Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1237-1254.doi: 10.3864/j.issn.0578-1752.2024.07.003

• SPECIAL FOCUS: SEED GERMINATION AND PRE-HARVEST SPROUTING • Previous Articles     Next Articles

Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat

DONG HuiXue1,3(), CHEN Qian1,3, GUO XiaoJiang3, WANG JiRui1,2,3,4()   

  1. 1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130
    2 College of Agronomy, Sichuan Agricultural University, Chengdu 611130
    3 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130
    4 Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu 611130
  • Received:2023-12-28 Accepted:2024-02-19 Online:2024-04-01 Published:2024-04-09
  • Contact: WANG JiRui

Abstract:

Pre-harvest sprouting (PHS) refers to the germination of cereal crops on the spike in high humidity conditions before grain harvest. Wheat PHS is a significant problem that affects both the yield and quality of wheat. Seed dormancy level is a major factor influencing the resistance of wheat PHS, and domesticated crops often exhibit reduced seed dormancy levels, making cultivated wheat more prone to PHS compared to its wild ancestors. Wheat PHS is mainly regulated by external environmental factors such as temperature and humidity, as well as internal plant hormones (GAs, ABA, IAA, MeJA, ET, BR). Researchers have identified a range of materials resistant to PHS, cloned key genes regulating PHS resistance, such as PM19, MFT, MKK3, Myb10-3D, Vp1. New wheat materials resistant to PHS have been successfully developed through molecular marker-assisted selection, artificial synthesis of wheat, and CRISPR/Cas9 gene editing technology. This article reviews the genetic mechanism of PHS resistance in wheat and the latest progress in PHS resistance breeding research. In the future, it is necessary to continue exploring key genes related to PHS resistance, and employ biotechnological breeding methods to cultivate new PHS-resistant wheat varieties.

Key words: wheat, pre-harvest sprouting, seed dormancy, hormone, breeding improvement

Table 1

Grain color variation among cultivars certified from 2019-2023 in China"

麦区
Wheat growing zones
北部冬麦区
Northern winter wheat zone
东北春麦区
Northeastern spring wheat zone
黄淮冬麦区
Huang-Huai River valleys winter wheat zone
西北春麦区
Northwestern spring wheat zone
长江上游冬麦区
Upper Yangtze valley winter wheat zone
长江中下游冬麦区
Middle and low Yangtze valley winter wheat zone
红粒 Red grain 7 20 1 4 7 81
白粒 White grain 10 0 536 1 6 0

Table 2

Wheat pre-harvest sprouting resistance genes and their source varieties"

基因
Genes
染色体Chromo-somes 物理位置Physical site (Mb) 标记
Markers
优异等位基因
Favorable alleles
主要功能
Main function
抗原品种
Source varieties
参考文献
Reference
TaAFP 2BS 190.6 STS
TaAFP-B
TaAFP-B1b 负调控ABA信号途径
Negatively regulates ABA signaling pathways
济南16、阆中白麦子、小白玉花、万县白麦子
Jinan 16, Langzhongbaimaizi, Xiaobaiyuhua, Wanxianbaimaizi
[112]
TaDFR 3B 429.1 CAPS
TaDFR-B
TaDFR-Bb 参与类黄酮合成途径
Involved in flavonoid synthesis pathway
川育6、北京5、扬麦3、冀麦17号、龙辐麦5/6/7/8/9/11/12/13/14/15/16、龙麦11/12
Chuanyu 6, Beijing 5, Yangmai 3, Jimai 17, Longfumai 5/6/7/8/9/11/12/13/14/15/16,
Longmai 11/12
[113]
TaSdr 2A 163 CAPS
Sdr2A
TaSdr-A1a 调控籽粒休眠;尚未明确具体所属通路
Regulate seed dormancy; not yet clearly assigned
to a specific pathway
绵阳15、西昌5762、郑州683/761、平原50、开封124
Mianyang 15, Xichang 5762, Zhengzhou 683/761, Pingyuan 50, Kaifeng 124
[114]
2B 208.6 CAPS
Sdr2B
TaSdr-B1a 白秃子、CA9722、小白玉花、大青芒、丰产3号、百农3217、开封124、碧蚂1号、兰花麦
Baituzi, CA9722, Xiaobaiyuhua, Daqingmang, Fengchan 3, Bainong 3217, Kaifeng 124, Bima 1, Lanhuamai
[80]
TaPM19 4AL 603 STS
PM19-A1
TaPM19-A1a 受ABA诱导表达;正向调节种子休眠
ABA-induced expression; positively regulates seed dormancy
藏冬4号、无芒春麦、石家庄15、大白皮、老麦、高加索、Am3、科成4号、兴0217、蜀麦1763、SW1747、Yitpi、Ourou、VAIOLET
Zangdong 4, Wumangchunmai, Shijiazhuang 15, Dabaipi, Laomai, Gaojiasuo, Am3, Kecheng 4, Xing 0217, Shumai 1763, SW1747, Yitpi, Ourou, VAIOLET
[93,115,120]
TaMKK3 4AL 710.2 CAPS
TaMKK3-A
TaMKK3-A1b 通过MAPK途径调控穗发芽,正向调节ABA响应
Regulating pre-harvest sprouting through the MAPK pathway, positively modulating ABA response
安农196、安农1008、安农1006、安农1014、安农1123、安农0942-14、安农1121、Alchemy、Option、Yitpi、Kitamoe、Leader、Halberd、Aus1408
Annong 196, Annong 1008, Annong 1006, Annong 1014, Annong 1123, Annong 0942-14, Annong 1121, Alchemy, Option, Yitpi, Kitamoe, Leader, Halberd, Aus1408
[70,95]
TaMFT/
TaPHS1
3AS 7.3 CAPS
MFT-A1
TaMFT-A1b 抑制未成熟胚胎的早熟和萌发,正向调节穗发芽抗性
Inhibit pre-maturity and germination of immature embryos, and positively modulating pre-harvest sprouting resistance
扬麦11、扬麦158、扬麦19、扬辐麦1号、扬06-135、关东107、白火麦
Yangmai 11, Yangmai 158, Yangmai 19, Yangfumai 1, Yang 06-135, Guandong 107, Baihuomai
[116]
STS
MFT-A2
TaMFT-3Aa 安农0711、歪头白、葫芦头、涪陵须须麦、秃葫芦头、遂宁坨坨麦
Annong 0711, Waitoubai, Hulutou, Fulingxuxumai, Tuhulutou, Suining tuotuomai
[117]
CAPS
MFT-3A
SNP-222(C) 华瑞0712、涪陵须须麦、白火麦、遂宁坨坨麦、阆中白麦子、茶淀红麦、葫芦头、小玉花、白芒红、Aki9、Kinuhime、Chugoku 81、Zenkoujikomugi
Huarui 0712, Fulingxuxumai, Baihuomai, Suiningtuotuomai, Langzhongbaimaizi, Chadianhongmai, Hulutou, Xiaoyuhua, Baimanghong, Aki9, Kinuhime, Chugoku 81, Zenkoujikomugi
[23]
KASP
TaPHS-
SNP1
SNP646/666 (G/A) Jagger、Hartog、Santa Fe、中国春、Bungulla、秃头麦、Champlain、Renan、泗阳936、Bobwhite、Betta、Elands、Karee、Komati、Limpopo、Molopo
Jagger, Hartog, Santa Fe, Chinese Spring, Bungulla, Tutoumai, Champlain, Renan, Siyang936, Bobwhite, Betta, Elands, Karee, Komati, Limpopo, Molopo
[10,86,118]
TaABI3/
TaVP1
3BL 708.3 STS
Vp1B3
TaVp-1Bb, TaVp-1Bc 参与胚胎发育和ABA信号转导;促休眠抑制发芽;正调控种子休眠
Involved in embryo development and ABA signal transduction; promotes dormancy, and inhibits germination; positively regulates seed dormancy
西农979、永川白麦、徐农029、淮麦20、绵麦303、内麦366、川麦604、BL5002、BL6007、SW1747、Ourou、VAIOLET
Xinong 979, Yongchuanbaimai, Xunong 029, Huaimai 20, Mianmai 303, Neimai 366, Chuanmai 604, BL5002, BL6007, SW1747, Ourou, VAIOLET
[119-120]
STS
Vp1-b2
TaVp-1Bb, TaVp-1Bc, TaVp-1Bd, TaVp-1Be, TaVp-1Bf 万县白麦子、万县白壳麦、葫芦头
Wanxianbaimaizi, Wanxianbaikemai, Hulutou
[121-122]
3AL 659.6 STS
Vp-1A
TaVp-1Ab, TaVp-1Ad 兰花麦、白火麦、安农0451、安农0805
Lanhuamai, Baihuomai, Annong 0451, Annong 0805
[123]
STS
Vp1A3
TaVp-1Agm 川362、阆中白麦子、Rongchangbaimai、Xuyong
Chuan 362, Langzhongbaimaizi, Rongchangbaimai, Xuyong
[124]
TaMyb10-D 3D 570.8 STS
Myb10
Myb10-D 参与调控ABA合成和类黄酮合成;使籽粒颜色变红,抑制穗发芽
Involved in ABA and flavonoid synthesis; making seed color red, and inhibiting pre-harvest sprouting
江西早、白火麦、白玉花、川育11、孝感麦、白须、川育12、川麦104、合川麦、豫麦35、豫麦14、中国春、Sarajevo 1、Graniatka Zachodnia
Jiangxizao, Baihuomai, Baiyuhua, Chuanyu 11, Xiaoganmai, Baixu, Chuanyu 12, Chuanmai 104, Hechuanmai, Yumai 35, Yumai 14, Chinese Spring, Sarajevo 1, Graniatka Zachodnia
[32]
TaQsd1 5B 387.7 CAPS
QSD1
TaQsd1-5Ba 调控种子休眠期
Regulating the period of seed dormancy
洋小麦、扬麦16、Kitahonami
Yangxiaomai, Yangmai 16, Kitahonami
[125-126]

