Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1633-1645.doi: 10.3864/j.issn.0578-1752.2024.09.002

• SPECIAL FOCUS: DROUGHT RESISTANCE IDENTIFICATION AND GENETIC RESOURCE MINING IN WHEAT • Previous Articles     Next Articles

Research Progress on Root System Architecture and Drought Resistance in Wheat

ZHANG YuZhou(), WANG YiZhao(), GAO RuXi, LIU YiFan   

  1. College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2023-05-14 Accepted:2023-07-07 Online:2024-05-01 Published:2024-05-09
  • Contact: ZHANG YuZhou

Abstract:

Wheat is the most important cereal crop, and drought is the most significant abiotic stress factor that severely affects wheat growth and development. Plant root system, as a primary organ for crops to acquire water and nutrients, directly determines the efficiency of soil water utilization. In recent years, increasing evidence has shown that plant root system architecture (RSA) plays an important role in plant tolerance to drought stress. This review summarizes the current research progress on the regulation of wheat drought tolerance determined by RSA. First, we present how root tropism especially root gravitropism shapes the RSA, summarize the relevant genes and molecular regulatory mechanism involved in root gravitropic growth, and explain how the root tropism-regulated RSA is implicated in wheat adaptation to drought stress. In addition to root tropic growth, the root development also participates in the RSA formation and the plant adaptability to drought stress. Therefore, this review further summarizes how wheat regulates root development to alter its root system morphology (including increasing root length, modifying lateral root number and root hair density, etc.), thereby enhancing its water acqusition from the soil and its adaption to drought environment. The identified genes involved in wheat root development under drought stress conditions are also systematically summarized. Furthermore, as the underground part of plants, the revelation of RSA has always been a challenging task, which hinders our understanding of the relationship between RSA and plant drought tolerance. Therefore, this review also summarized the available techniques used to analyze the RSA at two- and three-dimension levels. These techniques can measure and analyze wheat root length, density, growth direction, and morphology parameters, laying technical support for an insightful understanding of the relationship between wheat RSA and drought resistance. Finally, we discuss the prospect of the improvement of RSA in breeding wheat drought-resistant varieties, as well as provide an outlook for how to identify genes regulating wheat RSA and pinpoint their regulatory mechanism. In summary, the relationship between wheat RSA and drought resistant is closely associated. The continuous development of sequencing techniques, along with the deepening research on the regulatory mechanism of wheat RSA, will provide new means and strategies for the further breeding of drought-tolerance wheat varieties.

Key words: wheat, root system architecture, root tropic growth, root system development, drought resistance, root system visualization

Fig. 1

Two types of genes, one controlling root gravitropism and the other controlling root development, shape crop root system architecture in soil"

Fig. 2

The wheat root system architecture determined by the identified genes regulating root gravitropism or root development of wheat A: VRN1 positively regulates wheat root gravitropism to reduce the root branch angle [25]. B: EGT2 negatively regulates wheat root gravitropism to enhance the formation of a steep root system architecture [26]. C: EGT1 negatively regulates wheat root gravitropism to increase root branch angle [27]. D: A drought-tolerant wild hexaploid wheat introgression line (IL20) displays the significantly enhanced root growth compared to the drought-sensitive elite durum wheat cultivar (Svevo) [35]. E: OPRIII gene negatively regulates root development (seminal/lateral root growth and development) to determine wheat root biomass [36]. F: TaEXPA2 positively regulates wheat lateral root development to enable the adaptation of wheat to drought stress [41]. G: LRD negatively regulates root development to promotes root development and root biomass under drought stress [45]. H: TaRSL4-A promotes wheat root hair development to increases wheat root hair length [49]"

Fig. 3

Utilizing Genome-Wide Association Study to identify candidate genes controlling root system architecture that are involved in wheat drought resistance, and outlining the strategy for unravelling their underlying regulatory mechanism"

[1]
赵海燕, 张文千, 邹旭恺, 张强, 沈子琦, 梅平. 气候变化背景下中国农业干旱时空变化特征分析. 中国农业气象, 2021, 42(1): 69-79.
ZHAO H Y, ZHANG W Q, ZOU X K, ZHANG Q, SHEN Z Q, MEI P. Temporal and spatial characteristics of drought in China under climate change. Chinese Journal of Agrometeorology, 2021, 42(1): 69-79. (in Chinese)
[2]
XIAO G H, ZHANG Y Z. Adaptive growth: Shaping auxin-mediated root system architecture. Trends in Plant Science, 2020, 25(2): 121-123.

