Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1658-1673.doi: 10.3864/j.issn.0578-1752.2024.09.004

• SPECIAL FOCUS: DROUGHT RESISTANCE IDENTIFICATION AND GENETIC RESOURCE MINING IN WHEAT • Previous Articles     Next Articles

Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat

ZHANG Ying1(), SHI TingRui1, CAO Rui1, PAN WenQiu1, SONG WeiNing1, WANG Li2(), NIE XiaoJun1()   

  1. 1 College of Agronomy, Northwest A&F University/State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Yangling 712100, Shaanxi
    2 Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences/State Key Laboratory of Nutrient Use and Management, Ji’nan 250100
  • Received:2023-07-12 Accepted:2023-09-18 Online:2024-05-01 Published:2024-05-09
  • Contact: WANG Li, NIE XiaoJun

Abstract:

【Objective】Drought is one of the most destructive environmental stresses limiting wheat production. The novel germplasm with excellent drought tolerance as well as their candidate loci were identified and characterized to enrich the genetic basis of drought tolerance and lay a material foundation for wheat genetic improvement in China. 【Method】In this study, the drought tolerance of 198 wheat accessions introduced from International Dry Area Agriculture Research (ICARDA) were investigated at seedling stage through hydroponic method with PEG6000 simulating drought. Drought tolerance index (DTI) was calculated using the shoot fresh weight, root fresh weight, total biomass and root-shoot ratio, respectively. Genome-wide association analysis was performed using 660K SNP array genotyping to obtain the SNP loci and chromosome regions associating with drought tolerance index. Combined with the expression patterns in root and other tissues, the potential candidate genes were identified, and then they were further verified by qRT-PCR approach with the most drought-tolerant accession IR214 and the most drought-sensitive accession IR36 as materials. Finally, the excellent haplotypes of key candidate genes were analyzed. 【Result】Compared to normal control condition, the growth and development of wheat were significantly impaired under drought treatment. There were also significant phenotypic variations among different accessions with all of the four traits displayed normal distribution. The coefficient of variation ranged from 0.363 to 0.760 with genetic diversity from 0.310 to 0.400. Using the weighted membership function value (D value), the drought tolerance of these accessions was evaluated. Results showed that accession IR214 had the highest D value with 0.851, followed by IR92, IR213, IR235, and IR218, which could be considered as the novel excellent drought-tolerance germplasm. Furthermore, through genome-wide association study (GWAS) analysis, a total of 102 loci were significantly associated with the DTI values based on these four traits, with the phenotypic variation explained value (PVE) from 1.07% to 38.70%, of which 60 loci were associated with above-ground fresh weight, 1 locus associated with underground fresh weight, 36 loci associated with biomass and the remaining 5 loci associated with root-shoot ratio. Then, 31 candidate genes were predicated based on genomic annotation information and LD block. Combined with the expression patterns of them in roots and other tissues, 4 candidates displaying differential expression between CK and drought conditions were obtained. Finally, the expression levels of these 4 candidates were further verified by qRT-PCR method with the most drought- tolerant accession IR214 and the most drought-sensitive accession IR36 as materials to obtain two key candidates associating with drought tolerance. Additionally, their haplotype effects were investigated. It was found that the different genotypes of AX-86174509 locus in TraesCS6A02G048600 gene showed significant differences in drought tolerance, which might be considered as a causal locus.【Conclusion】Totally, 102 loci and 2 key candidate genes (TraesCS5B02G053500 and TraesCS6A02G048600) underlying drought tolerance at seedling stage were detected in ICARDA-introduced wheat, and AX-86174509 in TraesCS6A02G048600 was a potential functional locus.

Key words: wheat, drought stress, 660K SNP array, genome-wide association analysis, candidate genes

Fig. 1

Investigation and statistics of phenotypic data of the 198 wheat accessions under drought stress A-D: Shoot fresh weight (SFW), root fresh weight (RFW), biomass (BIO) and root-shoot ratio (RSR) of 198 wheat cultivars under normal conditions and drought stress, respectively; E: Inhibition effect of drought stress on these wheat varieties (lines); F: Frequency distribution and correlation matrix of weighted membership function values (D values) of the drought tolerance coefficient indexes based on shoot fresh weight, root fresh weight, biomass and root-shoot ratio. *** represents a very significant difference of P<0.001. The same as below"