Fig. 1

Expression pattern of pre-harvest sprouting related genes in developing grain"

[1]
肖世和, 闫长生, 张海萍, 孙果忠. 小麦穗发芽研究. 北京: 中国农业科学技术出版社, 2004.
XIAO S H, YAN C S, ZHANG H P, SUN G Z. Study on Preharvest Germination of Wheat. Beijing: China Agricultural Science and Technology Press, 2004. (in Chinese)
[2]
张宗敏, 陈巧艳, 李新华, 乔红, 欧行奇. 豫北地区不同小麦品种穗发芽初步研究. 农业科技通讯, 2016(11): 60-63.
ZHANG Z M, CHEN Q Y, LI X H, QIAO H, OU X Q. Preliminary study on pre-harvest germination of different wheat varieties in northern Henan Province. Bulletin of Agricultural Science and Technology, 2016(11): 60-63. (in Chinese)
[3]
唐豪, 周勇, 谭志, 杨力生, 郭晓江, 王际睿. 部分小麦产区穗发芽危害状况调查及应对建议. 农家科技, 2018, 7: 36-37.
TANG H, ZHOU Y, TAN Z, YANG L S, GUO X J, WANG J R. Investigation of pre-harvest sprouting hazards in some wheat producing areas and suggestions for countermeasures. Agricultural Science and Technology, 2018, 7: 36-37. (in Chinese)
[4]
朱利广, 张玉坤, 马庆, 王勖, 晁漫宁. 安徽省冬小麦品种大田条件下穗发芽抗性研究. 中国种业, 2023(9): 66-69.
ZHU L G, ZHANG Y K, MA Q, WANG X, CHAO M N. Research of pre-harvest sprouting resistances of winter wheat varieties under field conditions in Anhui province. China Seed Industry, 2023(9): 66-69. (in Chinese)
[5]
毛伯韧, 吴兆苏. 小麦种子休眠特性的遗传及其机理的研究. 中国农业科学, 1983, 16(6): 53-60.
MAO B R, WU Z S. Studies on the inheritance and mechanism of seed dormancy in wheat. Scientia Agricultura Sinica, 1983, 16(6): 53-60. (in Chinese)
[6]
PÉREZ-FLORES L, CARRARI F, OSUNA-FERNÁNDEZ R, RODRÍGUEZ M V, ENCISO S, STANELLONI R, SANCHEZ R A, BOTTINI R, IUSEM N D, BENECH-ARNOLD R L. Expression analysis of a GA 20-oxidase in embryos from two sorghum lines with contrasting dormancy: possible participation of this gene in the hormonal control of germination. Journal of Experimental Botany, 2003, 54(390): 2071-2079.

doi: 10.1093/jxb/erg233
[7]
TOOROP P E, BARROCO R M, ENGLER G, GROOT S P C, HILHORST H W M. Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds. Planta, 2005, 221(5): 637-647.

doi: 10.1007/s00425-004-1477-1
[8]
RODRÍGUEZ M V, BARRERO J M, CORBINEAU F, GUBLER F, BENECH-ARNOLD R L. Dormancy in cereals (not too much, not so little): About the mechanisms behind this trait. Seed Science Research, 2015, 25(2): 99-119.

doi: 10.1017/S0960258515000021
[9]
HENRY R J, FURTADO A, RANGAN P. Wheat seed transcriptome reveals genes controlling key traits for human preference and crop adaptation. Current Opinion in Plant Biology, 2018, 45(Pt B): 231-236.

doi: S1369-5266(17)30243-1 pmid: 29779965
[10]
LIU S B, SEHGAL S K, LIN M, LI J R, TRICK H N, GILL B S, BAI G H. Independent mis-splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication. The New Phytologist, 2015, 208(3): 928-935.

doi: 10.1111/nph.2015.208.issue-3
[11]
LIU D C, LAN X J, WANG Z R, ZHENG Y L, ZHOU Y H, YANG J L, CHI Y. Evaluation of Aegilops tauschii Cosson for preharvest sprouting tolerance. Genetic Resources and Crop Evolution, 1998, 45(6): 495-498.

doi: 10.1023/A:1008674432523
[12]
WANG J R, LIU Y X, WANG Y, CHEN Z H, DAI S, CAO W G, FEDAK G, LAN X J, WEI Y M, LIU D C, ZHENG Y L. Genetic variation of Vp1 in Sichuan wheat accessions and its association with pre-harvest sprouting response. Genes & Genomics, 2011, 33(2): 139-146.
[13]
VETCH J M, STOUGAARD R N, MARTIN J M, GIROUX M J. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.). Plant Science, 2019, 281: 180-185.

doi: 10.1016/j.plantsci.2019.01.004
[14]
ŽILIĆ S, JANKOVIĆ M, BARAĆ M, PEŠIĆ M, KONIĆ-RISTIĆ A, ŠUKALOVIĆ V H T. Effects of enzyme activities during steeping and sprouting on the solubility and composition of proteins, their bioactivity and relationship with the bread making quality of wheat flour. Food & Function, 2016, 7(10): 4323-4331.
[15]
金玉红, 张开利, 付聿成, 张兴春, 杜金华. 小麦蛋白质含量对小麦芽质量的影响. 中国粮油学报, 2006, 21(3): 39-43.
JIN Y H, ZHANG K L, FU Y C, ZHANG X C, DU J H. The influence of protein content on the quality of wheat malt. Journal of the Chinese Cereals and Oils Association, 2006, 21(3): 39-43. (in Chinese)
[16]
LI C, JEONG D, LEE J H, CHUNG H J. Influence of germination on physicochemical properties of flours from brown rice, oat, sorghum, and millet. Food Science and Biotechnology, 2020, 29(9): 1223-1231.

doi: 10.1007/s10068-020-00770-2 pmid: 32802561
[17]
SIMSEK S, OHM J B, LU H Y, RUGG M, BERZONSKY W, ALAMRI M S, MERGOUM M. Effect of pre-harvest sprouting on physicochemical properties of starch in wheat. Foods (Basel, Switzerland), 2014, 3(2): 194-207.
[18]
GROOS C, GAY G, PERRETANT M R, GERVAIS L, BERNARD M, DEDRYVER F, CHARMET G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross. Theoretical and Applied Genetics, 2002, 104(1): 39-47.

