Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (11): 2161-2175.doi: 10.3864/j.issn.0578-1752.2024.11.009

• PLANT PROTECTION • Previous Articles     Next Articles

The Effects of Potato Root Exudates on the Hatching and Chemotaxis of Globodera rostochiensis and Verification of Exogenous Acid Substances

YIN YanDie1(), YANG YanMei1(), FU QiChun2, WANG Qin3, LI YongQing3, DUAN JinFeng1, LIU YuZhu1, WANG QiaoMei4(), HU XianQi1()   

  1. 1 College of Plant Protection, Yunnan Agricultural University/State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201
    2 Daguan County Plant Protection and Quarantine Station of Yunnan Province, Daguan 657400, Yunnan
    3 Zhaotong Municipal Plant Protection and Quarantine Station of Yunnan Province, Zhaoyang 657000, Yunnan
    4 College of Tea, Yunnan Agricultural University, Kunming 650201
  • Received:2023-12-14 Accepted:2024-01-21 Online:2024-06-01 Published:2024-06-07
  • Contact: WANG QiaoMei, HU XianQi

Abstract:

【Objective】The objective of this study is explore the effects of root exudates from different resistant potato varieties and different growth stages on the hatching and chemotaxis of Globodera rostochiensis, so as to provide a theoretical basis for the green prevention and control of G. rostochiensis.【Method】The root exudates of four potato varieties at three growth stages were collected. The effects of root exudates on the hatching and chemotaxis of G. rostochiensis were studied by the soaking method and filter paper method. The components of root exudate were analyzed by GC-MS. Eight standard exogenous acids, caffeic acid, succinic acid, 3-phenylpropionic acid, 3-hydroxypropionic acid, 3-amino-3-methyl-butyric acid, glycolic acid, stearic acid, and L-lactic acid, were selected, and the effects of the main acids of root exudates on the hatching and chemotaxis of G. rostochiensis were verified by the soaking method and filter paper method.【Result】The efficiency of stimulating hatching of G. rostochiensis by root exudates of susceptible varieties Qingshu 9 and Huize 2 was higher than that of resistant varieties Xuanshu 6 and Yunshu 505. At three growth stages (15 d (germination stage), 30 d (seedling stage), 55 d (tuber formation stage)), the effect of susceptible varieties on hatching stimulation was stronger than that of resistant varieties, and the effect of stimulating hatching of each variety root exudate at 30 d (seedling stage) was better than that at 15 d (germination stage) and 55 d (tuber formation stage). The stimulating hatchability of root exudates from Qingshu 9 was 7.20%, 27.30%, and 5.70% at 15, 30 and 55 d, respectively; that of Huize 2 was 10.50%, 38.00%, and 9.40%, Xuanshu 6 was 5.40%, 20.40%, and 16.30%, Yunshu 505 was 13.20%, 21.80%, and 3.10% at 15, 30 and 55 d, respectively. Among the root exudates of four potato varieties, Qingshu 9 was more attractive to G. rostochiensis. At three growth stages, except for Xuanshu 6, the root exudates of the other three varieties at 15 d had a better attraction effect than at 30 and 55 d. The attraction rate of root exudates of Qingshu 9 at 15, 30 and 55 d was 13.73%, 9.68%, and 6.13%, respectively, that of Huize 2 was 5.65%, 4.76%, and 4.89%, Yunshu 505 was 4.86%, 4.13%, and 2.91%, Xuanshu 6 was 4.11%, 5.77%, and 6.47% at 15, 30 and 55 d, respectively. According to GC-MS analysis and identification, potato root exudates mainly contain 9 kinds of substances, including 24 acids, 13 amino acids, 5 salts, 3 alcohols, 3 hydrocarbons, 3 carbohydrates, 2 phenols, 1 ketone, and 1 lipid. From the species and proportion, acids, amino acids, phenols and alcohols are the main components of potato root exudates. The experiment of 8 kinds of exogenous acid substances showed that succinic acid and 3-hydroxypropionic acid had a significant effect on the hatching stimulation of G. rostochiensis. Caffeic acid and 3-phenylpropionic acid had a significant effect on the chemotaxis of G. rostochiensis. However, compared with the effects of root exudates from four varieties at 30 d on G. rostochiensis, it was found that the hatching stimulation effects of above acids with significant effects were significantly lower than those of root exudates, and there was no significant difference in chemotaxis.【Conclusion】The root exudates from different potato varieties and different growth stages all have effects on the hatching and chemotaxis of G. rostochiensis. The effects of hatching and chemotaxis of G. rostochiensis by root exudates from susceptible varieties were higher than those of resistant varieties. The effects of susceptible and resistant varieties on G. rostochiensis began at 15 d (germination stage) when the root system appeared, were strongest at 30 d (seedling stage), and weakened at 55 d (tuber formation stage). The potato root exudates are diverse, the main components are acids, amino acids, and alcohols, and the resistance and susceptible varieties are slightly different. Succinic acid and 3-hydroxypropionic acid had a significant effect on hatching, caffeic acid and 3-phenylpropionic acid had a significant effect on chemotaxis. Single acid had significantly less effect on hatching of G. rostochiensis than root exudates.

