53±0.20 1.63±0.19 0.23±0.03 0.13±0.03 0.10±0.01
成熟
At harvest in 2021-2022
0 0.71±0.16e 0.27±0.05c 0.12±0.01c 0.10±0.01b 0.10±0.01b
6.8 2.38±0.23d* 0.83±0.20bc 0.21±0.04bc 0.14±0.03ab 0.16±0.03ab
13.6 4.20±0.55c* 1.16±0.22b 0.25±0.06bc 0.16±0.03ab 0.22±0.05ab
20.5 6.76±0.39b* 2.33±0.33a 0.54±0.14a 0.29±0.10a 0.38±0.15ab
27.3 9.47±0.91a* 2.50±0.21a 0.47±0.11ab 0.25±0.03ab 0.39±0.12a
均值 Average 4.70±0.45* 1.42±0.20 0.32±0.07 0.19±0.04 0.25±0.07

Fig. 4

Relationships of soil available Zn with Zn uptake and distribution in wheat The ordinate (y) is straw, chaff, grain, flour, and bran Zn uptake in Fig.4-A; the ordinate (y) is straw, chaff, grain, flour, and bran Zn concentration in Fig.4-B; the ordinate (y) is straw, chaff, grain, flour, and bran Zn distribution proportion in Fig.4-C; the data of Zn uptake, Zn concentration and Zn distribution proportion of straw, chaff, grain, flour and bran are the average of 2021-2022 in Fig.4; and the abscissa (x) is soil available Zn concentration at harvest of 2021-2022. **: P<0.01, *: P<0.05"

Fig. 5

Relationships of different organs and different grain tissues Zn concentration with Zn uptake and distribution of wheat The ordinate (y) is straw, chaff, grain, flour, and bran Zn uptake in Fig.5-A; the ordinate (y) is straw, chaff, grain, flour, and bran Zn concentration in Fig. 5-B; the ordinate (y) is straw, chaff, grain, flour, and bran Zn distribution proportion in Fig. 5-C; and the abscissa (x) is grain, flour, and bran Zn concentration; the data of Zn uptake, Zn concentration and Zn distribution proportion of straw, chaff and grain are the two-year’s averages of 2020-2021 and 2021-2022 and those of the Zn uptake, Zn concentration and Zn distribution proportion in the bran and flour are the average of 2021-2022 in Fig. 5. **: P<0.01, *: P<0.05"

[1]
REHMAN R, ASIF M, CAKMAK I, OZTURK L. Differences in uptake and translocation of foliar-applied Zn in maize and wheat. Plant and Soil, 2021, 462(1/2): 235-244.
[2]
朱盼盼, 马彦平, 周忠雄, 石磊. 微量元素锌与植物营养和人体健康. 肥料与健康, 2021, 48(5): 16-18, 23.
ZHU P P, MA Y P, ZHOU Z X, SHI L. Trace element zinc, plant nutrition and human health. Fertilizer & Health, 2021, 48(5): 16-18, 23. (in Chinese)
[3]
MA G S, JIN Y, LI Y P, ZHAI F Y, KOK F J, JACOBSEN E, YANG X G. Iron and zinc deficiencies in China: What is a feasible and cost-effective strategy? Public Health Nutrition, 2008, 11(6): 632-638.

doi: 10.1017/S1368980007001085 pmid: 17894916
[4]
CAKMAK I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 2008, 302(1): 1-17.
[5]
SALTZMAN A, BIROL E, OPARINDE A, ANDERSSON M S, ASARE-MARFO D, DIRESSIE M T, GONZALEZ C, LIVIDINI K, MOURSI M, ZELLER M. Availability, production, and consumption of crops biofortified by plant breeding:Current evidence and future potential. Annals of the New York Academy of Sciences, 2017, 1390(1): 104-114.
[6]
WELCH R M, GRAHAM R D. A new paradigm for world agriculture: meeting human needs. Field Crops Research, 1999, 60(1/2): 1-10.
[7]
褚宏欣, 牟文燕, 党海燕, 王涛, 孙蕊卿, 侯赛宾, 黄婷苗, 黄倩楠, 石美, 王朝辉. 我国主要麦区小麦籽粒微量元素含量及营养评价. 作物学报, 2022, 48(11): 2853-2865.