doi: 10.1007/s001220200004
[19]
梁王壮, 唐雅楠, 刘佳荟, 郭晓江, 董慧雪, 祁鹏飞, 王际睿. 小麦发芽对面粉质量与加工产品品质的影响. 中国农业科学, 2024, 57(7): 1267-1280. doi: 10.3864/j.issn.0578-1752.2024.07.005.
LIANG W Z, TANG Y N, LIU J H, GUO X J, DONG H X, QI P F, WANG J R. Effect of flour and cooking/baking qualities by sprouted wheat. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280. doi: 10.3864/j.issn.0578-1752.2024.07.005. (in Chinese)
[20]
LEE G A, JEON Y A, LEE H S, HYUN D Y, LEE J R, LEE M C, LEE S Y, MA K H, KOH H J. New genetic loci associated with preharvest sprouting and its evaluation based on the model equation in rice. Frontiers in Plant Science, 2017, 8: 1393.

doi: 10.3389/fpls.2017.01393
[21]
BENECH-ARNOLD R L, RODRÍGUEZ M V. Pre-harvest sprouting and grain dormancy in Sorghum bicolor: What have we learned? Frontiers in Plant Science, 2018, 9: 811.

doi: 10.3389/fpls.2018.00811
[22]
ULLRICH S E, CLANCY J A, DEL BLANCO I A, LEE H, JITKOV V A, HAN F, KLEINHOFS A, MATSUI K. Genetic analysis of preharvest sprouting in a six-row barley cross. Molecular Breeding, 2008, 21(2): 249-259.

doi: 10.1007/s11032-007-9125-7
[23]
NAKAMURA S, ABE F, KAWAHIGASHI H, NAKAZONO K, TAGIRI A, MATSUMOTO T, UTSUGI S, OGAWA T, HANDA H, ISHIDA H, MORI M, KAWAURA K, OGIHARA Y, MIURA H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. The Plant Cell, 2011, 23(9): 3215-3229.

doi: 10.1105/tpc.111.088492 pmid: 21896881
[24]
HUANG Z, FOOTITT S, TANG A, FINCH-SAVAGE W E. Predicted global warming scenarios impact on the mother plant to alter seed dormancy and germination behaviour in Arabidopsis. Plant, Cell & Environment, 2018, 41(1): 187-197.
[25]
FAHAD S, BAJWA A A, NAZIR U, ANJUM S A, FAROOQ A, ZOHAIB A, SADIA S, NASIM W, ADKINS S, SAUD S, IHSAN M Z, ALHARBY H, WU C, WANG D P, HUANG J L. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 2017, 8: 1147.

doi: 10.3389/fpls.2017.01147 pmid: 28706531
[26]
BIDDULPH T B, PLUMMER J A, SETTER T L, MARES D J. Influence of high temperature and terminal moisture stress on dormancy in wheat (Triticum aestivum L.). Field Crops Research, 2007, 103(2): 139-153.

doi: 10.1016/j.fcr.2007.05.005
[27]
DEBEAUJON I, KOORNNEEF M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiology, 2000, 122(2): 415-424.

doi: 10.1104/pp.122.2.415
[28]
于敏, 徐恒, 张华, 朱英. 植物激素在种子休眠与萌发中的调控机制. 植物生理学报, 2016, 52(5): 599-606.
YU M, XU H, ZHANG H, ZHU Y. Regulation of plant hormones on seed dormancy and germination. Plant Physiology Journal, 2016, 52(5): 599-606. (in Chinese)
[29]
JOHNSON R R, WAGNER R L, VERHEY S D, WALKER-SIMMONS M K. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiology, 2002, 130(2): 837-846.

doi: 10.1104/pp.001354 pmid: 12376648
[30]
GUBLER F, MILLAR A A, JACOBSEN J V. Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology, 2005, 8(2): 183-187.

doi: 10.1016/j.pbi.2005.01.011 pmid: 15752999
[31]
FINKELSTEIN R. Abscisic acid synthesis and response. The Arabidopsis Book, 2013, 11: e0166.

doi: 10.1199/tab.0166
[32]
LANG J, FU Y X, ZHOU Y, CHENG M P, DENG M, LI M L, ZHU T T, YANG J, GUO X J, GUI L X, LI L C, CHEN Z X, YI Y, ZHANG L Q, HAO M, HUANG L, TAN C, CHEN G Y, JIANG Q T, QI P F, PU Z E, MA J, LIU Z H, LIU Y J, LUO M C, WEI Y M, ZHENG Y L, WU Y R, LIU D C, WANG J R. Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat. The New Phytologist, 2021, 230(5): 1940-1952.

doi: 10.1111/nph.v230.5
[33]
YU X F, HAN J P, WANG E P, XIAO J, HU R, YANG G X, HE G Y. Genome-wide identification and homoeologous expression analysis of PP2C genes in wheat (Triticum aestivum L.). Frontiers in Genetics, 2019, 10: 561.

doi: 10.3389/fgene.2019.00561
[34]
UTSUGI S, NAKAMURA S, NODA K, MAEKAWA M. Structural and functional properties of Viviparous1 genes in dormant wheat. Genes & Genetic Systems, 2008, 83(2): 153-166.
[35]
CHONO M, MATSUNAKA H, SEKI M, FUJITA M, KIRIBUCHI- OTOBE C, ODA S, KOJIMA H, KOBAYASHI D, KAWAKAMI N. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8'- hydroxylase gene: Effect of reduced ABA catabolism on germination inhibition under field condition. Breeding Science, 2013, 63(1): 104-115.

doi: 10.1270/jsbbs.63.104
[36]
SON S, CHITNIS V R, LIU A H, GAO F, NGUYEN T N, AYELE B T. Abscisic acid metabolic genes of wheat (Triticum aestivum L.): Identification and insights into their functionality in seed dormancy and dehydration tolerance. Planta, 2016, 244(2): 429-447.

doi: 10.1007/s00425-016-2518-2
[37]
OHNISHI N, HIMI E, YAMASAKI Y, NODA K. Differential expression of three ABA-insensitive five binding protein (AFP)-like genes in wheat. Genes & Genetic Systems, 2008, 83(2): 167-177.
[38]
RIKIISHI K, MAEKAWA M. Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.). PLoS ONE, 2014, 9(9): e107618.
[39]
TAI L, WANG H J, XU X J, SUN W H, JU L, LIU W T, LI W Q, SUN J Q, CHEN K M. Pre-harvest sprouting in cereals: Genetic and biochemical mechanisms. Journal of Experimental Botany, 2021, 72(8): 2857-2876.

doi: 10.1093/jxb/erab024 pmid: 33471899
[40]
CHENG X, WANG S, XU D, LIU X, LI X, XIAO W, CAO J, JIANG H, MIN X, WANG J, ZHANG H, CHANG C, LU J, MA C. Identification and analysis of the GASR gene family in common wheat (Triticum aestivum L.) and characterization of TaGASR34, a gene associated with seed dormancy and germination. Frontiers in Genetics, 2019, 10: 980.

doi: 10.3389/fgene.2019.00980
[41]
PENG J, RICHARDS D E, HARTLEY N M, MURPHY G P, DEVOS K M, FLINTHAM J E, BEALES J, FISH L J, WORLAND A J, PELICA F, SUDHAKAR D, CHRISTOU P, SNAPE J W, GALE M D, HARBERD N P. 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999, 400(6741): 256-261.

doi: 10.1038/22307
[42]
WU J, KONG X Y, WAN J M, LIU X Y, ZHANG X, GUO X P, ZHOU R H, ZHAO G Y, JING R L, FU X D, JIA J Z. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiology, 2011, 157(4): 2120-2130.

doi: 10.1104/pp.111.185272 pmid: 22010107
[43]
VAN DE VELDE K, CHANDLER P M, VAN DER STRAETEN D, ROHDE A. Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy. Journal of Experimental Botany, 2017, 68(3): 443-455.