Key words: potato (Solanum tuberosum), root exudate, Globodera rostochiensis, hatching, chemotaxis, component

Fig. 1

Dynamics of root exudates stimulating hatching of G. rostochiensis cysts"

Fig. 2

Effects of root exudates of each potato variety during the same growth stage on hatching of G. rostochiensis Different lowercases on the bars indicate significantly different at P<0.05 level。下同The same as below"

Fig. 3

Effects of root exudates on hatching of G. rostochiensis during each growth stage of the same potato variety"

Table 1

Effects of root exudates on the chemotaxis of G. rostochiensis J2"

处理
Treatment
2龄幼虫占总接种量比率Percent of J2 to total number (%)
0.5-1 cm 1-2 cm 2-3 cm
宣薯6号Xuanshu 6 15 d 4.11±1.54a 15.22±3.62b 80.67±3.43a
宣薯6号Xuanshu 6 30 d 5.77±1.51a 26.19±10.32b 68.05±11.31b
宣薯6号Xuanshu 6 55 d 6.47±2.61a 24.14±5.67b 69.39±7.15b
ddH2O 6.97±3.38a 22.22±7.99b 72.21±4.51ab
CaCl2 5.80±3.13a 39.60±5.25a 54.61±5.71c
云薯505 Yunshu 505 15 d 4.86±3.61a 22.50±7.98b 72.60±10.32a
云薯505 Yunshu 505 30 d 4.13±3.56a 20.94±8.89b 74.94±10.07a
云薯505 Yunshu 505 55 d 2.91±1.10a 18.12±11.11b 78.97±11.06a
ddH2O 5.58±2.29a 23.92±7.75b 70.25±10.04a
CaCl2 5.80±3.13a 39.60±5.25a 54.61±5.71b
青薯9号Qingshu 9 15 d 13.73±6.20a 32.59±2.48a 53.68±6.86a
青薯9号Qingshu 9 30 d 9.68±5.11ab 28.10±8.81a 62.22±12.63a
青薯9号Qingshu 9 55 d 6.13±0.91b 35.16±14.00a 58.71±13.63a
ddH2O 9.51±2.04ab 33.82±5.35a 56.67±5.54a
CaCl2 5.80±3.13b 39.60±5.25a 54.61±5.71a
会-2 Huize 2 15 d 5.65±0.99a 20.84±5.41bc 74.19±4.45ab
会-2 Huize 2 30 d 4.76±2.72a 29.98±10.77b 65.26±12.08b
会-2 Huize 2 55 d 4.89±1.19a 18.53±3.73c 76.58±4.77a
ddH2O 4.72±1.96a 28.38±3.70b 68.30±5.19ab
CaCl2 5.80±3.13a 39.60±5.25a 54.61±5.71c

Fig. 4

Effects of root exudates of each variety on G. rostochiensis J2 chemotaxis during the same growth stage"

Table 2

Relative abundance (%) of acids in root exudates"