doi: S1360-1385(19)30309-7 pmid: 31843370
[3]
温维亮, 郭新宇, 赵春江, 王传宇, 肖伯祥. 作物根系构型三维探测与重建方法研究进展. 中国农业科学, 2015, 48(3): 436-448. doi: 10.3864/j.issn.0578-1752.2015.03.04.
WEN W L, GUO X Y, ZHAO C J, WANG C Y, XIAO B X. Crop roots configuration and visualization: A review. Scientia Agricultura Sinica, 2015, 48(3): 436-448. doi: 10.3864/j.issn.0578-1752.2015.03.04. (in Chinese)
[4]
李龙, 李超男, 毛新国, 王景一, 景蕊莲. 作物根系表型鉴定评价方法的现状与展望. 中国农业科学, 2022, 55(3): 425-437. doi: 10.3864/j.issn.0578-1752.2022.03.001.
LI L, LI C N, MAO X G, WANG J Y, JING R L. Advances and perspectives of approaches to phenotyping crop root system. Scientia Agricultura Sinica, 2022, 55(3): 425-437. doi: 10.3864/j.issn.0578-1752.2022.03.001. (in Chinese)
[5]
SATO E M, HIJAZI H, BENNETT M J, VISSENBERG K, SWARUP R. New insights into root gravitropic signalling. Journal of Experimental Botany, 2015, 66(8): 2155-2165.

doi: 10.1093/jxb/eru515 pmid: 25547917
[6]
MAQBOOL S, HASSAN M A, XIA X C, YORK L M, RASHEED A, HE Z H. Root system architecture in cereals: Progress, challenges and perspective. The Plant Journal, 2022, 110(1): 23-42.

doi: 10.1111/tpj.v110.1
[7]
ZHANG Y Z, HE P, MA X F, YANG Z R, PANG C Y, YU J N, WANG G D, FRIML J, XIAO G H. Auxin-mediated statolith production for root gravitropism. The New Phytologist, 2019, 224(2): 761-774.

doi: 10.1111/nph.v224.2
[8]
BABA A I, MIR M Y, RIYAZUDDIN R, CSÉPLŐ Á, RIGÓ G, FEHÉR A. Plants in microgravity: Molecular and technological perspectives. International Journal of Molecular Sciences, 2022, 23(18): 10548.

doi: 10.3390/ijms231810548
[9]
MORITA M T, TASAKA M. Gravity sensing and signaling. Current Opinion in Plant Biology, 2004, 7(6): 712-718.

pmid: 15491921
[10]
SU S H, GIBBS N M, JANCEWICZ A L, MASSON P H. Molecular mechanisms of root gravitropism. Current Biology, 2017, 27(17): R964-R972.
[11]
ZHANG Y Z, XIAO G H, WANG X J, ZHANG X X, FRIML J. Evolution of fast root gravitropism in seed plants. Nature Communications, 2019, 10: 3480.

doi: 10.1038/s41467-019-11471-8 pmid: 31375675
[12]
WAIDMANN S, RUIZ ROSQUETE M, SCHÖLLER M, SARKEL E, LINDNER H, LARUE T, PETŘÍK I, DÜNSER K, MARTOPAWIRO S, SASIDHARAN R, NOVAK O, WABNIK K, DINNENY J R, KLEINE-VEHN J. Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nature Communications, 2019, 10(1): 3540.

doi: 10.1038/s41467-019-11483-4 pmid: 31387989
[13]
OGURA T, GOESCHL C, FILIAULT D, MIREA M, SLOVAK R, WOLHRAB B, SATBHAI S B, BUSCH W. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell, 2019, 178(2): 400-412, e16.

doi: 10.1016/j.cell.2019.06.021
[14]
KITOMI Y, HANZAWA E, KUYA N, INOUE H, HARA N, KAWAI S, KANNO N, ENDO M, SUGIMOTO K, YAMAZAKI T, SAKAMOTO S, SENTOKU N, WU J Z, KANNO H, MITSUDA N, TORIYAMA K, SATO T, UGA Y. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(35): 21242-21250.
[15]
UGA Y, OKUNO K, YANO M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 2011, 62(8): 2485-2494.

doi: 10.1093/jxb/erq429 pmid: 21212298
[16]
UGA Y, SUGIMOTO K, OGAWA S, RANE J, ISHITANI M, HARA N, KITOMI Y, INUKAI Y, ONO K, KANNO N, INOUE H, TAKEHISA H, MOTOYAMA R, NAGAMURA Y, WU J Z, MATSUMOTO T, TAKAI T, OKUNO K, YANO M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45(9): 1097-1102.