doi: 10.1093/jxb/erw471 pmid: 28073950
[44]
LIU A H, GAO F, KANNO Y, JORDAN M C, KAMIYA Y, SEO M, AYELE B T. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS ONE, 2013, 8(2): e56570.
[45]
RAMAIH S, GUEDIRA M, PAULSEN G M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Functional Plant Biology, 2003, 30(9): 939-945.

doi: 10.1071/FP03113 pmid: 32689078
[46]
BELIN C, MEGIES C, HAUSEROVÁ E, LOPEZ-MOLINA L. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. The Plant Cell, 2009, 21(8): 2253-2268.

doi: 10.1105/tpc.109.067702
[47]
JU L, JING Y X, SHI P T, LIU J, CHEN J S, YAN J J, CHU J F, CHEN K M, SUN J Q. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. The New Phytologist, 2019, 223(1): 246-260.

doi: 10.1111/nph.2019.223.issue-1
[48]
LIU X D, ZHANG H, ZHAO Y, FENG Z Y, LI Q, YANG H Q, LUAN S, LI J M, HE Z H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI 3 activation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38): 15485-15490.
[49]
JACOBSEN J V, BARRERO J M, HUGHES T, JULKOWSKA M, TAYLOR J M, XU Q, GUBLER F. Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta, 2013, 238(1): 121-138.

doi: 10.1007/s00425-013-1878-0
[50]
SUN M H, TUAN P A, IZYDORCZYK M S, AYELE B T. Ethylene regulates post-germination seedling growth in wheat through spatial and temporal modulation of ABA/GA balance. Journal of Experimental Botany, 2020, 71(6): 1985-2004.

doi: 10.1093/jxb/erz566 pmid: 31872216
[51]
TONG H N, XIAO Y H, LIU D P, GAO S P, LIU L C, YIN Y H, JIN Y, QIAN Q, CHU C C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell, 2014, 26(11): 4376-4393.

doi: 10.1105/tpc.114.132092 pmid: 25371548
[52]
UNTERHOLZNER S J, ROZHON W, PAPACEK M, CIOMAS J, LANGE T, KUGLER K G, MAYER K F, SIEBERER T, POPPENBERGER B. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. The Plant Cell, 2015, 27(8): 2261-2272.

doi: 10.1105/tpc.15.00433
[53]
张秀英, 陈旭, 闫长生, 肖世和. 不同遗传背景小麦材料穗发芽差异评价. 作物杂志, 2017(1): 48-50.
ZHANG X Y, CHEN X, YAN C S, XIAO S H. Evaluation of pre-harvest sprouting of wheat materials with different genetic backgrounds. Crops, 2017(1): 48-50. (in Chinese)
[54]
苗西磊, 王德森, 夏兰芹, 张运宏, 王忠伟, 何中虎, 陈新民. 白粒小麦品种(系)穗发芽抗性机制分析. 麦类作物学报, 2011, 31(4): 741-746.
MIAO X L, WANG D S, XIA L Q, ZHANG Y H, WANG Z W, HE Z H, CHEN X M. Analysis on the mechanism of pre-harvest sprouting resistance in white-grain wheat. Journal of Triticeae Crops, 2011, 31(4): 741-746. (in Chinese)
[55]
MARES D J, MRVA K. Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta, 2014, 240(6): 1167-1178.

doi: 10.1007/s00425-014-2172-5 pmid: 25257145
[56]
HIMI E, MARES D J, YANAGISAWA A, NODA K. Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. Journal of Experimental Botany, 2002, 53(374): 1569-1574.

doi: 10.1093/jxb/erf005 pmid: 12096095
[57]
GU X Y, FOLEY M E, HORVATH D P, ANDERSON J V, FENG J H, ZHANG L H, MOWRY C R, YE H, SUTTLE J C, KADOWAKI K I, CHEN Z X. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics, 2011, 189(4): 1515-1524.

doi: 10.1534/genetics.111.131169
[58]
刘莉, 王海庆, 陈志国. 小麦抗穗发芽研究进展. 作物杂志, 2013(4): 6-11.
LIU L, WANG H Q, CHEN Z G. Advances on resistance to pre-harvest sprouting in wheat. Crops, 2013(4): 6-11. (in Chinese)
[59]
陈兆夏, 蒋国梁. 小麦白粒品种抗穗发芽性遗传的初步研究. 南京农业大学学报, 1997, 20(3): 1-6.
CHEN Z X, JIANG G L. Preliminary study on inheritance of pre-harvest sprouting resistance in white wheat germplasm. Journal of Nanjing Agricultural University, 1997, 20(3): 1-6. (in Chinese)
[60]
张海峰, 卢荣禾. 小麦穗发芽抗性机理与遗传研究. 作物学报, 1993, 19(6): 523-530.
ZHANG H F, LU R H. Study on the mechanism of the resistance to preharvest sprouting and inheritance in wheat. Acta Agronomica Sinica, 1993, 19(6): 523-530. (in Chinese)
[61]
吴兆苏, 魏燮中, 俞世蓉, 徐成彬. 小麦品种抗穗发芽性的鉴定筛选技术及其相关性的研究初报. 种子, 1987, 6(1): 5-8.
WU Z S, WEI X Z, YU S R, XU C B. Preliminary report on the identification and screening techniques of pre-harvest germination resistance of wheat varieties and their correlation. Seeds, 1987, 6(1): 5-8. (in Chinese)
[62]
沈正兴, 俞世蓉, 吴兆苏. 小麦品种抗穗发芽性的研究. 中国农业科学, 1991, 24(5): 44-50.
SHEN Z X, YU S R, WU Z S. Studies on pre-harvest sprouting resistance in wheat cultivars. Scientia Agricultura Sinica, 1991, 24(5): 44-50. (in Chinese)
[63]
闫长生, 张海萍, 海林, 张秀英, 胡琳, 胡汉桥, 蒲宗君, 肖世和. 中国小麦品种穗发芽抗性差异的研究. 作物学报, 2006, 32(4): 580-587.
YAN C S, ZHANG H P, HAI L, ZHANG X Y, HU L, HU H J, PU Z J, XIAO S H. Differences of preharvest sprouting resistance among Chinese wheat cultivars. Acta Agronomica Sinica, 2006, 32(4): 580-587. (in Chinese)
[64]
黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 刘朝辉, 李洪杰, 周阳, 张宏军. 小麦抗穗发芽基因挖掘及分子育种进展. 麦类作物学报, 2021, 41(2): 147-156.
HUANG Y W, DAI X R, LIU H W, YANG L, MAI C Y, YU L Q, LIU Z H, LI H J, ZHOU Y, ZHANG H J. Progress on identification of resistant QTLs/genes associated with wheat pre-harvest sprouting and application in molecular breeding. Journal of Triticeae Crops, 2021, 41(2): 147-156. (in Chinese)
[65]
赵斌, 万映秀, 王瑞, 张平治. 小麦抗穗发芽品种资源的筛选. 安徽农业科学, 2010, 38(17): 8900-8902.
ZHAO B, WAN Y X, WANG R, ZHANG P Z. Screening of wheat cultivar resources with pre-harvest sprouting resistance. Journal of Anhui Agricultural Sciences, 2010, 38(17): 8900-8902. (in Chinese)
[66]
陈杰, 张星宇, 白冬, 宋佳静, 宋全昊, 赵立尚, 朱统泉, 朱保磊, 陈建辉, 张香粉. 黄淮麦区(南片)小麦穗发芽抗性评价及其等位基因检测. 分子植物育种, 2023, 21(14): 4694-4701.
CHEN J, ZHANG X Y, BAI D, SONG J J, SONG Q H, ZHAO L S, ZHU T Q, ZHU B L, CHEN J H, ZHANG X F. Evaluation of wheat pre-harwest sprouting resistance and allele detection in Huanghuai southern wheat region. Molecular Plant Breeding, 2023, 21(14): 4694-4701. (in Chinese)
[67]
王琴, 刘泽厚, 万洪深, 魏会廷, 龙海, 李涛, 邓光兵, 李俊, 杨武云. 川麦42和川农16抗穗发芽QTL定位及聚合效应分析. 中国农业科学, 2020, 53(17): 3421-3431. doi:10.3864/j.issn.0578-1752.2020.17.001.
WANG Q, LIU Z H, WAN H S, WEI H T, LONG H, LI T, DENG G B, LI J, YANG W Y. Identification and pyramiding of QTLs for traits associated with pre-harvest sprouting resistance in two wheat cultivars Chuanmai 42 and Chuannong 16. Scientia Agricultura Sinica, 2020, 53(17): 3421-3431. doi:10.3864/j.issn.0578-1752.2020.17.001. (in Chinese)
[68]
CHANG C, ZHANG H P, LU J, SI H Q, MA C X. Genetic improvement of wheat with pre-harvest sprouting resistance in China. Genes, 2023, 14(4): 837.
[69]
ZHOU Y, TANG H, CHENG M P, DANKWA K O, CHEN Z X, LI Z Y, GAO S, LIU Y X, JIANG Q T, LAN X J, PU Z E, WEI Y M, ZHENG Y L, HICKEY L T, WANG J R. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of chinese wheat landraces. Frontiers in Plant Science, 2017, 8: 401.