物质/品种
Substance/Variety
感病品种Susceptible variety 抗病品种Resistant variety
青薯9号Qingshu 9 15 d 青薯9号Qingshu 9 30 d 青薯9号Qingshu 9 55 d 会-2 Huize 2 15 d 会-2 Huize 2 30 d 会-2 Huize 2 55 d 宣薯6号Xuanshu 6 15 d 宣薯6号Xuanshu 6 30 d 宣薯6号Xuanshu 6 55 d 云薯505 Yunshu 505 15 d 云薯505 Yunshu 505 30 d 云薯505 Yunshu 505 55 d
咖啡酸Caffeic acid - - - - - - - - - - 0.19 -
苹果酸Malic acid - - - - 5.17 - - - - - 0.29 -
Polyglyceric acid - - - - 0.49 - - - - - 0.19 -
(2S,3R,4S,5R)-2,3,4,5-
Tetrahydroxyhexanedioic acid
- - - - - - - - - - 0.73 -
木糖酸Xylonic acid - 0.27 - - - - - - - - 0.24 -
Pentanoic acid - 1.65 - - - - - - - - 3.88 -
2,3,4-Trihydroxybutyric acid - 0.21 - - 0.66 - - - - - 0.33 -
丁二酸Succinic acid - 7.12 15.14 - 10.90 - - 3.21 - 1.77 5.00 6.01
(S)-3-羟基丁酸
(S)-3-Hydroxybutyric acid
- 0.34 - - - - - - - - 0.21 0.27
3-氨基-3-甲基丁酸
3-Amino-3-methyl-butyric acid
1.19 1.84 - - - - - - - - 2.03 -
氢化肉桂酸
3-Phenylpropionic acid
- 0.25 - - - - - - - - - 0.71
4-Azanylbutanoic acid 1.01 1.79 - - - - - 0.70 - - 1.65 -
3-Deoxypentonic acid - - - - - - - - - - 1.03 -
硬脂酸Stearic acid 0.76 0.69 3.60 - 2.31 3.72 1.72 1.27 3.91 1.24 0.32 1.56
3-羟基丙酸3-Hydroxypropionic acid - - - - - - - 0.38 - - - 0.36
乙醇酸Glycolic acid - - - - - - - - - - 0.14 -
L-乳酸L-lactic acid - 5.21 13.25 - 12.80 - - 0.29 - - 4.12 4.11
莽草酸Shikimic acid - 0.25 - - - - - - - - - -
富马酸Fumaric acid - - - - 14.05 - - - - - - -
2-氨基戊二酸
DL-glutamic acid
- - - - - - - 2.36 - - - -
2-氨基丁酸DL-2-aminobutyric acid - - - - - - - - - - 1.65 -
(Propionylamino)acetic acid - - - - - - - - - - 2.03 -
壬二酸Azelaic acid - - - - - - - - - - 0.39 -
磷酸Sodium pyrophosphate - - - - 0.63 - - 2.66 - 1.59 - -

Fig. 5

Effect of exogenous acids on G. rostochiensis chemotaxis and hatching"

Table 3

Comparison of the effects of effective acids and root exudates on G. rostochiensis"