doi: 10.1038/ng.2725
[17]
FENG X J, JIA L, CAI Y T, GUAN H R, ZHENG D, ZHANG W X, XIONG H, ZHOU H M, WEN Y, HU Y, ZHANG X M, WANG Q J, WU F K, XU J, LU Y L. ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. Plant Biotechnology Journal, 2022, 20(11): 2077-2088.

doi: 10.1111/pbi.v20.11
[18]
TAKEDA H, TSUKAYA H. Analysis of gravitropic response in 133 cultivars of Japanese wheat (Triticum aestivum L.). Plant and Cell Physiology, 2005, 46(2): 375-381.

doi: 10.1093/pcp/pci023
[19]
FRIEDLI C N, ABIVEN S, FOSSATI D, HUND A. Modern wheat semi-dwarfs root deep on demand: Response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica, 2019, 215(4): 1-15.

doi: 10.1007/s10681-018-2319-8
[20]
CHRISTOPHER J, CHRISTOPHER M, JENNINGS R, JONES S, FLETCHER S, BORRELL A, MANSCHADI A M, JORDAN D, MACE E, HAMMER G. QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theoretical and Applied Genetics, 2013, 126(6): 1563-1574.

doi: 10.1007/s00122-013-2074-0 pmid: 23525632
[21]
BORRILL P, HARRINGTON S A, UAUY C. Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. The Plant Journal, 2019, 97(1): 56-72.

doi: 10.1111/tpj.14150 pmid: 30407665
[22]
YAN L, LOUKOIANOV A, TRANQUILLI G, HELGUERA M, FAHIMA T, DUBCOVSKY J. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 6263-6268.
[23]
COCKRAM J, JONES H, LEIGH F J, O'SULLIVAN D, POWELL W, LAURIE D A, GREENLAND A J. Control of flowering time in temperate cereals: Genes, domestication, and sustainable productivity. Journal of Experimental Botany, 2007, 58(6): 1231-1244.

doi: 10.1093/jxb/erm042 pmid: 17420173
[24]
VOSS-FELS K P, SNOWDON R J, HICKEY L T. Designer roots for future crops. Trends in Plant Science, 2018, 23(11): 957-960.

doi: 10.1016/j.tplants.2018.08.004
[25]
VOSS-FELS K P, ROBINSON H, MUDGE S R, RICHARD C, NEWMAN S, WITTKOP B, STAHL A, FRIEDT W, FRISCH M, GABUR I, MILLER-COOPER A, CAMPBELL B C, KELLY A, FOX G, CHRISTOPHER J, CHRISTOPHER M, CHENU K, FRANCKOWIAK J, MACE E S, BORRELL A K, EAGLES H, JORDAN D R, BOTELLA J R, HAMMER G, GODWIN I D, TREVASKIS B, SNOWDON R J, HICKEY L T. VERNALIZATION1 modulates root system architecture in wheat and barley. Molecular Plant, 2018, 11(1): 226-229.

doi: 10.1016/j.molp.2017.10.005
[26]
KIRSCHNER G K, ROSIGNOLI S, GUO L, VARDANEGA I, IMANI J, ALTMÜLLER J, MILNER S G, BALZANO R, NAGEL K A, PFLUGFELDER D, FORESTAN C, BOVINA R, KOLLER R, STÖCKER T G, MASCHER M, SIMMONDS J, UAUY C, SCHOOF H, TUBEROSA R, SALVI S, HOCHHOLDINGER F. ENHANCED GRAVITROPISM 2 encodes a STERILE ALPHA MOTIF-containing protein that controls root growth angle in barley and wheat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(35): e2101526118.
[27]
FUSI R, ROSIGNOLI S, LOU H Y, SANGIORGI G, BOVINA R, PATTEM J K, BORKAR A N, LOMBARDI M, FORESTAN C, MILNER S G, DAVIS J L, LALE A, KIRSCHNER G K, SWARUP R, TASSINARI A, PANDEY B K, YORK L M, ATKINSON B S, STURROCK C J, MOONEY S J, HOCHHOLDINGER F, TUCKER M R, HIMMELBACH A, STEIN N, MASCHER M, NAGEL K A, DE GARA L, SIMMONDS J, UAUY C, TUBEROSA R, LYNCH J P, YAKUBOV G E, BENNETT M J, BHOSALE R, SALVI S. Root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(31): e2201350119.
[28]
TAKAHASHI N, YAMAZAKI Y, KOBAYASHI A, HIGASHITANI A, TAKAHASHI H. Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiology, 2003, 132(2): 805-810.