doi: 10.3389/fpls.2017.00401 pmid: 28428791
[70]
常成, 王旭阳, 余赵玉, 张海萍, 卢杰, 司红起, 陈璨, 马传喜. 中国小麦抗穗发芽种质资源的挖掘与创制. 安徽农业大学学报, 2023, 50(5): 745-750.
CHANG C, WANG X Y, YU Z Y, ZHANG H P, LU J, SI H Q, CHEN C, MA C X. Excavation and creation of pre-harvest sprouting resistant germplasm resources in Chinese wheats. Journal of Anhui Agricultural University, 2023, 50(5): 745-750. (in Chinese)
[71]
江登阳. 小麦穗发芽鉴定方法及白皮品种抗性研究. 作物品种资源, 1991(2): 22-24.
JIANG D Y. Identification method of wheat pre-harvest and resistance of white wheat germplasm. Crop Variety Resources, 1991(2): 22-24. (in Chinese)
[72]
蒋国梁, 陈兆夏, 刘世家, 肖世和. 白皮小麦收获前穗发芽及品种抗性机制探讨. 作物学报, 1998, 24(6): 793-798.
JIANG G L, CHEN Z X, LIU S J, XIAO S H. Pre-harvest sprouting in white wheats and its resistant characteristics of cultivars. Acta Agronomica Sinica, 1998, 24(6): 793-798. (in Chinese)
[73]
周勇, 李净琼, 李嘉, 毛瑞文, 谢娇, 刘亚西, 江千涛, 蒲至恩, 谭志, 王际睿. 白皮小麦抗穗发芽资源评价及抗性候选位点关联分析. 麦类作物学报, 2018, 38(6): 674-685.
ZHOU Y, LI J Q, LI J, MAO R W, XIE J, LIU Y X, JIANG Q T, PU Z E, TAN Z, WANG J R. Evaluation of pre-harvest sprouting tolerance and association analysis based on candidate loci in white grained wheat accessions. Journal of Triticeae Crops, 2018, 38(6): 674-685. (in Chinese)
[74]
HUCL P, MATUS-CÁDIZ M. W98616, a white-seeded spring wheat with increased preharvest sprouting. Canadian Journal of Plant Science, 2002, 82(1): 129-131.

doi: 10.4141/P01-041
[75]
SINGH R, MATUS-CÁDIZ M, BÅGA M, HUCL P, CHIBBAR R N. Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica, 2010, 174(3): 391-408.

doi: 10.1007/s10681-010-0137-8
[76]
MATUS-CÁDIZ M A, DASKALCHUK T E, VERMA B, PUTTICK D, CHIBBAR R N, GRAY G R, PERRON C E, TYLER R T, HUCL P. Phenolic compounds contribute to dark bran pigmentation in hard white wheat. Journal of Agricultural and Food Chemistry, 2008, 56(5): 1644-1653.

doi: 10.1021/jf072970c
[77]
TAI L, WU J H, JING Y X, LIU H Z, ZENG Q D, XU X J, SHI S, WANG H J, LIU W T, SUN J Q, HAN D J, CHEN K M. A genome-wide association study uncovers that TaPI4K-2A regulates pre-harvest sprouting in wheat. Plant Communications, 2023: 100739.
[78]
MUNKVOLD J D, TANAKA J, BENSCHER D, SORRELLS M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theoretical and Applied Genetics, 2009, 119(7): 1223-1235.

doi: 10.1007/s00122-009-1123-1 pmid: 19669633
[79]
SOMYONG S, ISHIKAWA G, MUNKVOLD J D, TANAKA J, BENSCHER D, CHO Y G, SORRELLS M E. Fine mapping of a preharvest sprouting QTL interval on chromosome 2B in white wheat. Theoretical and Applied Genetics, 2014, 127(8): 1843-1855.

doi: 10.1007/s00122-014-2345-4 pmid: 24985065
[80]
ZHANG Y J, MIAO X L, XIA X C, HE Z H. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theoretical and Applied Genetics, 2014, 127(4): 855-866.

doi: 10.1007/s00122-014-2262-6 pmid: 24452439
[81]
OSA M, KATO K, MORI M, SHINDO C, TORADA A, MIURA H. Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theoretical and Applied Genetics, 2003, 106(8): 1491-1496.

doi: 10.1007/s00122-003-1208-1
[82]
MORI M, UCHINO N, CHONO M, KATO K, MIURA H. Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theoretical and Applied Genetics, 2005, 110(7): 1315-1323.

doi: 10.1007/s00122-005-1972-1 pmid: 15803290
[83]
LIU S B, BAI G H. Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco. Theoretical and Applied Genetics, 2010, 121(8): 1395-1404.

doi: 10.1007/s00122-010-1396-4 pmid: 20607209
[84]
LIU S B, CAI S B, GRAYBOSCH R, CHEN C X, BAI G H. Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theoretical and Applied Genetics, 2008, 117(5): 691-699
[85]
LIU S B, SEHGAL S K, LI J R, LIN M, TRICK H N, YU J M, GILL B S, BAI G H. Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics, 2013, 195(1): 273.
[86]
VETCH J M, TILLETT B J, BRUCKNER P, MARTIN J M, MARLOWE K, HOOKER M A, SEE D R, GIROUX M J. TaMFT-3A and TaMFT-3B2homeologs are associated with wheat preharvest sprouting. The Plant Genome, 2022, 15(4): e20250.
[87]
YANG J, TAN C, LANG J, TANG H, HAO M, TAN Z, YU H, ZHOU Y, LIU Z H, LI M L, ZHOU Y, CHENG M P, ZHANG L Q, LIU D C, WANG J R. Identification of qPHS.sicau-1B and qPHS.sicau-3D from synthetic wheat for pre-harvest sprouting resistance wheat improvement. Molecular Breeding, 2019, 39(9): 132.
[88]
HIMI E, MAEKAWA M, MIURA H, NODA K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theoretical and Applied Genetics, 2011, 122(8): 1561-1576.

doi: 10.1007/s00122-011-1555-2
[89]
MARES D, RATHJEN J, MRVA K, CHEONG J. Genetic and environmental control of dormancy in white-grained wheat (Triticum aestivum L.). Euphytica, 2009, 168(3): 311-318.

doi: 10.1007/s10681-009-9927-2
[90]
MARES D, MRVA K, CHEONG J, WILLIAMS K, WATSON B, STORLIE E, SUTHERLAND M, ZOU Y. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theoretical and Applied Genetics, 2005, 111(7):1357-1364.

doi: 10.1007/s00122-005-0065-5 pmid: 16133305
[91]
CHEN C X, CAI S B, BAI G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Molecular Breeding, 2008, 21(3): 351-358.

doi: 10.1007/s11032-007-9135-5
[92]
LIN M, CAI S B, WANG S, LIU S B, ZHANG G R, BAI G H. Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theoretical and Applied Genetics, 2015, 128(7): 1385-1395.