Table 1

Distribution of SNP markers, length of physical maps and their polymorphism"

色体
Chromosome
SNP数目
No. of markers
长度
Length (Mb)
SNP标记密度
Density of SNP
遗传多样性
Genetic diversity
多态信息含量
PIC
1A 20417 594.02 0.03 0.54 0.35
2A 22864 780.77 0.03 0.68 0.40
3A 13916 750.73 0.02 0.59 0.37
4A 13577 744.65 0.02 0.62 0.38
5A 18446 709.76 0.03 0.64 0.39
6A 13496 617.99 0.02 0.59 0.37
7A 19497 736.69 0.03 0.54 0.35
1B 17527 689.38 0.03 0.57 0.37
2B 23450 801.26 0.03 0.59 0.37
3B 40010 830.70 0.05 0.51 0.34
4B 10870 673.44 0.02 0.62 0.38
5B 28406 713.02 0.04 0.63 0.39
6B 18994 720.95 0.03 0.59 0.37
7B 12898 750.61 0.02 0.57 0.36
1D 7703 495.61 0.02 0.56 0.36
2D 7149 651.81 0.01 0.64 0.39
3D 4834 651.53 0.01 0.45 0.31
4D 1954 509.91 0.00 0.56 0.36
5D 4873 565.98 0.01 0.56 0.36
6D 4698 720.95 0.01 0.57 0.36
7D 6617 638.46 0.01 0.52 0.34
A基因组A genome 122213 704.94 0.02 0.60 0.374428571
B基因组B genome 152155 739.91 0.03 0.58 0.368
D基因组D genome 37828 604.89 0.01 0.55 0.354
总计Total 312196 683.25 0.02 0.58 0.36547619

Fig. 2

Population structure of these 198 wheat accessions A: Cross validation of K-values of these 198 wheat accessions; B: The ancestry relationship of these 198 wheat accessions"

Table 2

SNP loci significantly associated with drought tolerance index at seedling stage and their phenotypic variation explained values (PVEs)"