孵化的2龄幼虫数量
Number of hatched J2
吸引率
Attraction rate (%)
会-2 Huize 2 802a 5ab
青薯9号Qingshu 9 766a 10a
宣薯6号Xuanshu 6 470b 6ab
云薯505 Yunshu 505 555b 4ab
ddH2O 6c 8a
咖啡酸Caffeic acid 8c 2b
丁二酸Succinic acid 127c 5ab
氢化肉桂酸3-Phenylpropionic acid 4c 10a
3-羟基丙酸3-Hydroxypropionic acid 164c 6ab
1% DMSO 8c 6ab
[1]
汝甲荣, 明立伟, 王怀鹏, 李志新, 张金鹏, 赵雪, 刘卫平, 李长辉, 刘玲玲. 不同药剂防治马铃薯早疫病田间效果试验. 农业科技通讯, 2023(11): 112-115.
RU J R, MING L W, WANG H P, LI Z X, ZHANG J P, ZHAO X, LIU W P, LI C H, LIU L L. Field experiment on control effect of different chemicals on early blight of potato. Bulletin of Agricultural Science and Technology, 2023(11): 112-115. (in Chinese)
[2]
刘巧兰. 云南省马铃薯绿色高效栽培技术. 种子科技, 2023, 41(1): 69-71.
LIU Q L. Green and efficient cultivation technology of potato in Yunnan Province. Seed Science & Technology, 2023, 41(1): 69-71. (in Chinese)
[3]
毛彦芝, 牛若超, 孙继英, 闵凡祥, 杨帅, 王文重, 魏琪, 董学志, 赵丹, 郭梅. 马铃薯田线虫病害发生及防治. 土壤与作物, 2022, 11(1): 104-114.
MAO Y Z, NIU R C, SUN J Y, MIN F X, YANG S, WANG W Z, WEI Q, DONG X Z, ZHAO D, GUO M. Occurrence and control of nematode diseases in potato (Solanum tuberosum L.). Soils and Crops, 2022, 11(1): 104-114. (in Chinese)
[4]
彭德良. 植物线虫病害: 我国粮食安全面临的重大挑战. 生物技术通报, 2021, 37(7): 1-2.
PENG D L. Plant nematode diseases: Serious challenges to China’s food security. Biotechnology Bulletin, 2021, 37(7): 1-2. (in Chinese)
[5]
PENG D L, LIU H, PENG H, JIANG R, LI Y Q, WANG X, GE J J, ZHAO S Q, FENG X D, FENG M Y. First detection of the potato cyst nematode (Globodera rostochiensis) in a major potato production region of China. Plant Disease, 2023, 107(1): 233.
[6]
顾建锋, 邵宝林, 方亦午, 马欣欣, 李星月, 郑经武. 四川省马铃薯孢囊线虫的形态和分子鉴定. 福建农业学报, 2022, 37(4): 520-528.
GU J F, SHAO B L, FANG Y W, MA X X, LI X Y, ZHENG J W. Morphological and molecular identification of potato cyst nematode from Sichuan. Fujian Journal of Agricultural Sciences, 2022, 37(4): 520-528. (in Chinese)
[7]
JIANG R, PENG H, LI Y Q, LIU H, ZHAO S Q, LONG H B, HU X Q, GE J J, LI X Y, LIU M Y, SHAO B L, PENG D L. First record of the golden potato nematode Globodera rostochiensis in Yunnan and Sichuan provinces of China. Journal of Integrative Agriculture, 2022, 21(3): 898-899.

doi: 10.1016/S2095-3119(21)63845-5
[8]
邓春菊, 李艳, 杨毅娟, 杨艳梅, 陈敏, 李永青, 胡先奇. 云南省马铃薯孢囊线虫种类鉴定. 云南农业大学学报(自然科学), 2023, 38(3): 400-408.
DENG C J, LI Y, YANG Y J, YANG Y M, CHEN M, LI Y Q, HU X Q. Identification of potato cyst nematodes (Globodera rostochiensis) on potato in Yunnan Province. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(3): 400-408. (in Chinese)
[9]
宋家雄, 许翀, 陈敏, 李永青, 张汉学, 普松权, 梅焱, 杨毅娟, 彭德良. 马铃薯金线虫发生特点及综合防控方法. 植物检疫, 2023, 37(1): 68-72.
SONG J X, XU C, CHEN M, LI Y Q, ZHANG H X, PU S Q, MEI Y, YANG Y J, PENG D L. Occurrence characteristics and integrated management of golden cyst nematode (Globodera rostochiensis) on potato. Plant Quarantine, 2023, 37(1): 68-72. (in Chinese)
[10]
中华人民共和国农业农村部公告第351号全国农业植物检疫性生物名单. http://www.gov.cn/zhengce/zhengceku/2020-11/12/content_5560727.htm. (2020-11-04) [2023-12-14].
Announcement No. 351 of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China on the National List of Agricultural Plant Quarantine Organisms. http://www.gov.cn/zhengce/zhengceku/2020-11/12/content_5560727.htm. (2020-11-04) [2023-12-14]. in Chinese)
[11]
OCHOLA J, CORTADA L, NG’ANG’A M, HASSANALI A, COYNE D, TORTO B. Mediation of potato—potato cyst nematode, G. rostochiensis interaction by specific root exudate compounds. Frontiers in Plant Science, 2020, 11: 649.
[12]
彭焕, 刘慧, 江如, 葛建军, 赵守歧, 冯晓东, 黄文坤, 彭德良. 警惕检疫性有害生物马铃薯孢囊线虫(Globodera rostochiensisG. pallida)入侵我国. 植物保护, 2020, 46(6): 1-9.
PENG H, LIU H, JIANG R, GE J J, ZHAO S Q, FENG X D, HUANG W K, PENG D L. Potential invasion of the potato cyst nematode Globodera rostochiensis and G. pallida into China. Plant Protection, 2020, 46(6): 1-9. (in Chinese)
[13]
PLANTARD O, PICARD D, VALETTE S, SCURRAH M, GRENIER E, MUGNIÉRY D. Origin and genetic diversity of Western European populations of the potato cyst nematode (Globodera pallida) inferred from mitochondrial sequences and microsatellite loci. Molecular Ecology, 2008, 17(9): 2208-2218.