doi: 10.1007/s00122-015-2513-1 pmid: 25851002
[93]
BARRERO J M, CAVANAGH C, VERBYLA K L, TIBBITS J F G, VERBYLA A P, HUANG B E, ROSEWARNE G M, STEPHEN S, WANG P H, WHAN A, RIGAULT P, HAYDEN M J, GUBLER F. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biology, 2015, 16(1): 93.
[94]
TORADA A, IKEGUCHI S, KOIKE M. Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica, 2005, 143(3): 251-255.

doi: 10.1007/s10681-005-7872-2
[95]
TORADA A, KOIKE M, OGAWA T, TAKENOUCHI Y, TADAMURA K, WU J Z, MATSUMOTO T, KAWAURA K, OGIHARA Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Current Biology, 2016, 26(6): 782-787.

doi: 10.1016/j.cub.2016.01.063 pmid: 26948878
[96]
SHORINOLA O, BIRD N, SIMMONDS J, BERRY S, HENRIKSSON T, JACK P, WERNER P, GERJETS T, SCHOLEFIELD D, BALCÁRKOVÁ B, VALÁRIK M, HOLDSWORTH M J, FLINTHAM J, UAUY C. The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. Journal of Experimental Botany, 2016, 67(14): 4169-4178.

doi: 10.1093/jxb/erw194 pmid: 27217549
[97]
SHORINOLA O, BALCÁRKOVÁ B, HYLES J, TIBBITS J F G, HAYDEN M J, HOLUŠOVA K, VALÁRIK M, DISTELFELD A, TORADA A, BARRERO J M, UAUY C. Haplotype analysis of the pre-harvest sprouting resistance locus Phs-A1 reveals a causal role of TaMKK3-A in global germplasm. Frontiers in Plant Science, 2017, 8: 1555.

doi: 10.3389/fpls.2017.01555
[98]
MCCARTY D R, HATTORI T, CARSON C B, VASIL V, LAZAR M, VASIL I K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell, 1991, 66(5): 895-905.

doi: 10.1016/0092-8674(91)90436-3 pmid: 1889090
[99]
BAILEY P C, MCKIBBIN R S, LENTON J R, HOLDSWORTH M J, FLINTHAM J E, GALE M D. Genetic map locations for orthologous Vp1 genes in wheat and rice. Theoretical and Applied Genetics, 1999, 98(2): 281-284.

doi: 10.1007/s001220051069
[100]
YANG Y, MA Y Z, XU Z S, CHEN X M, HE Z H, YU Z, WILKINSON M, JONES H D, SHEWRY P R, XIA L Q. Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. Journal of Experimental Botany, 2007, 58(11): 2863-2871.

doi: 10.1093/jxb/erm073
[101]
GIRAUDAT J, HAUGE B M, VALON C, SMALLE J, PARCY F, GOODMAN H M. Isolation of the Arabidopsis ABI3 gene by positional cloning. The Plant Cell, 1992, 4(10): 1251-1261.
[102]
CARRARI F, PEREZ-FLORE L, LIJAVETZKY D, ENCISO S, SANCHEZ R, BENECH-ARNOLD R, IUSEM N. Cloning and expression of a sorghum gene with homology to maize vp1. Its potential involvement in pre-harvest sprouting resistance. Plant Molecular Biology, 2001, 45(6): 631-640.

pmid: 11430426
[103]
NAKAMURA S, TOYAMA T. Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars. Journal of Experimental Botany, 2001, 52(357): 875-876.

doi: 10.1093/jexbot/52.357.875 pmid: 11413225
[104]
LIU S P, LI L, WANG W L, XIA G M, LIU S W. TaSRO1 interacts with TaVP1 to modulate seed dormancy and pre-harvest sprouting resistance in wheat. Journal of Integrative Plant Biology, 2024, 66(1): 36-53.

doi: 10.1111/jipb.13600
[105]
ASHIKAWA I, ABE F, NAKAMURA S. Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis. Plant Science, 2010, 179(5): 536-542.

doi: 10.1016/j.plantsci.2010.08.002
[106]
ASHIKAWA I, MORI M, NAKAMURA S, ABE F. A transgenic approach to controlling wheat seed dormancy level by using Triticeae DOG1-like genes. Transgenic Research, 2014, 23(4): 621-629.

doi: 10.1007/s11248-014-9800-5
[107]
ASHIKAWA I, ABE F, NAKAMURA S. DOG1-like genes in cereals: Investigation of their function by means of ectopic expression in Arabidopsis. Plant Science, 2013, 208: 1-9.

doi: 10.1016/j.plantsci.2013.03.011
[108]
YU X P, HAN J P, LI L, ZHANG Q, YANG G X, HE G Y. Wheat PP2C-a10 regulates seed germination and drought tolerance in transgenic Arabidopsis. Plant Cell Reports, 2020, 39(5): 635-651.

doi: 10.1007/s00299-020-02520-4
[109]
GAZZARRINI S, TSUCHIYA Y, LUMBA S, OKAMOTO M, MCCOURT P. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Developmental Cell, 2004, 7(3): 373-385.

doi: 10.1016/j.devcel.2004.06.017
[110]
SUN F S, LIU X Y, WEI Q H, LIU J N, YANG T X, JIA L Y, WANG Y S, YANG G X, HE G Y. Functional characterization of TaFUSCA3, a B3-superfamily transcription factor gene in the wheat. Frontiers in Plant Science, 2017, 8: 1133.

doi: 10.3389/fpls.2017.01133 pmid: 28702045
[111]
SASAKI A, ITOH H, GOMI K, UEGUCHI-TANAKA M, ISHIYAMA K, KOBAYASHI M, JEONG D H, AN G, KITANO H, ASHIKARI M, MATSUOKA M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299(5614): 1896-1898.

doi: 10.1126/science.1081077 pmid: 12649483
[112]
FENG Y M, LIU M, WANG Z, ZHAO X L, HAN B, XING Y P, WANG M Y, YANG Y. A 4-bp deletion in the 5'UTR of TaAFP-B is associated with seed dormancy in common wheat (Triticum aestivum L.). BMC Plant Biology, 2019, 19(1): 349.
[113]
BI H H, SUN Y W, XIAO Y G, XIA L Q. Characterization of DFR allelic variations and their associations with pre-harvest sprouting resistance in a set of red-grained Chinese wheat germplasm. Euphytica, 2014, 195(2): 197-207.

doi: 10.1007/s10681-013-0986-z
[114]
ZHANG Y J, XIA X C, HE Z H. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theoretical and Applied Genetics, 2017, 130(1): 81-89.

doi: 10.1007/s00122-016-2793-0 pmid: 27650191
[115]
曹雪连, 张衡, 姜昊, 吴曾云, 曹佳佳, 朱玉磊, 王升星, 常成, 张海萍, 马传喜. 分子标记PM19-A1对1015份小麦抗穗发芽基因型的筛选及其有效性验证. 麦类作物学报, 2016, 36(10): 1283-1290.
CAO X L, ZHANG H, JIANG H, WU Z Y, CAO J J, ZHU Y L, WANG S X, CHANG C, ZHANG H P, MA C X. Detection and validation of molecular marker PM19-A1 associated with pre-harvest sprouting resistance in 1015 wheat varieties. Journal of Triticeae Crops, 2016, 36(10): 1283-1290. (in Chinese)
[116]
LEI L, ZHU X K, WANG S W, ZHU M R, CARVER B F, YAN L L. TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. PLoS ONE, 2013, 8(9): e73330.
[117]
JIANG H, ZHAO L X, CHEN X J, CAO J J, WU Z Y, LIU K, ZHANG C, WEI W X, XIE H Y, LI L, GAN Y G, LU J, CHANG C, ZHANG H P, XIA X C, XIAO S H, MA C X. A novel 33-bp insertion in the promoter of TaMFT-3A is associated with pre-harvest sprouting resistance in common wheat. Molecular Breeding, 2018, 38(5): 69.
[118]
SYDENHAM S L, BARNARD A. Targeted haplotype comparisons between south African wheat cultivars appear predictive of pre-harvest sprouting tolerance. Frontiers in Plant Science, 2018, 9: 63.