doi: 10.3724/SP.J.1006.2022.11099
CHU H X, MU W Y, DANG H Y, WANG T, SUN R Q, HOU S B, HUANG T M, HUANG Q N, SHI M, WANG Z H. Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China. Acta Agronomica Sinica, 2022, 48(11): 2853-2865. (in Chinese)
[8]
ZHANG Y, SONG Q C, YAN J, TANG J W, ZHAO R R, ZHANG Y Q, HE Z H, ZOU C Q, ORTIZ-MONASTERIO I. Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica, 2010, 174(3): 303-313.
[9]
郭明慧, 裴自友, 温辉芹, 王仕稳, 辻本壽. 普通小麦品种籽粒矿质元素含量分析. 中国农学通报, 2011, 27(18): 41-44.
GUO M H, PEI Z Y, WEN H Q, WANG S W, SHI B S. Mineral elements concentration analysis on major wheat cultivars. Chinese Agricultural Science Bulletin, 2011, 27(18): 41-44. (in Chinese)
[10]
刘铮. 我国土壤中锌含量的分布规律. 中国农业科学, 1994, 27(1): 30-37.
LIU Z. Regularities of content and distribution of zinc in soils of China. Scientia Agricutura Sinica, 1994, 27(1): 30-37. (in Chinese)
[11]
刘合满, 张兴昌, 苏少华. 黄土高原主要土壤锌有效性及其影响因素. 农业环境科学学报, 2008, 27(3): 898-902.
LIU H M, ZHANG X C, SU S H. Available zinc content and related properties of main soil in the loess plateau. Journal of Agro- Environment Science, 2008, 27(3): 898-902. (in Chinese)
[12]
CAKMAK I, PFEIFFER W H, MCCLAFFERTY B. REVIEW: biofortification of durum wheat with zinc and iron. Cereal Chemistry, 2010, 87(1): 10-20.
[13]
CAKMAK I, KALAYCI M, KAYA Y, TORUN A A, AYDIN N, WANG Y, ARISOY Z, ERDEM H, YAZICI A, GOKMEN O, OZTURK L, HORST W J. Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9092-102.

doi: 10.1021/jf101197h pmid: 23654236
[14]
刘敦一, 庞丽丽, 张伟, 李忠祥, 王孝忠, 于福同, 邹春琴. 锌肥施用方式对小麦、玉米产量和籽粒锌含量的影响. 中国土壤与肥料, 2014(4): 76-80, 90.
LIU D Y, PANG L L, ZHANG W, LI Z X, WANG X Z, YU F T, ZOU C Q. Effects of different zinc fertilization methods on yield and grain Zn concentration of maize and wheat. Soil and Fertilizer Sciences in China, 2014(4): 76-80, 90. (in Chinese)
[15]
王澜, 夏海勇, 孔玮琳, 贤伟华, 马国兴, 王子浩, 张荣亭, 李豪圣, 龚魁杰, 刘开昌. 土壤和叶面施锌对小麦农艺性状、籽粒产量和对锌、铁及硒微量元素浓度的影响. 农学学报, 2021, 11(7): 23-27.

doi: 10.11923/j.issn.2095-4050.casb2020-0206
WANG L, XIA H Y, KONG W L, XIAN W H, MA G X, WANG Z H, ZHANG R T, LI H S, GONG K J, LIU K C. Effects of soil and foliar zinc application on agronomic traits, grain yield and grain zinc, iron and selenium concentration of wheat. Journal of Agriculture, 2021, 11(7): 23-27. (in Chinese)

doi: 10.11923/j.issn.2095-4050.casb2020-0206
[16]
杨习文, 宋淼, 李秋杰, 周苏玫, 韩少宇, 陈旭, 徐利利, 贺德先. 氮锌配施对小麦锌转运、分配与累积的影响. 应用生态学报, 2020, 31(1): 148-156.