doi: 10.1111/j.1365-294X.2008.03718.x pmid: 18410291
[14]
SEINHORST J W. The relationship in field experiments between population density of Globodera rostochiensis before planting potatoes and yield of potato tubers. Nematologica, 1982, 28: 277-284.
[15]
EFSA Panel on Plant Health (PLH). Scientific opinion on the risks to plant health posed by European versus non-European populations of the potato cyst nematodes Globodera pallida and Globodera rostochiensis. EFSA Journal, 2012, 10(4): 2644.
[16]
PRICE J A, COYNE D, BLOK V C, JONES J T. Potato cyst nematodes Globodera rostochiensis and G. pallida. Molecular Plant Pathology, 2021, 22(5): 495-507.
[17]
VLAAR L E, THIOMBIANO B, ABEDINI D, SCHILDER M, YANG Y T, DONG L. A combination of metabolomics and machine learning results in the identification of a new cyst nematode hatching factor. Metabolites, 2022, 12(6): 551.
[18]
HARTSEMA O, MHEEN H V D, BERG W V D, GASTEL W V, MOLENDIJK L, HOEK H. Raketblad (Solanum sisymbriifolium) Teeltaspecten en sanerende werking op aardappel cysteaaltjes (Globodera sp.) 2001-2004// Praktijkonderzoek Plant & Omgeving. 2005: 44-45.
[19]
HUE B T, DIJKINK J, KUIPER S, SCHAIK S, MAARSEVEEN J H, HIEMSTRA H. Synthesis of the tricyclic core of solanoeclepin A through intramolecular [2+2] photocycloaddition of an allene butenolide. European Journal of Organic Chemistry, 2006(1): 127-137.
[20]
SAKATA I, KUSHIDA A, TANINO K. The hatching-stimulation activity of solanoeclepin A toward the eggs of Globodera (Tylenchida: Heteroderidae) species. Applied Entomology and Zoology, 2021, 56: 51-57.
[21]
JARED J J, MURUNGI L K, WESONGA J, TORTO B. Steroidal glycoalkaloids: Chemical defence of edible African nightshades against the tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Pest Management Science, 2016, 72(4): 828-836.

doi: 10.1002/ps.4100 pmid: 26299255
[22]
TORTO B, GORTADA L, MURUNGI L K, HAUKELAND S, COYNE D L. Management of cyst and root knot nematodes: A chemical ecology perspective. Journal of Agricultural and Food Chemistry, 2018, 66(33): 8672-8678.

doi: 10.1021/acs.jafc.8b01940 pmid: 30037217
[23]
SOKOLOVA T A. Low-molecular-weight organic acids in soils: Sources, composition, concentrations, and functions: A review. Eurasian Soil Science, 2020, 53(5): 580-594.
[24]
毛梦雪, 朱峰. 根系分泌物介导植物抗逆性研究进展与展望. 中国生态农业学报, 2021, 29(10): 1649-1657.
MAO M X, ZHU F. Progress and perspective in research on plant resistance mediated by root exudates. Chinese Journal of Eco- Agriculture, 2021, 29(10): 1649-1657. (in Chinese)
[25]
SANCHEZ-ARCOS C, KAI M, SVATOŠ A, GERSHENZON J, KUNERT G. Untargeted metabolomics approach reveals differences in host plant chemistry before and after infestation with different pea aphid host races. Frontiers in Plant Science, 2019, 10: 188.
[26]
明会, 蒋伟, 刘太红, 曾蕊, 施运迪, 卢丽丽, 马永艳, 李先平, 于德才. 利用分子标记筛选马铃薯抗孢囊线虫资源. 植物遗传资源学报, 2023, 24(4): 1194-1204.