doi: 10.3389/fpls.2018.00063 pmid: 29449853
[119]
YANG Y, ZHAO X L, XIA L Q, CHEN X M, XIA X C, YU Z, HE Z H, RÖDER M. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theoretical and Applied Genetics, 2007, 115(7): 971-980.

doi: 10.1007/s00122-007-0624-z pmid: 17712543
[120]
罗永露, 隋建枢, 谢才江, 王伟, 陈天青, 何庆才. 西南地区87份小麦品种(系)穗发芽抗性的分子鉴定及筛选. 种子, 2020, 39(1): 49-53.
LUO Y L, SUI J S, XIE C J, WANG W, CHEN T Q, HE Q C. Molecular identification and screening of spike germination resistance of 87 wheat varieties (lines) in southwest China. Seed, 2020, 39(1): 49-53. (in Chinese)
[121]
CHANG C, FENG J M, SI H Q, YIN B, ZHANG H P, MA C X. Validating a novel allele of viviparous-1 (Vp-1Bf)associated with high seed dormancy of Chinese wheat landrace, Wanxianbaimaizi. Molecular Breeding, 2010, 25(3): 517-525.

doi: 10.1007/s11032-009-9350-3
[122]
CHANG C, ZHANG H P, FENG J M, YIN B, SI H Q, MA C X. Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Molecular Breeding, 2010, 25(3): 481-490.

doi: 10.1007/s11032-009-9346-z
[123]
CHANG C, ZHANG H P, ZHAO Q X, FENG J M, SI H Q, LU J, MA C X. Rich allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat. Euphytica, 2011, 179(2): 343-353.

doi: 10.1007/s10681-011-0348-7
[124]
YANG Y, ZHANG C L, LIU S X, SUN Y Q, MENG J Y, XIA L Q. Characterization of the rich haplotypes of Viviparous-1A in Chinese wheats and development of a novel sequence-tagged site marker for pre-harvest sprouting resistance. Molecular Breeding, 2014, 33(1): 75-88.

doi: 10.1007/s11032-013-9935-8
[125]
WEI W X, MIN X Y, SHAN S Y, JIANG H, CAO J J, LI L, WANG J P, WANG S X, ZHU Y L, LU J, SI H Q, XIA X C, MA C X, ZHANG H P, CHANG C. Isolation and characterization of TaQsd1 genes for period of dormancy in common wheat (Triticum aestivum L.). Molecular Breeding, 2019, 39(10/11): 150.
[126]
ONISHI K, YAMANE M, YAMAJI N, TOKUI M, KANAMORI H, WU J, KOMATSUDA T, SATO K. Sequence differences in the seed dormancy gene Qsd1 among various wheat genomes. BMC Genomics, 2017, 18(1): 497.
[127]
HICKEY L T, DIETERS M J, DELACY I H, CHRISTOPHER M J, KRAVCHUK O Y, BANKS P M. Screening for grain dormancy in segregating generations of dormant × non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica, 2010, 172(2): 183-195.

doi: 10.1007/s10681-009-0028-z
[128]
SINGH R, HUCL P, BÅGA M, CHIBBAR R N. Validation of molecular markers for pre-harvest sprouting resistance in bread wheat. Cereal Research Communications, 2012, 40(2): 194-203.

doi: 10.1556/CRC.40.2012.2.3
[129]
GRAYBOSCH R A, ST AMAND P, BAI G H. Evaluation of genetic markers for prediction of preharvest sprouting tolerance in hard white winter wheats. Plant Breeding, 2013, 132(4): 359-366.

doi: 10.1111/pbr.2013.132.issue-4
[130]
李亚青, 张楠, 彭义峰, 张士昌, 李孟军. 穗发芽抗性相关分子标记在优质小麦中的有效性验证. 河南农业科学, 2021, 50(10): 18-26.
LI Y Q, ZHANG N, PENG Y F, ZHANG S C, LI M J. Validation of molecular markers related to pre-harvest sprouting resistance in high-quality wheat varieties. Journal of Henan Agricultural Sciences, 2021, 50(10): 18-26. (in Chinese)
[131]
XIAO S H, ZHANG H P, YOU G X, ZHANG X Y, YAN C S, CHEN X. Integration of marker-assisted selection for resistance to pre-harvest sprouting with selection for grain-filling rate in breeding of white-kernelled wheat for the Chinese environment. Euphytica, 2012, 188(1): 85-88.

doi: 10.1007/s10681-012-0742-9
[132]
张海萍, 常成, 司红起, 卢杰, 马传喜. 小麦抗穗发芽分子标记开发及育种应用. 科技导报, 2016, 34(22): 81-86.
ZHANG H P, CHANG C, SI H Q, LU J, MA C X. Developing of molecular marker for pre-harvest sprouting resistance and its application in wheat MAS breeding. Science & Technology Review, 2016, 34(22): 81-86. (in Chinese)
[133]
郝明, 张连全, 黄林, 甯顺腙, 袁中伟, 姜博, 颜泽洪, 伍碧华, 郑有良, 刘登才. 合成六倍体小麦的遗传育种. 植物遗传资源学报, 2022, 23(1): 40-48.

doi: 10.13430/j.cnki.jpgr.20210518002
HAO M, ZHANG L Q, HUANG L, NING S Z, YUAN Z W, JIANG B, YAN Z H, WU B H, ZHENG Y L, LIU D C. Genetic improvement of synthesized hexaploid wheat in breeding. Journal of Plant Genetic Resources, 2022, 23(1): 40-48. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20210518002
[134]
REIF J C, ZHANG P, DREISIGACKER S, WARBURTON M L, VAN GINKEL M, HOISINGTON D, BOHN M, MELCHINGER A E. Wheat genetic diversity trends during domestication and breeding. Theoretical and Applied Genetics, 2005, 110(5): 859-864.

doi: 10.1007/s00122-004-1881-8 pmid: 15690175
[135]
LI A L, LIU D C, YANG W Y, KISHII M, MAO L. Synthetic hexaploid wheat: Yesterday, today, and tomorrow. Engineering, 2018, 4(4): 552-558.

doi: 10.1016/j.eng.2018.07.001
[136]
HAO M, ZHANG L Q, ZHAO L B, DAI S P, LI A L, YANG W Y, XIE D, LI Q C, NING S Z, YAN Z H, WU B H, LAN X J, YUAN Z W, HUANG L, WANG J R, ZHENG K, CHEN W S, YU M, CHEN X J, CHEN M P, WEI Y M, ZHANG H G, KISHII M, HAWKESFORD M J, MAO L, ZHENG Y L, LIU D C. A breeding strategy targeting the secondary gene pool of bread wheat: Introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132(8): 2285-2294.

doi: 10.1007/s00122-019-03354-9 pmid: 31049633
[137]
兰秀锦, 郑有良, 刘登才, 魏育明, 颜泽洪, 周永红. 节节麦抗穗发芽基因的染色体定位及其抗性机理. 中国农业科学, 2002, 35(1): 12-15.
LAN X J, ZHENG Y L, LIU D C, WEI Y M, YAN Z H, ZHOU Y H. Tolerant mechanism and chromosome location of gene of pre-harvest sprouting tolerance in Aegilops tauschii cosson. Scientia Agricultura Sinica, 2002, 35(1): 12-15. (in Chinese)
[138]
ZHANG L Q, LIU D C, YAN Z H, LAN X J, ZHENG Y L, ZHOU Y H. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China Series C, Life Sciences, 2004, 47(6): 553-561.
[139]
IMTIAZ M, OGBONNAYA F C, OMAN J, VAN GINKEL M. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics, 2008, 178(3): 1725-1736.