doi: 10.13287/j.1001-9332.202001.027
YANG X W, SONG M, LI Q J, ZHOU S M, HAN S Y, CHEN X, XU L L, HE D X. Impacts of combined N and Zn application on Zn translocation, partitioning, and accumulation in Triticum aestivum. Chinese Journal of Applied Ecology, 2020, 31(1): 148-156. (in Chinese)
[17]
王张民, 潘斐, 刘琦, 袁林喜, 段增强, 尹雪斌. 拔节期土壤施锌对小麦籽粒中锌生物有效性影响评估. 土壤, 2018, 50(6): 1222-1228.
WANG Z M, PAN F, LIU Q, YUAN L X, DUAN Z Q, YIN X B. Effect of zinc application at jointing stage on zinc bioavailability in wheat grain. Soils, 2018, 50(6): 1222-1228. (in Chinese)
[18]
LIU D Y, LIU Y M, ZHANG W, CHEN X P, ZOU C Q. Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of Zn fertilizer. Frontiers in Plant Science, 2019, 10: 426.
[19]
李孟华, 王朝辉, 王建伟, 毛晖, 戴健, 李强, 邹春琴. 低锌旱地施锌方式对小麦产量和锌利用的影响. 植物营养与肥料学报, 2013, 19(6): 1346-1355.
LI M H, WANG Z H, WANG J W, MAO H, DAI J, LI Q, ZOU C Q. Effect of Zn application methods on wheat grain yield and Zn utilization in Zn-deficient soils of dryland. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1346-1355. (in Chinese)
[20]
黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53(1): 81-93. doi: 10.3864/j.issn.0578-1752.2020.01.008.
HUANG N, WANG Z H, WANG L, MA Q X, ZHANG Y Y, ZHANG X X, WANG R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(1): 81-93. doi: 10.3864/j.issn.0578-1752.2020.01.008. (in Chinese)
[21]
郝明德, 魏孝荣, 党廷辉. 旱地小麦长期施用锌肥的增产作用及土壤效应. 植物营养与肥料学报, 2003, 9(3): 377-380.
HAO M D, WEI X R, DANG T H. Effect of long-term applying zinc fertilizer on wheat yield and content of zinc in dryland. Plant Nutrition and Fertilizing Science, 2003, 9(3): 377-380. (in Chinese)
[22]
汪洪, 刘新保, 褚天铎, 杨清, 李春花. 锌肥对作物产量、子粒锌及土壤有效锌含量的后效. 土壤肥料, 2003(1): 3-6, 9.
WANG H, LIU X B, CHU T D, YANG Q, LI C H. Residual effect of zinc application on crop yield, zinc concentration in crop grain and soil available zinc. Soils and Fertilizers, 2003(1): 3-6, 9. (in Chinese)
[23]
汪洪, 汪立刚, 周卫, 金继运. 干旱条件下土壤中锌的有效性及与植物水分利用的关系. 植物营养与肥料学报, 2007, 13(6): 1178-1184.
WANG H, WANG L G, ZHOU W, JIN J Y. Soil zinc availability under water stress condition and its relationship with plant water utilization: A review. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1178-1184. (in Chinese)
[24]
钱金红, 谢振翅. 碳酸盐对土壤锌解吸影响的研究. 土壤学报, 1994, 31(1): 105-108.
QIAN J H, XIE Z C. Study on the effect of carbonate on zinc desorption in soil. Acta Pedologica Sinica, 1994, 31(1): 105-108. (in Chinese)
[25]
朱小平, 王义炳, 曹翠玉, 荆爱琴. 白浆土磷锌关系的研究. 南京农业大学学报, 1995, 18(2): 69-73.
ZHU X P, WANG Y B, CAO C Y, JING A Q. Interaction of phosphorus and zinc in albic soil. Journal of Nanjing Agricultural University, 1995, 18(2): 69-73. (in Chinese)
[26]
李惠英, 朱永官. 不同磷锌施肥量对大麦产量及其吸收的影响. 中国生态农业学报, 2002, 10(4): 51-53.
LI H Y, ZHU Y G. The effects of different levels of phosphorus and zinc fertilizers on production and absorption in two barley species. Chinese Journal of Eco-Agriculture, 2002, 10(4): 51-53. (in Chinese)
[27]
HAN Y, YANG M L, LIU L, LEI X X, WANG Z, LIU J M, SUN B H, YANG X Y, ZHANG S L. Grain mineral concentration of Chinese winter wheat varieties released between 1970 and 2005 under diverse nutrient inputs. Field Crops Research, 2022, 284: 108576.
[28]
HUI X L, LUO L C, WANG S, CAO H B, HUANG M, SHI M, MALHI S S, WANG Z H. Critical concentration of available soil phosphorus for grain yield and zinc nutrition of winter wheat in a zinc-deficient calcareous soil. Plant and Soil, 2019, 444(1/2): 315-330.
[29]
魏孝荣, 郝明德, 田梅霞. 长期定位施锌土壤-作物系统锌分布特征研究. 中国生态农业学报, 2005, 13(2): 96-98.
WEI X R, HAO M D, TIAN M X. Distribution of zinc in soil-crop system after long-term located application of zinc fertilizer. Chinese Journal of Eco-Agriculture, 2005, 13(2): 96-98. (in Chinese)
[30]
刘福来. 土壤-植物系统中锌的研究概况. 土壤肥料, 1998(5): 10-14.
LIU F L. General situation of zinc research in soil-plant system. Soils and Fertilizers, 1998(5): 10-14. (in Chinese)
[31]
李孟华, 于荣, 杨月娥, 王朝辉. 低锌旱地土壤水分对小麦产量和锌利用的影响. 植物营养与肥料学报, 2016, 22(2): 388-394.
LI M H, YU R, YANG Y E, WANG Z H. Effects of soil moisture on wheat grain yield and zinc utilization in zinc-deficient dryland soil. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 388-394. (in Chinese)
[32]
李秀丽. 供锌对小麦籽粒不同脱皮组分中锌生物有效性的影响[D]. 杨凌: 西北农林科技大学, 2011.
LI X L. Effects of zinc supply on zinc bioavailability in wheat pearling fractions[D]. Yangling: Northwest A&F University, 2011. (in Chinese)
[33]
邵运辉, 张盼盼, 马耕, 卢红芳, 王丽芳, 王晨阳, 李向东, 岳俊芹, 秦峰. 氮锌肥配施对小麦籽粒氮和锌含量及其分配的影响. 河南农业科学, 2021, 50(1): 35-43.
SHAO Y H, ZHANG P P, MA G, LU H F, WANG L F, WANG C Y, LI X D, YUE J Q, QIN F. Effect of nitrogen and zinc application on contents and distribution of nitrogen and zinc in wheat grain. Journal of Henan Agricultural Sciences, 2021, 50(1): 35-43. (in Chinese)
[34]
YILMAZ A, EKIZ H, TORUN B, GULTEKIN I, KARANLIK S, BAGCI S A, CAKMAK I. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. Journal of Plant Nutrition, 1997, 20(4/5): 461-471.
[35]
佘旭, 王朝辉, 马小龙, 曹寒冰, 何红霞, 王森. 黄土高原旱地冬小麦籽粒锌含量差异与主要土壤理化性状的关系. 中国农业科学, 2017, 50(22): 4338-4349. doi: 10.3864/j.issn.0578-1752.2017.22.010.
SHE X, WANG Z H, MA X L, CAO H B, HE H X, WANG S. Variation of winter wheat grain zinc concentration and its relation to major soil characteristics in drylands of the loess plateau. Scientia Agricultura Sinica, 2017, 50(22): 4338-4349. doi: 10.3864/j.issn.0578-1752.2017.22.010. (in Chinese)
[36]
ALLOWAY B J. Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 2009, 31(5): 537-548.