doi: 10.13430/j.cnki.jpgr.20221204001
MING H, JIANG W, LIU T H, ZENG R, SHI Y D, LU L L, MA Y Y, LI X P, YU D C. Molecular markers assisted identification of potato resources resistant to cyst nematode. Journal of Plant Genetic Resources, 2023, 24(4): 1194-1204. (in Chinese)

doi: 10.13430/j.cnki.jpgr.20221204001
[27]
李艳, 陈敏, 代艳琼, 李永青, 邓春菊, 杨毅娟, 杨艳梅, 胡先奇. 马铃薯品种对马铃薯金线虫的抗性评价. 江西农业学报, 2023, 35(9): 46-54.
LI Y, CHEN M, DAI Y Q, LI Y Q, DENG C J, YANG Y J, YANG Y M, HU X Q. Resistance evaluation of different potato varieties to Globodera rostochiensis. Acta Agriculturae Jiangxi, 2023, 35(9): 46-54. (in Chinese)
[28]
郑经武, 程瑚瑞, 方中达. 土壤中线虫孢囊的三种分离方法及综合评价. 植物保护, 1995, 21(1): 50-51.
ZHENG J W, CHENG H R, FANG Z D. Three separation methods and comprehensive evaluation of nematode cyst in soil. Plant Protection, 1995, 21(1): 50-51. (in Chinese)
[29]
姜伟, 张海英, 李金鸿, 连芸芸, 吴锦, 刘永刚, 李惠霞. 5种药剂对大豆孢囊线虫孵化及2龄幼虫室内毒力的影响. 甘肃农业大学学报, 2021, 56(4): 36-42.
JIANG W, ZHANG H Y, LI J H, LIAN Y Y, WU J, LIU Y G, LI H X. Effects of five agents on hatching of Heterodera glycines and indoor virulence of second-stage juveniles. Journal of Gansu Agricultural University, 2021, 56(4): 36-42. (in Chinese)
[30]
张文明, 邱慧珍, 张春红, 刘星, 高怡安, 沈其荣. 连作马铃薯不同生育期根系分泌物的成分检测及其自毒效应. 中国生态农业学报, 2015, 23(2): 215-224.
ZHANG W M, QIU H Z, ZHANG C H, LIU X, GAO Y A, SHEN Q R. Identification and autotoxicity of root exudates of continuous cropping potato at different growth stages. Chinese Journal of Eco-Agriculture, 2015, 23(2): 215-224. (in Chinese)
[31]
DEVINE K J, JONESD P W. Investigations into the chemoattraction of the potato cyst nematodes Globodera rostochiensis and G. pallida towards fractionated potato root leachate. Nematology, 2003, 5(1): 65-75.
[32]
颜婷. 常用杀虫剂对旱稻孢囊线虫孵化、侵染及行为的影响[D]. 长沙: 湖南农业大学, 2016.
YAN T. Effects of insecticides on hatching, penetration and behavior of Heterodera elachista[D]. Changsha: Hunan Agricultural University, 2016. (in Chinese)
[33]
BŪDA V, ČEPULYTĖ-RAKAUSKIENĖ R. The effects of α-solanine and zinc sulphate on the behaviour of potato cyst nematodes Globodera rostochiensis and G. pallida. Nematology, 2015, 17(9): 1105-1111.
[34]
孙漫红, 刘杏忠. 淡紫拟青霉发酵滤液对大豆胞囊线虫趋化性的影响. 植物病理学报, 2004, 34(4): 376-379.
SUN M H, LIU X Z. Effects of Paecilomyces lilacinus M-14 fermentation filtrate on the affinity between soybean cyst nematode and soybean root. Acta Phytopathologica Sinica, 2004, 34(4): 376-379. (in Chinese)
[35]
张文明, 邱慧珍, 张春红, 海龙. 不同连作年限马铃薯根系分泌物的成分鉴定及其生物效应. 中国生态农业学报, 2018, 26(12): 1811-1818.