性状
Character
标记
Markers
染色体
Chr.
位置
Position (bp)
P
P value
表型解释率
PVE (%)
地上部鲜重SFW AX-108729035 Chr.5B 569808382 4.27E-09 3.93
地上部鲜重SFW AX-108733337 Chr.5B 572139012 1.00E-08 11.84
地上部鲜重SFW AX-108759766 Chr.4A 583701435 9.82E-09 7.02
生物量BIO AX-108778026 Chr.4A 621846334 2.86E-08 17.18
生物量BIO AX-108783190 Chr.3D 611110400 1.74E-08 11.36
地上部鲜重SFW AX-108808371 Chr.5B 175234549 1.21E-10 11.17
生物量BIO AX-108834910 Chr.7D 617295870 6.10E-13 1.07
生物量BIO AX-108845700 Chr.5B 6647056 6.79E-09 2.57
生物量BIO AX-108854943 Chr.1B 629035301 8.72E-09 13.20
地上部鲜重SFW AX-108869016 Chr.3B 587178086 2.51E-08 14.18
地上部鲜重SFW AX-108900105 Chr.6B 467267816 3.14E-09 8.40
生物量BIO AX-108906545 Chr.3B 278404009 6.33E-10 11.21
地上部鲜重SFW AX-108914639 Chr.4A 602892400 3.12E-08 2.78
生物量BIO AX-108941515 Chr.3B 469534193 8.58E-09 2.66
地上部鲜重SFW AX-108941538 Chr.6A 614489969 1.38E-08 3.54
根冠比RSR AX-109084187 Chr.7A 690626229 1.51E-10 2.23
生物量BIO AX-109102300 Chr.6B 198063929 4.59E-09 10.14
地上部鲜重SFW AX-109284173 Chr.4A 613541932 2.93E-08 11.23
地上部鲜重SFW AX-109317181 Chr.3B 764180952 8.90E-09 34.66
生物量BIO AX-109350000 Chr.3B 415937806 6.22E-09 11.95
生物量BIO AX-109370689 Chr.7B 607425328 6.10E-13 4.92
根冠比RSR AX-109384491 Chr.7A 690193717 2.69E-10 2.43
生物量BIO AX-109394823 Chr5A 570133660 1.95E-08 7.23
地上部鲜重SFW AX-109395329 Chr.3B 350426152 1.34E-08 8.84
地上部鲜重SFW AX-109406330 Chr.7B 66821933 7.39E-09 21.61
地上部鲜重SFW AX-109442599 Chr.1A 574190347 5.57E-10 1.46
生物量BIO AX-109464813 Chr.2B 178867730 1.49E-08 1.66
生物量BIO AX-109483959 Chr.3A 597826146 8.32E-09 7.98
生物量BIO AX-109489650 Chr.6B 146700467 8.58E-09 11.84
生物量BIO AX-109495431 Chr.5B 593442274 4.01E-10 13.78
生物量BIO AX-109533280 Chr.2B 756707494 2.16E-09 13.36
地上部鲜重SFW AX-109549207 Chr.4A 569474177 6.19E-10 4.03
地上部鲜重SFW AX-109569380 Chr.5B 593660955 4.21E-09 4.29
生物量BIO AX-109926501 Chr.5B 611478805 6.31E-13 5.95
生物量BIO AX-109932327 Chr.7A 590944141 1.95E-08 9.99
根冠比RSR AX-109951696 Chr.5B 690361180 3.37E-10 4.98
地上部鲜重SFW AX-110008321 Chr.1B 462797045 2.70E-09 24.66
地上部鲜重SFW AX-110013665 Chr.3B 544902602 1.96E-08 1.89
生物量BIO AX-110019023 Chr.5B 404539089 2.14E-08 3.31
生物量BIO AX-110025532 Chr.7A 582132117 1.95E-08 2.13
地上部鲜重SFW AX-110039998 Chr.5B 607474823 1.07E-08 6.17
地上部鲜重SFW AX-110068305 Chr.2A 445576038 1.63E-08 8.21
地上部鲜重SFW AX-110091667 Chr.6B 712350186 1.52E-09 11.71
地上部鲜重SFW AX-110363991 Chr.5B 57981237 9.95E-11 17.72
生物量BIO AX-110365890 Chr.7A 612378254 9.99E-10 4.61
地上部鲜重SFW AX-110377479 Chr.5A 468466491 1.95E-12 1.89
地上部鲜重SFW AX-110419650 Chr.7A 608395311 1.07E-08 5.21
地上部鲜重SFW AX-110430526 Chr.3B 144807718 3.14E-09 4.75
地上部鲜重SFW AX-110462825 Chr.1A 577478241 4.27E-09 13.33
地上部鲜重SFW AX-110476280 Chr.3B 580060753 4.27E-09 8.75