doi: 10.1104/pp.018853
[29]
IWATA S, MIYAZAWA Y, FUJII N, TAKAHASHI H. MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions. Annals of Botany, 2013, 112(1): 103-114.

doi: 10.1093/aob/mct098
[30]
EAPEN D, MARTÍNEZ-GUADARRAMA J, HERNÁNDEZ- BRUNO O, FLORES L, NIETO-SOTELO J, CASSAB G I. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance. Plant Science, 2017, 265: 87-99.

doi: 10.1016/j.plantsci.2017.09.016
[31]
OBER E S, ALAHMAD S, COCKRAM J, FORESTAN C, HICKEY L T, KANT J, MACCAFERRI M, MARR E, MILNER M, PINTO F, RAMBLA C, REYNOLDS M, SALVI S, SCIARA G, SNOWDON R J, THOMELIN P, TUBEROSA R, UAUY C, VOSS-FELS K P, WALLINGTON E, WATT M. Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics, 2021, 134(6): 1645-1662.

doi: 10.1007/s00122-021-03819-w pmid: 33900415
[32]
OYANAGI A, TAKAHASHI H, SUGE H. Interactions between hydrotropism and gravitropism in the primary seminal roots of Triticum eastivum L.. Annals of Botany, 1995, 75(3): 229-235.

doi: 10.1006/anbo.1995.1016
[33]
KOBAYASHI A, TAKAHASHI A, KAKIMOTO Y, MIYAZAWA Y, FUJII N, HIGASHITANI A, TAKAHASHI H. A gene essential for hydrotropism in roots. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11): 4724-4729.
[34]
LI Y, YUAN W, LI L C, DAI H, DANG X L, MIAO R, BALUŠKA F, KRONZUCKER H J, LU C M, ZHANG J H, XU W F. Comparative analysis reveals gravity is involved in the MIZ1-regulated root hydrotropism. Journal of Experimental Botany, 2020, 71(22): 7316-7330.

doi: 10.1093/jxb/eraa409
[35]
BACHER H, MONTAGU A, HERRMANN I, WALIA H, SCHWARTZ N, PELEG Z. Stress-induced deeper rooting introgression enhances wheat yield under terminal drought. Journal of Experimental Botany, 2023: erad059.
[36]
GABAY G, WANG H C, ZHANG J L, MORICONI J I, BURGUENER G F, GUALANO L D, HOWELL T, LUKASZEWSKI A, STASKAWICZ B, CHO M J, TANAKA J, FAHIMA T, KE H Y, DEHESH K, ZHANG G L, GOU J Y, HAMBERG M, SANTA-MARÍA G E, DUBCOVSKY J. Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nature Communications, 2023, 14(1): 539.

doi: 10.1038/s41467-023-36248-y
[37]
LIU G Z, LI X L, JIN S X, LIU X Y, ZHU L F, NIE Y C, ZHANG X L. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE, 2014, 9(1): e86895.
[38]
JEONG J S, KIM Y S, REDILLAS M C, JANG G, JUNG H, BANG S W, CHOI Y D, HA S H, REUZEAU C, KIM J K. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Journal of Plant Biotechnology, 2013, 11(1): 101-114.
[39]
XUE G P, BOWER N I, MCINTYRE C L, RIDING G A, KAZAN K, SHORTER R. TaNAC69from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Functional Plant Biology, 2006, 33(1): 43-57.

doi: 10.1071/FP05161
[40]
WANG Y, MA N N, QIU S C. ZOU H Y, ZANG G C, KANG Z H, WANG G X, HUANG J L. Regulation of the α-expansin gene OsEXPA8 expression affects root system architecture in transgenic rice plants. Molecular Breeding, 2014, 34(1): 47-57.

doi: 10.1007/s11032-014-0016-4
[41]
YANG J J, ZHANG G Q, AN J, LI Q X, CHEN Y H, ZHAO X Y, WU J J, WANG Y, HAO Q Q, WANG W Q, WANG W. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant Science, 2020, 298: 110596.

doi: 10.1016/j.plantsci.2020.110596
[42]
OROSA-PUENTE B, LEFTLEY N, VON WANGENHEIM D, BANDA J, SRIVASTAVA A K, HILL K, TRUSKINA J, BHOSALE R, MORRIS E, SRIVASTAVA M, KÜMPERS B, GOH T, FUKAKI H, VERMEER J E M, VERNOUX T, DINNENY J R, FRENCH A P, BISHOPP A, SADANANDOM A, BENNETT M J. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 2018, 362(6421): 1407-1410.