ZHANG W M, QIU H Z, ZHANG C H, HAI L. Identification of chemicals in potato root exudates under different years of continuous cropping and their biologic effects. Chinese Journal of Eco- Agriculture, 2018, 26(12): 1811-1818. (in Chinese)
[36]
吴彩霞, 傅华. 根系分泌物的作用及影响因素. 草业科学, 2009, 26(9): 24-29.
WU C X, FU H. Effects and roles of root exudates. Pratacultural Science, 2009, 26(9): 24-29. (in Chinese)
[37]
LI T, WANG H Y, XIA X B, CAO S J, YAO J G, ZHANG L L. Inhibitory effects of components from root exudates of Welsh onion against root knot nematodes. PLoS ONE, 2018, 13(1): e0201471.
[38]
KIMENJU J W, KAGUNDU A M, NDERITU J H, MAMBALA F, MUTUA G K, KARIUKI G M. Incorporation of green manure plants into bean cropping systems contribute to root-knot nematode suppression. Asian Journal of Plant Sciences, 2008, 7(4): 404-408.
[39]
RYAN A, DEVINE K J. Comparison of the in-soil hatching responses of Globodera rostochiensis and G. pallida in the presence and absence of the host potato crop cv. British Queen. Nematology, 2005, 7(4): 587-597.
[40]
王帅, 魏钰洋, 张羲, 谢佳, 胡展, 孙然锋. 根结线虫趋化性研究进展. 农药学学报, 2022, 24(5): 982-996.
WANG S, WEI Y Y, ZHANG X, XIE J, HU Z, SUN R F. Advances in studies on the chemotaxis of root-knot nematodes. Chinese Journal of Pesticide Science, 2022, 24(5): 982-996. (in Chinese)
[41]
DEVINE K J, JONES P W. Purification and partial characterisation of hatching factors for the potato cyst nematode Globodera rostochiensis from potato root leachate. Nematology, 2000, 2(2): 231-236.
[42]
BYRNE J, TWOMEY U, MAHER N, DEVINE K J, JONES P W. Detection of hatching inhibitors and hatching factor stimulants for golden potato cyst nematode, Globodera rostochiensis, in potato root leachate. Annals of Applied Biology, 1998, 132(3): 463-472.
[43]
CURTIS R H. Plant-nematode interactions: Environmental signals detected by the nematode’s chemosensory organs control changes in the surface cuticle and behaviour. Parasite, 2008, 15(3): 310-316.
[44]
ROLFE R, BARRETT J, PERRY R. Analysis of chemosensory responses of second stage juveniles of Globodera rostochiensis using electrophysiological techniques. Nematology, 2000, 2(5): 523-533.
[45]
BYRNE J T, MAHER N J, JONES P W. Comparative responses of Globodera rostochiensis and G. pallida to hatching chemicals. Journal of Nematology, 2001, 33(4): 195-202.
[46]
PERRY R N. Chemoreception in plant parasitic nematodes. Annual Review of Phytopathology, 1996, 34: 181-199.