地上部鲜重SFW AX-110483678 Chr.7B 159513174 1.72E-09 31.58
地上部鲜重SFW AX-110498186 Chr.4B 605731378 3.12E-08 13.40
地上部鲜重SFW AX-110500421 Chr.7A 588877976 4.27E-09 28.18
地上部鲜重SFW AX-110503277 Chr.4B 611433171 1.71E-10 9.61
地上部鲜重SFW AX-110535744 Chr.7B 568487694 4.27E-09 18.48
地上部鲜重SFW AX-110558355 Chr.2A 589689131 9.82E-09 1.36
生物量BIO AX-110652899 Chr.5B 58567089 1.43E-10 5.45
生物量BIO AX-110889119 Chr.3D 604125290 6.10E-13 5.87
地上部鲜重SFW AX-110919290 Chr.3B 414371305 1.93E-10 6.58
地上部鲜重SFW AX-110924463 Chr.1B 512424681 3.78E-09 38.70
地上部鲜重SFW AX-110973125 Chr.4A 725499434 4.73E-12 13.76
地上部鲜重SFW AX-110995410 Chr.2A 751057672 8.68E-11 4.21
生物量BIO AX-110999606 Chr.5B 578826261 1.95E-08 6.86
地上部鲜重SFW AX-111010056 Chr.7A 66985517 2.96E-08 3.028
生物量BIO AX-111022500 Chr.7B 728831779 7.53E-10 17.96
生物量BIO AX-111050362 Chr.7D 58626667 1.81E-09 36.01
生物量BIO AX-111058445 Chr.6A 570916695 1.51E-10 10.25
生物量BIO AX-111073918 Chr.7A 470125650 5.30E-09 27.74
生物量BIO AX-111092822 Chr.2B 576053662 1.41E-08 4.79
生物量BIO AX-111132848 Chr.5D 405255511 6.15E-10 13.92
地上部鲜重SFW AX-111160674 Chr.7D 615485527 2.23E-09 21.86
地上部鲜重SFW AX-111190021 Chr.3B 760130726 3.14E-09 6.19
地下部鲜重RFW AX-111192688 Chr.4A 468154775 1.04E-08 15.83
生物量BIO AX-111208168 Chr.5B 463995322 8.58E-09 9.026
地上部鲜重SFW AX-111212815 Chr.5A 582970887 9.82E-09 4.34
地上部鲜重SFW AX-111359770 Chr.7D 615445739 6.66E-09 4.61
生物量BIO AX-111464456 Chr.1A 48980552 2.11E-08 1.41
地上部鲜重SFW AX-111534081 Chr.4A 610334173 3.24E-08 22.12
地上部鲜重SFW AX-111564049 Chr.7B 224728151 3.17E-08 3.42
根冠比RSR AX-111590236 Chr.7A 690440732 1.39E-09 10.59
地上部鲜重SFW AX-111598552 Chr.3B 116099069 1.35E-08 32.51
地上部鲜重SFW AX-111629228 Chr.7A 572186228 2.62E-08 10.99
地上部鲜重SFW AX-111638609 Chr.5B 275345486 4.47E-09 1.79
地上部鲜重SFW AX-111652946 Chr.6A 615722618 3.12E-08 12.64
地上部鲜重SFW AX-111694379 Chr.2A 580854646 1.35E-08 34.63
地上部鲜重SFW AX-111730956 Chr.4A 664219507 6.37E-09 3.17
生物量BIO AX-111831025 Chr.2B 781926736 4.61E-09 1.13
地上部鲜重SFW AX-111903622 Chr.7D 58049133 3.86E-09 1.07
地上部鲜重SFW AX-86174509 Chr.6A 24829724 2.82E-09 6.40
地上部鲜重SFW AX-89491115 Chr.3B 564771130 8.34E-09 6.11
地上部鲜重SFW AX-89706493 Chr.3A 25500453 4.62E-09 11.81
根冠比RSR AX-94454511 Chr.5B 678515559 3.29E-08 4.01
地上部鲜重SFW AX-94654260 Chr.1D 462487722 3.14E-09 7.86
生物量BIO AX-94687724 Chr.2D 577152448 1.95E-08 13.82
地上部鲜重SFW AX-94757082 Chr.7A 436070614 4.62E-10 3.80
地上部鲜重SFW AX-94768083 Chr.5B 563121347 1.27E-08 23.89
地上部鲜重SFW AX-94784142 Chr.2A 194538621 2.01E-09 5.28
生物量BIO AX-94863274 Chr.2D 571058114 1.95E-08 6.86
地上部鲜重SFW AX-95149581 Chr.2D 590410753 1.09E-08 1.17
生物量BIO AX-108921937 Chr.1A 583127676 2.53E-08 7.37
地上部鲜重SFW AX-95244677 Chr.7A 575268359 4.27E-09 1.39
地上部鲜重SFW AX-95659704 Chr.6D 453012504 1.65E-08 7.25