doi: 10.1126/science.aau3956
[43]
ZHAN A, SCHNEIDER H, LYNCH J P. Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology, 2015, 168(4): 1603-1615.

doi: 10.1104/pp.15.00187 pmid: 26077764
[44]
WANG H F, HU Z R, HUANG K, HAN Y, ZHAO A J, HAN H M, SONG L, FAN C F, LI R, XIN M M, PENG H R, YAO Y Y, SUN Q X, NI Z F. Three genomes differentially contribute to the seedling lateral root number in allohexaploid wheat: evidence from phenotype evolution and gene expression. The Plant Journal, 2018, 95(6): 976-987.

doi: 10.1111/tpj.14005 pmid: 29932270
[45]
PLACIDO D F, SANDHU J, SATO S J, NERSESIAN N, QUACH T, CLEMENTE T E, STASWICK P E, WALIA H. The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 2020, 18(9): 1955-1968.

doi: 10.1111/pbi.13355 pmid: 32031318
[46]
MARIN M, FEENEY D S, BROWN L K, NAVEED M, RUIZ S, KOEBERNICK N, BENGOUGH A G, HALLETT P D, ROOSE T, PUÉRTOLAS J, DODD I C, GEORGE T S. Significance of root hairs for plant performance under contrasting field conditions and water deficit. Annals of Botany, 2021, 128(1): 1-16.

doi: 10.1093/aob/mcaa181 pmid: 33038211
[47]
DOLAN L. Root hair development in grasses and cereals (Poaceae). Current Opinion in Genetics and Development, 2017, 45: 76-81.

doi: 10.1016/j.gde.2017.03.009
[48]
HOCHHOLDINGER F, YU P, MARCON C. Genetic control of root system development in maize. Trends in Plant Science, 2018, 23(1): 79-88.

doi: S1360-1385(17)30239-X pmid: 29170008
[49]
HAN Y, XIN M M, HUANG K, XU Y Y, LIU Z S, HU Z R, YAO Y Y, PENG H R, NI Z F, SUN Q X. Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat. The New Phytologist, 2016, 209(2): 721-732.

doi: 10.1111/nph.2016.209.issue-2
[50]
ZHANG X M, MI Y, MAO H D, LIU S X, CHEN L M, QIN F. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnology Journal, 2020, 18(5): 1271-1283.

doi: 10.1111/pbi.v18.5
[51]
LI L, PENG Z, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany, 2019, 124(6): 993-1006.

doi: 10.1093/aob/mcz041 pmid: 31329816
[52]
LIU X L, LI R Z, CHANG X P, JING R L. Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica, 2013, 189(1): 51-66.

doi: 10.1007/s10681-012-0690-4
[53]
WALLER S, WILDER S L, SCHUELLER M J, HOUSH A B, FERRIERI R A. Quantifying plant-borne carbon assimilation by root-associating bacteria. Microorganisms, 2020, 8(5): 700.

doi: 10.3390/microorganisms8050700
[54]
赵春江, 陆声链, 郭新宇, 肖伯祥, 温维亮. 数字植物及其技术体系探讨. 中国农业科学, 2010, 43(10): 2023-2030. doi: 10.3864/j.issn.0578-1752.2010.10.007.
ZHAO C J, LU S L, GUO X Y, XIAO B X, WEN W L. Exploration of digital plant and its technology system. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030. doi: 10.3864/j.issn.0578-1752.2010.10.007. (in Chinese)
[55]
MAJDI H. Root sampling methods - Applications and limitations of the minirhizotron technique. Plant and Soil, 1996, 185(2): 255-258.

doi: 10.1007/BF02257530
[56]
崔喜红, 陈晋, 关琳琳. 探地雷达技术在植物根系探测研究中的应用. 地球科学进展, 2009, 24(6): 606-611.