doi: 10.1007/s10653-009-9255-4 pmid: 19291414
[37]
刘苡轩, 黄冬琳, 刘娜, 姚致远, 尹丹, 蒙元永, 赵护兵, 高亚军, 王朝辉. 渭北旱塬豆科绿肥提高冬小麦籽粒锌的效应与影响因素研究. 中国农业科学, 2018, 51(21): 4030-4039. doi: 10.3864/j.issn.0578-1752.2018.21.003.
LIU Y X, HUANG D L, LIU N, YAO Z Y, YIN D, MENG Y Y, ZHAO H B, GAO Y J, WANG Z H. The increasing effect and influencing factors of leguminous green manure on wheat grain Zn in Weibei highland. Scientia Agricultura Sinica, 2018, 51(21): 4030-4039. doi: 10.3864/j.issn.0578-1752.2018.21.003. (in Chinese)
[38]
聂兆君, 赵鹏, 秦世玉, 王佳, 郭佳佳, 李江鹤, 刘红恩. 氮锌配施对冬小麦根土界面锌有效性及形态分级的影响. 植物营养与肥料学报, 2018, 24(5): 1185-1193.
NIE Z J, ZHAO P, QIN S Y, WANG J, GUOJIA J, LI J H, LIU H E. Effects of combined application of nitrogen and zinc on the availability and fraction of zinc in root-soil interface of winter wheat. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1185-1193. (in Chinese)
[39]
陆欣春, 田霄鸿, 杨习文, 买文选, 赵爱青, 保琼莉. 氮锌配施对不同冬小麦品种产量及锌营养的影响. 中国生态农业学报, 2010, 18(5): 923-928.
LU X C, TIAN X H, YANG X W, MAI W X, ZHAO A Q, BAO Q L. Effect of combination use of Zn and N fertilizers on yield and Zn content in winter wheat. Chinese Journal of Eco-Agriculture, 2010, 18(5): 923-928. (in Chinese)
[40]
ZHANG W, LIU D Y, LIU Y M, CUI Z L, CHEN X P, ZOU C Q. Zinc uptake and accumulation in winter wheat relative to changes in root morphology and mycorrhizal colonization following varying phosphorus application on calcareous soil. Field Crops Research, 2016, 197: 74-82.
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[7] CHEH ErHu, YUAN GuoQing, CHEN Yan, CHEN MengQiu, SUN ShengYuan, TANG PeiAn. Mitochondrial Protein-Coding Genes Nad5, Nad6 and Atp6 are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(9): 1722-1733.
[8] ZHANG JunFeng, DING JianCheng, WENG YuWei, ZHANG Xiong. Study on the Matching Relationship Between Pattern of Grain Production and Arable Land Resources in Hubei Province Based on Geomorphological Divisions [J]. Scientia Agricultura Sinica, 2024, 57(9): 1748-1765.
[9] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[10] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[11] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[12] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[13] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[14] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[15] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!