Fig. 3

GWAS of the drought tolerance index (DTI) at seedling stage in 198 wheat accessions from ICARDA A: Manhattan map of the GWAS results of the shoot fresh weight (SFW), root fresh weight (RFW), biomass (BIO) and root-shoot ratio (RSR); Un: Unknown chromosome; B: QQ maps of the GWAS results of shoot fresh weight (SFW), root fresh weight (RFW), biomass (BIO) and root-shoot ratio (RSR)"

Table 3

Prediction of the candidate gene underlying drought tolerance"

位点
Marker
物理位置
Position (bp)
基因
Gene
染色体
Chr.
性状
Trait
基因注释或编码蛋白
Gene annotation or coding proteins
AX-111464456 48980552 TraesCS1A02G066400 Chr.1A 生物量BIO 氧化还原酶Oxidoreductase activity
AX-94784142 194538621 TraesCS2A02G210600 Chr.2A 地上部鲜重SFW 锌离子结合蛋白Zinc ion binding
AX-111694379 580854646 TraesCS2A02G344200 Chr.2A 地上部鲜重SFW 果胶酯酶Pectinesterase activity
AX-110558355 589689131 TraesCS2A02G349800 Chr.2A 地上部鲜重SFW 跨膜转运蛋白Transmembrane transport
AX-109533280 756707494 TraesCS2B02G565400 Chr.2B 生物量BIO DUF952
AX-95149581 590410753 TraesCS2D02G493000 Chr.2D 地上部鲜重SFW 质子跨膜转运蛋白Proton transmembrane transport
AX-94863274 571058114 TraesCS2D02G464900 Chr.2D 生物量BIO Remorin_C
AX-94687724 577152448 TraesCS2D02G473700 Chr.2D 生物量BIO 转录调控酶Regulation of DNA-templated transcription
AX-89706493 25500453 TraesCS3A02G048000 Chr.3A 地上部鲜重SFW 含重金属转运/解毒蛋白结构域的蛋白Heavy metal
transport/detoxification protein domain containing protein
AX-109395329 350426152 TraesCS3B02G231600 Chr.3B 地上部鲜重SFW DUF632/DUF630
AX-89491115 564771130 TraesCS3B02G354300 Chr.3B 地上部鲜重SFW 果胶酯酶Pectinesterase activity
AX-111192688 468154775 TraesCS4A02G189100 Chr.4A 地下部鲜重RFW 水解酶Alpha/beta hydrolase fold
AX-108778026 621846334 TraesCS4A02G341700 Chr.4A 生物量BIO 蛋白激酶Protein kinase
AX-110377479 468466491 TraesCS5A02G252300 Chr.5A 地上部鲜重SFW 结合蛋白Nucleic acid binding
AX-110363991 57981237 TraesCS5B02G053200 Chr.5B 地上部鲜重SFW 分生组织发育相关Meristem maintenance
AX-94768083 563121347 TraesCS5B02G384300 Chr.5B 地上部鲜重SFW 防御响应Defense response
AX-109569380 593660955 TraesCS5B02G418100 Chr.5B 地上部鲜重SFW 翻译延长因子Translational elongation
AX-110039998 607474823 TraesCS5B02G432900 Chr.5B 地上部鲜重SFW 结合蛋白RNA binding
AX-94454511 678515559 TraesCS5B02G513600 Chr.5B RSR HAD家族Haloacid dehalogenase-like hydrolase
AX-109951696 690361180 TraesCS5B02G533900 Chr.5B 根冠比RSR 膜组成蛋白Integral component of membrane
AX-108845700 6647056 TraesCS5B02G005000 Chr.5B 生物量BIO GTP结合蛋白GTP binding
AX-110652899 58567089 TraesCS5B02G053500 Chr.5B 生物量BIO 气孔运动调节Regulation of stomatal movement
AX-86174509 24829724 TraesCS6A02G048600 Chr.6A 地上部鲜重SFW Crr6蛋白Crr6 protein
AX-110091667 712350186 TraesCS6B02G456000 Chr.6B 地上部鲜重SFW ATP结合蛋白ATP hydrolysis activity
AX-95659704 453012504 TraesCS6D02G362600 Chr.6D 地上部鲜重SFW AANH
AX-94757082 436070614 TraesCS7A02G308300 Chr.7A 地上部鲜重SFW 组蛋白甲基化修饰酶Histone methylation
AX-95244677 575268359 TraesCS7A02G396700 Chr.7A 地上部鲜重SFW 结合蛋白Protein binding
AX-110419650 608395311 TraesCS7A02G416300 Chr.7A 地上部鲜重SFW GGATC
AX-110365890 612378254 TraesCS7A02G421300 Chr.7A 生物量BIO 结合蛋白Protein binding
AX-110483678 159513174 TraesCS7B02G131900 Chr.7B 地上部鲜重SFW 催化酶Catalytic activity
AX-111160674 615485527 TraesCS7D02G514700 Chr.7D 地上部鲜重SFW 锌指蛋白Zinc finger protein

Fig. 4

The expression level and conserved domain analysis of the candidate drought-responsive genes A: The expression level of candidate genes; DR: The root tissue under drought stress; CR: The root tissue under control; DL: The leave tissue under drought stress; CL: The leave tissue under control; DC: The crown tissue under drought stress; CC: The crown tissue under control. B: Protein domains in the key genes"