doi: 10.11867/j.issn.1001-8166.2009.06.0606
CUI X H, CHEN J, GUAN L L. The application of ground penetrating radar to plant root system detection. Advances in Earth Science, 2009, 24(6): 606-611. (in Chinese)

doi: 10.11867/j.issn.1001-8166.2009.06.0606
[57]
SCHULZ H, POSTMA J A, VAN DUSSCHOTEN D, SCHARR H, BEHNKE S. Plant root system analysis from MRI images. Communications in Computer and Information Science, 2013(359): 411-425.
[58]
STINGACIU L, SCHULZ H, POHLMEIER A, BEHNKE S, ZILKEN H, JAVAUX M, VEREECKEN H. In situ root system architecture extraction from magnetic resonance imaging for water uptake modeling. Vadose Zone Journal, 2013, 12(1): 1-9.
[59]
BEKKERING C S, HUANG J, TIAN L. Image-based, organ-level plant phenotyping for wheat improvement. Agronomy, 2020, 10(9): 1287.

doi: 10.3390/agronomy10091287
[60]
TAKAHASHI H, PRADAL C. Root phenotyping: Important and minimum information required for root modeling in crop plants. Breeding Science, 2021, 71(1): 109-116.

doi: 10.1270/jsbbs.20126 pmid: 33762880
[61]
LOBET G, PAGÈS L, DRAYE X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiology, 2011, 157(1): 29-39.

doi: 10.1104/pp.111.179895 pmid: 21771915
[62]
PANG W, CROW W T, LUC J E, MCSORLEY R, GIBLIN-DAVIS R M, KENWORTHY K E, KRUSE J K. Comparison of water displacement and WINRHIZO software for plant root parameter assessment. Plant Disease, 2011, 95(10): 1308-1310.

doi: 10.1094/PDIS-01-11-0026 pmid: 30731688
[63]
POUND M P, FRENCH A P, ATKINSON J A, WELLS D M, BENNETT M J, PRIDMORE T. RootNav: Navigating images of complex root architectures. Plant Physiology, 2013, 162(4): 1802-1814.

doi: 10.1104/pp.113.221531 pmid: 23766367
[64]
BORIANNE P, SUBSOL G, FALLAVIER F, DARDOU A, AUDEBERT A. GT-RootS: An integrated software for automated root system measurement from high-throughput phenotyping platform images. Computers and Electronics in Agriculture, 2018, 150: 328-342.

doi: 10.1016/j.compag.2018.05.003
[65]
CLARK R T, MACCURDY R B, JUNG J K, SHAFF J E, MCCOUCH S R, ANESHANSLEY D J, KOCHIAN L V. Three- dimensional root phenotyping with a novel imaging and software platform. Plant Physiology, 2011, 156(2): 455-465.

doi: 10.1104/pp.110.169102
[66]
MAIRHOFER S, ZAPPALA S, TRACY S R, STURROCK C, BENNETT M, MOONEY S J, PRIDMORE T. RooTrak: Automated recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiology, 2012, 158(2): 561-569.

doi: 10.1104/pp.111.186221 pmid: 22190339
[67]
VAN DUSSCHOTEN D, METZNER R, KOCHS J, POSTMA J A, PFLUGFELDER D, BÜEHLER J, SCHURR U, JAHNKE S. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiology, 2016, 170(3): 1176-1188.

doi: 10.1104/pp.15.01388 pmid: 26729797
[68]
LI C N, LI L, REYNOLDS M P, WANG J Y, CHANG X P, MAO X G, JING R L. Recognizing the hidden half in wheat: Root system attributes associated with drought tolerance. Journal of Experimental Botany, 2021, 72(14): 5117-5133.

doi: 10.1093/jxb/erab124
[69]
STEELE K A, PRICE A H, WITCOMBE J R, SHRESTHA R, SINGH B N, GIBBONS J M, VIRK D S. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theoretical and Applied Genetics, 2013, 126(1): 101-108.

doi: 10.1007/s00122-012-1963-y pmid: 22968512
[70]
ZHAO H, MA T, WANG X, DENG Y, MA H, ZHANG R, ZHAO J. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Plant Cell and Environment, 2015, 38(11): 2208-2222.

doi: 10.1111/pce.v38.11
[71]
BENNETT M J, MARCHANT A, GREEN H G, MAY S T, WARD S P, MILLNER P A, WALKER A R, SCHULZ B, FELDMANN K A. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science, 1996, 273(5277): 948-950.

doi: 10.1126/science.273.5277.948
[1] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[2] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[3] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[4] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[5] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[6] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[7] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[8] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[9] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[10] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[11] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[12] NI ShuHui, SHI DongMei, PAN LiDong, YE Qing, WU JunHao. Response of Cultivated-Layer Water-Holding and Drought Resistance Performance and Productivity to Erosion Degree in Purple Soil Sloping Farmland [J]. Scientia Agricultura Sinica, 2024, 57(7): 1350-1362.
[13] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[14] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[15] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!