doi: 10.1534/genetics.107.084939 pmid: 18245824
[140]
藏天青, 刘玉娥, 马春芳, 李潇, 王希友, 郝明, 张连全, 袁中伟, 姜博, 刘登才, 甯顺腙. 抗穗发芽合成小麦改良品系的筛选及遗传分析. 四川农业大学学报, 2023, 41(6): 998-1007.
ZANG T Q, LIU Y E, MA C F, LI X, WANG X Y, HAO M, ZHANG L Q, YUAN Z W, JIANG B, LIU D C, NING S Z. Identification and genetic analysis of improved synthetic wheat line showing resistance to pre-harvest sprouting. Journal of Sichuan Agricultural University, 2023, 41(6): 998-1007. (in Chinese)
[141]
李生科, 郝明, 张连全, 黄林, 甯顺腙, 袁中伟, 姜博, 陈雪, 陈雪姣, 颜泽洪, 伍碧华, 郑有良, 刘登才. 基于原始种质的小麦育种技术体系. 四川农业大学学报, 2023, 41(6): 961-972.
LI S K, HAO M, ZHANG L Q, HUANG L, NING S Z, YUAN Z W, JIANG B, CHEN X, CHEN X J, YAN Z H, WU B H, ZHENG Y L, LIU D C. Primitive-germplasm-mediated breeding system for wheat. Journal of Sichuan Agricultural University, 2023, 41(6): 961-972. (in Chinese)
[142]
HAO M, ZHANG L Q, ZHAO L B, DAI S F, LI A L, YANG W Y, XIE D E, LI Q C, NING S Z, YAN Z H, WU B H, LAN X J, YUAN Z W, HUANG L, WANG J R, ZHENG K, CHEN W S, YU M, CHEN X J, CHEN M P, WEI Y M, ZHANG H G, KISHII M, HAWKESFORD M J, MAO L, ZHENG Y L, LIU D C. A breeding strategy targeting the secondary gene pool of bread wheat: Introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132(8): 2285-2294.

doi: 10.1007/s00122-019-03354-9 pmid: 31049633
[143]
ZHOU Y, BAI S L, LI H, SUN G L, ZHANG D L, MA F F, ZHAO X P, NIE F, LI J Y, CHEN L Y, LV L L, ZHU L L, FAN R X, GE Y F, SHAHEEN A, GUO G H, ZHANG Z, MA J C, LIANG H H, QIU X L, HU J M, SUN T, HOU J Y, XU H X, XUE S L, JIANG W K, HUANG J L, LI S P, ZOU C S, SONG C P. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nature Plants, 2021, 7(6): 774-786.

doi: 10.1038/s41477-021-00934-w
[144]
WANG Y P, CHENG X, SHAN Q W, ZHANG Y, LIU J X, GAO C X, QIU J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9): 947-951.

doi: 10.1038/nbt.2969 pmid: 25038773
[145]
ZHANG Z Z, HUA L, GUPTA A, TRICOLI D, EDWARDS K J, YANG B, LI W L. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnology Journal, 2019, 17(8): 1623-1635.

doi: 10.1111/pbi.2019.17.issue-8
[146]
HISANO H, HOFFIE R E, ABE F, MUNEMORI H, MATSUURA T, ENDO M, MIKAMI M, NAKAMURA S, KUMLEHN J, SATO K. Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. Plant Biotechnology Journal, 2022, 20(1): 37-46.

doi: 10.1111/pbi.v20.1
[147]
SATO K, YAMANE M, YAMAJI N, KANAMORI H, TAGIRI A, SCHWERDT J G, FINCHER G B, MATSUMOTO T, TAKEDA K, KOMATSUDA T. Alanine aminotransferase controls seed dormancy in barley. Nature Communications, 2016, 18(7): 11625.
[148]
ABE F, HAQUE E, HISANO H, TANAKA T, KAMIYA Y, MIKAMI M, KAWAURA K, ENDO M, ONISHI K, HAYASHI T, SATO K. Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Reports, 2019, 28(5): 1362-1369.

doi: S2211-1247(19)30870-8 pmid: 31365876
[149]
XU F, TANG J Y, WANG S X, CHENG X, WANG H R, OU S J, GAO S P, LI B S, QIAN Y W, GAO C X, CHU C C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nature Genetics, 2022, 54(12): 1972-1982.

doi: 10.1038/s41588-022-01240-7 pmid: 36471073
[150]
ZHU Y W, LIN Y R, FAN Y J, WANG Y W, LI P P, XIONG J, HE Y H, CHENG S P, YE X G, WANG F, GOODRICH J, ZHU J K, WANG K, ZHANG C J. CRISPR/Cas9-mediated restoration of Tamyb10 to create pre-harvest sprouting-resistant red wheat. Plant Biotechnology Journal, 2023, 21(4): 665-667.

doi: 10.1111/pbi.v21.4
[151]
潘丽媛, 王永军, 李海军, 侯富, 李菁, 李丽丽, 孙苏阳. 小麦抗穗发芽种质鉴评及其初步应用. 植物遗传资源学报, 2024, doi: 10.13430/j.cnki.jpgr.20231106003.
PAN L Y, WANG Y J, LI H J, HOU F, LI J, LI L L, SUN S Y. Evaluation of wheat pre-harvest sprouting resistant germplasm resources and their preliminary application. Journal of Plant Genetic Resources, 2024, doi: 10.13430/j.cnki.jpgr.20231106003. (in Chinese)
[1] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[2] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[3] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[4] YUAN Miao, ZHOU Juan, DANG ShiZhuo, TANG XueShen, ZHANG YaHong. Functional Analysis of VvARF18 Gene in Red Globe Grape [J]. Scientia Agricultura Sinica, 2024, 57(7): 1363-1376.
[5] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[6] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[7] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[8] ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964.
[9] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
[10] MEI GuangYuan, LI Rong, MEI Xin, CHEN RiQiang, FAN YiGuang, CHENG JinPeng, FENG ZiHeng, TAO Ting, ZHAO Qian, ZHAO PeiQin, YANG XiaoDong. A VSURF-CA Based Hyperspectral Disease Index Estimation Model of Wheat Stripe Rust [J]. Scientia Agricultura Sinica, 2024, 57(3): 484-499.
[11] WANG YueMei, TIAN HaiMei, WANG XiNa, HAO WenYue, LÜ ZheMing, YU JinMing, TAN JunLi, WANG ZhaoHui. Effect of Continuous Reduction of Fertilizer Application on Yield Stability of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2024, 57(3): 539-554.
[12] LEI XinHui, WU YiXin, WANG JiaLe, TAO JinCai, WAN ChenXi, WANG Meng, GAO XiaoLi, FENG BaiLi, GAO JinFeng. Effects of Planting Density and Fertilization Level on Photosynthesis, Yield and Lodging Resistance of Common Buckwheat [J]. Scientia Agricultura Sinica, 2024, 57(2): 264-277.
[13] WANG Yu, SONG YiFan, ZHANG Rong, MU HaiMeng, SUN LiFang, FU KaiXia, WU ZiJun, HUANG QingQing, XU YingMing, LI GeZi, WANG YongHua, GUO TianCai. Effects of Soil Application of Passivating Agent and Compound Microbial Fertilizer on Cadmium Accumulation in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(1): 126-141.
[14] ZHOU JingWei, YE BoWei, ZHANG PengFei, ZHANG YuQing, HAO Min, YIN YuRuo, YUAN Chan, LI ZhiKang, LI ShunDa, XIA XianChun, HE ZhongHu, ZHANG HongJun, LAN CaiXia. Identification and Evaluation of Stripe Rust Resistance in 153 Wheat Collections [J]. Scientia Agricultura Sinica, 2024, 57(1): 18-33.
[15] LIU ZhiYong, ZHANG HuaiZhi, BAI Bin, LI Jun, HUANG Lin, XU ZhiBin, CHEN YongXing, LIU Xu, CAO TingJie, LI MiaoMiao, LU Ping, WU QiuHong, DONG LingLi, HAN YuLin, YIN GuiHong, HU WeiGuo, WANG XiCheng, ZHAO Hong, YAN SuHong, YANG ZhaoSheng, CHANG ZhiJian, WANG Tao, YANG WuYun, LIU DengCai, LI HongJie, DU JiuYuan. Current Status and Strategies for Utilization of Stripe Rust Resistance Genes in Wheat Breeding Program of China [J]. Scientia Agricultura Sinica, 2024, 57(1): 34-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!