Fig. 5

The expression patterns of the key drought-tolerant candidate genes by qRT-PCR analysis"

Fig. 6

Phenotypic differences in drought tolerance between two genotypes of the key candidate TraesCS6A02G048600 * represents a significant difference of P<0.05"

[1]
INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.
[2]
王一杰, 辛岭, 胡志全, 安晓宁. 我国小麦生产、消费和贸易的现状分析. 中国农业资源与区划, 2018, 39(5): 36-45.
WANG Y J, XIN L, HU Z Q, AN X N. Current situation of production, consumption and trade of wheat in China. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(5): 36-45. (in Chinese)
[3]
张世乔. 水分胁迫对中国水稻小麦农艺性状影响的Meta分析研究[D]. 南京: 南京大学, 2017.
ZHANG S Q. The impact of Chinese rise and wheat agronomic characters for water stress: A meta-analysis[D]. Nanjing: Nanjing University, 2017. (in Chinese)
[4]
杨艳颖, 毛克彪, 韩秀珍, 杨军, 郭晶鹏. 1949-2016 年中国旱灾规律及其对粮食产量的影响. 中国农业信息, 2018, 30(5): 76-90.
YANG Y Y, MAO K B, HAN X Z, YANG J, GUO J P. Characteristics of drought disaster and its impact on grain production in China from 1949 to 2016. China Agricultural Informatics, 2018, 30(5): 76-90. (in Chinese)
[5]
FAISAL S, MUJTABA S M, ASMA, MAHBOOB W. Polyethylene glycol mediated osmotic stress impacts on growth and biochemical aspects of wheat (Triticum aestivum L.). Journal of Crop Science and Biotechnology, 2019, 22(3): 213-223.

doi: 10.1007/s12892-018-0166-0
[6]
LEILAH A A, AL-KHATEEB S A. Statistical analysis of wheat yield under drought conditions. Journal of Arid Environments, 2005, 61(3): 483-496.

doi: 10.1016/j.jaridenv.2004.10.011
[7]
GUAN Y S, SERRAJ R, LIU S H, XU J L, ALI J, WANG W S, VENUS E, ZHU L H, LI Z K. Simultaneously improving yield under drought stress and non-stress conditions: A case study of rice (Oryza sativa L.). Journal of Experimental Botany, 2010, 61(15): 4145-4156.

doi: 10.1093/jxb/erq212
[8]
CHACHAR Z, CHACHAR N A, CHACHAR Q I, MUJTABA S M, CHACHAR G A, CHACHAR S J. Identification of drought tolerant wheat genotypes under water deficit conditions. International Journal of Research, 2016, 4(2): 206-214.
[9]
CHEN Q C, HU T, LI X H, SONG C P, ZHU, J K, CHEN L Q, ZHAO Y J. Phosphorylation of SWEET sucrose transporters regulates plant root: Shoot ratio under drought. Nature Plants, 2022, 8(1): 68-77.

doi: 10.1038/s41477-021-01040-7
[10]
BACHER H, SHARABY Y, WALIA H, PELEG Z J. Modifying root-to-shoot ratio improves root water influxes in wheat under drought stress. Journal of Experimental Botany, 2022, 73(5): 1643-1654.

doi: 10.1093/jxb/erab500
[11]
李鹏程, 汪军成, 姚立蓉, 司二静, 杨轲, 孟亚雄, 马小乐, 李葆春, 尚勋武, 王化俊. 全基因组关联分析在小麦育种研究中的应用. 植物生理学报, 2023, 59(3): 465-480.
LI P C, WANG J C, YAO L R, SI E J, YANG K, MENG Y X, MA X L, LI B C, SHANG X W, WANG H J. Application of genome-wide association studies in wheat breeding. Plant Physiology Journal, 2023, 59(3): 465-480. (in Chinese)
[12]
MAULANA F, HUANG W Q, ANDERSON J D, MA X F. Genome-wide association mapping of seedling drought tolerance in winter wheat. Frontiers in Plant Science, 2020, 11: 573786.

doi: 10.3389/fpls.2020.573786
[13]
王博华, 任毅, 时晓磊, 王继庆, 谢磊, 加娜尔·拜合提, 耿洪伟. 干旱胁迫下小麦苗期根系性状的全基因组关联分析. 植物遗传资源学报, 2022, 23(4): 1111-1123.

doi: 10.13430/j.cnki.jpgr.20220113003
WANG B H, REN Y, SHI X L, WANG J Q, XIE L, BAIHETI J, GENG H W. Genome-wide association analysis of seedling root traits in wheat under drought stress. Journal of Plant Genetic Resources, 2022, 23(4): 1111-1123.

doi: 10.13430/j.cnki.jpgr.20220113003
[14]
MAO H D, LI S M, CHEN B, JIAN C, MEI F M, ZHANG Y F, LI F F, CHEN N, LI T, DU L Y, DING L, WANG Z X, CHENG X X, WANG X J, KANG Z S. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Molecular Plant, 2022, 15(2): 276-292.

doi: 10.1016/j.molp.2021.11.007
[15]
MAO H D, LI S M, WANG Z X, CHENG X X, LI F F, MEI F M, CHEN N, KANG Z S. Regulatory changes inTaSNAC8-6 A are associated with drought tolerance in wheat seedlings. Plant Biotechnology Journal, 2020, 18(4): 1078-1092.

doi: 10.1111/pbi.v18.4
[16]
MEI F M, CHEN B, DU L Y, LI S M, ZHU D H, CHEN N, ZHANG Y F, LI F F, WANG Z X, CHENG X X, DING L, KANG Z S, MAO H D. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. The Plant Cell, 2022, 34(11): 4472-4494.

doi: 10.1093/plcell/koac248 pmid: 35959993
[17]
张寒, 潘香逾, 王秀华, 李家丽, 姜慧新, 赵岩. 苜蓿萌发期耐盐性综合评价与耐盐种质筛选. 草地学报, 2018, 26(3): 666-672.

doi: 10.11733/j.issn.1007-0435.2018.03.020
ZHANG H, PAN X Y, WANG X H, LI J L, JIANG H X, ZHAO Y. Comprehensive evaluation of salt tolerance and screening for salt tolerant germplasm of Alfalfa (Medicago) at germination stage. Acta Agrestia Sinica, 2018, 26(3): 666-672. (in Chinese)

doi: 10.11733/j.issn.1007-0435.2018.03.020
[18]
WANG T T, SU N, LU J N, ZHANG R P, SUN X M, SONG W N. Genome-wide association studies of peduncle length in wheat under rain-fed and irrigating field conditions. Journal of Plant Physiology, 2023, 280: 153854.

doi: 10.1016/j.jplph.2022.153854
[19]
L J, ZHANG W Y, SUN L J, ZHAO A J, ZHANG Y J, WANG L M, LIU Y P, LI Z Q, LI H, CHEN X Y. Gene co-expression network analysis to identify critical modules and candidate genes of drought-resistance in wheat. PLoS ONE, 2020, 15(8): e0236186.
[20]
韩慧敏. 干旱胁迫及复水对小麦苗期生长的影响及其生理机理[D]. 南京: 南京农业大学, 2014.
HAN H M. Effects of water stress and re-watering at seedlings stage on wheat growth and its physiological mechanisms[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese)
[21]
曲可佳, 时晓磊, 张恒, 王兴州, 耿洪伟, 丁孙磊, 张金波, 严勇亮. PEG处理下引进国外春小麦品种苗期抗旱性评价. 新疆农业科学, 2023, 60(6): 1363-1371.

doi: 10.6048/j.issn.1001-4330.2023.06.008
QU K J, SHI X L, ZHANG H, WANG X Z, GENG H W, DING S L, ZHANG J B, YAN Y L. Evaluation of drought resistance of introduced spring wheat under PEG treatment. Xinjiang Agricultural Sciences, 2023, 60(6): 1363-1371. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2023.06.008
[22]
DU Y L, ZHAO Q, CHEN L R, YAO X D, ZHANG W, ZHANG B, XIE F T. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 2020, 146: 1-12.

doi: S0981-9428(19)30454-1 pmid: 31710920
[23]
陈新, 吴斌, 张宗文. 燕麦种质资源重要农艺性状适应性和稳定性评价. 植物遗传资源学报, 2016, 17(4): 577-585.

doi: 10.13430/j.cnki.jpgr.2016.04.001
CHEN X, WU B, ZHANG Z W. Evaluation of adaptability and stability for important agronomic traits of oat (Avena spp.) germplasm resources. Journal of Plant Genetic Resources, 2016, 17(4): 577-585. (in Chinese)
[24]
YANG Y, CHAI Y M, ZHANG X, LU S, ZHAO Z C, WEI D, CHEN L, HU Y G. Multi-locus GWAS of quality traits in bread wheat: Mining more candidate genes and possible regulatory network. Frontiers in Plant Science, 2020, 11: 1091.

doi: 10.3389/fpls.2020.01091 pmid: 32849679
[25]
HUANG X H, ZHAO Y, WEI X H, LI C Y, WANG A H, ZHAO Q, LI W J, GUO Y L, DENG L W, ZHU C R, FAN D L, LU Y Q, WENG Q J, LIU K Y, ZHOU T Y, JING Y F, SI L Z, DONG G J, HUANG T, LU T T, FENG Q, QIAN Q, LI J Y, HAN B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2012, 44(1): 32-39.

doi: 10.1038/ng.1018
[26]
VOSS-FELS K P, QIAN L W, PARRA-LONDONO S, UPTMOOR R, FRISCH M, KEEBLE-GAGNÈRE G, APPELS R, SNOWDON R J. Linkage drag constrains the roots of modern wheat. Plant, Cell & Environment, 2017, 40(5): 717-725.
[27]
BEYER S, DABA S, TYAGI P, BOCKELMAN H, BROWN- GUEDIRA G, IWGSC, MOHAMMADI M J. Loci and candidate genes controlling root traits in wheat seedlings-a wheat root GWAS. Functional & Integrative Genomics, 2019, 19(1): 91-107.
[28]
FANG C, MA Y M, WU S W, LIU Z, WANG Z, YANG R, HU G H, ZHOU Z K, YU H, ZHANG M, PAN Y, ZHOU G A, REN H X, DU W G, YAN H R, WANG Y P, HAN D Z, SHEN Y T, LIU S L, LIU T F, ZHANG J X, QIN H, YUAN J, YUAN X H, KONG F J, LIU B H, LI J Y, ZHANG Z W, WANG G D, ZHU B G, TIAN Z X. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biology, 2017, 18(1): 161.

doi: 10.1186/s13059-017-1289-9 pmid: 28838319
[29]
TIMM S, WITTMIß M, GAMLIEN S, EWALD R, FLORIAN A, FRANK M, WIRTZ M, HELL R, FERNIE A R, BAUWE H J. Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. The Plant Cell, 2015, 27(7): 1968-1984.

doi: 10.1105/tpc.15.00105
[30]
MOREL E, CHAMOUN Z, LASIECKA Z M, CHAN R B, WILLIAMSON R L, VETANOVETZ C, DALL’ARMI C, SIMOES S, POINT DU JOUR K S, MCCABE B D, SMALL S A, DI PAOLO G. Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nature Communications, 2013, 4: 2250.

doi: 10.1038/ncomms3250 pmid: 23907271
[31]
DOUBNEROVÁ HÝSKOVÁ V, MIEDZIŃSKA L, DOBRÁ J, VANKOVA R, RYŠLAVÁ H. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress. Journal of Plant Physiology, 2014, 171(5): 19-25.

doi: 10.1016/j.jplph.2013.10.017
[32]
CARUSO G, CAVALIERE C, FOGLIA P, GUBBIOTTI R, SAMPERI R, LAGANÀ A. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Science, 2009, 177(6): 570-576.

doi: 10.1016/j.plantsci.2009.08.007
[33]
QIN N, XU W, HU L, LI Y, WANG H, QI X, FANG Y, HUA X J. Drought tolerance and proteomics studies of transgenic wheat containing the maize C 4 phosphoenolpyruvate carboxylase (PEPC) gene. Protoplasma, 2016, 253: 1503-1512.

doi: 10.1007/s00709-015-0906-2
[34]
YAMORI W, SAKATA N, SUZUKI Y, SHIKANAI T, MAKINO A J. Cyclic electron flow around photosystem I via chloroplast NAD (P) H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. The Plant Journal, 2011, 68(6): 966-976.

doi: 10.1111/tpj.2011.68.issue-6
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[4] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[5] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[6] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[7] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[8] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[9] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[10] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[11] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[12] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[13] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[14] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[15] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!