pmid: 15012540
[47]
许艳丽. 土壤环境对大豆胞囊线虫卵孵化影响及线虫分子诊断研究[D]. 哈尔滨: 东北农业大学, 2004.
XU Y L. The effects of soil environment on soybean cyst nematode (Heterodera glycinese) egg hatch and nematode molecular diagnosis[D]. Harbin: Northeast Agricultural University, 2004. (in Chinese)
[48]
DEVINE K, JONES P. Comparison of the production and mobility of hatching activity towards the potato cyst nematodes, Globodera rostochiensis and G. pallida within soil planted with a host potato crop. Nematology, 2003, 5(2): 219-225.
[49]
TEILLET A, DYBAL K, KERRY B R, MILLER A J, CURTIS R H, HEDDEN P. Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to Arabidopsis thaliana root signals. PLoS ONE, 2013, 8(4): e61259.
[50]
王雪, 段玉玺, 陈立杰, 王媛媛. 不同大豆品种根系对大豆胞囊线虫趋化性的影响. 大豆科学, 2008, 27(6): 1015-1018.
WANG X, DUAN Y X, CHEN L J, WANG Y Y. Effects of root from different soybean cultivars on the affinity between soybean cyst nematode and soybean root. Soybean Science, 2008, 27(6): 1015-1018. (in Chinese)
[51]
胡小斌, 梁旭东, 张龙, 迟元凯, 王暄, 李红梅. 禾谷孢囊线虫与不同小麦根系的互作表型特征. 植物保护, 2015, 41(4): 78-83.
HU X B, LIANG X D, ZHANG L, CHI Y K, WANG X, LI H M. Phenotype characterization of interaction between different wheat cultivars and Heterodera avenae. Plant Protection, 2015, 41(4): 78-83. (in Chinese)
[52]
崔磊, 高秀, 王晓鸣, 简恒, 唐文华, 李洪连, 李洪杰. 不同抗性小麦根与菲利普孢囊线虫(Heterodera filipjevi)互作的表型特征. 作物学报, 2012, 38(6): 1009-1017.
CUI L, GAO X, WANG X M, JIAN H, TANG W H, LI H L, LI H J. Characterization of interaction between wheat roots with different resistance and Heterodera filipjevi. Acta Agronomica Sinica, 2012, 38(6): 1009-1017. (in Chinese)
[53]
刘荣荣. 菲利普孢囊线虫与禾谷孢囊线虫的发生、根系趋性及种衣剂防治研究[D]. 南京: 南京农业大学, 2017.
LIU R R. Occrrrence, chemotaxis and seed-coating control of Heterodera filipjevi and H. avenae[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[54]
YANG G D, ZHOU B L, ZHANG X Y, ZHANG Z J, WU Y Y, ZHANG Y M, S W, ZOU Q D, GAO Y, TENG L. Effects of tomato root exudates on Meloidogyne incognita. PLoS ONE, 2016, 11(4): 01546751.
[1] HUANG LiQiang, JIANG Ru, ZHU BoZhi, PENG Huan, XU Chong, SONG JiaXiong, CHEN Min, LI YongQing, HUANG WenKun, PENG DeLiang. Identification and Evaluation of Major Potato Cultivars Resistance to Globodera rostochiensis and Detection of Their H1 Resistance Gene Marker [J]. Scientia Agricultura Sinica, 2024, 57(8): 1506-1516.
[2] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[3] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[4] CHEN YiYong, LI JianLong, ZHOU Bo, WU XiaoMin, CUI YingYing, FENG ShaoMao, HU HaiTao, TANG JinChi. Effects of Intercropping with Vulpia myuros in Tea Plantation on Soil and Tea Quality Components [J]. Scientia Agricultura Sinica, 2023, 56(24): 4916-4929.
[5] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
[6] GUO RongBo, LI GuoDong, PAN MengYu, ZHENG XianFeng, WANG ZhaoHui, HE Gang. Effects of Long-Term Straw Return and Nitrogen Application Rate on Organic Carbon Storage, Components and Aggregates in Cultivated Layers [J]. Scientia Agricultura Sinica, 2023, 56(20): 4035-4048.
[7] KONG LeHui, ZONG DeQian, SHI QingYao, YIN PanPan, WU WenYu, TIAN Peng, SHAN WeiXing, QIANG XiaoYu. Identification of StCYP83 Gene Family in Potato and Analysis of Its Function in Resistance Against Late Blight [J]. Scientia Agricultura Sinica, 2023, 56(16): 3124-3139.
[8] CHEN GuiPing, CHENG Hui, FAN Hong, FAN ZhiLong, HU FaLong, YIN Wen. Study on Adaptability of Spring Wheat Yield to Water and Nitrogen Reduction Under Wide-Width Uniform Sowing and Conventional Strip Sowing in Oasis Irrigated Regions [J]. Scientia Agricultura Sinica, 2023, 56(13): 2461-2473.
[9] LÜ LiHua, HAN JiangWei, ZHANG JingTing, DONG ZhiQiang, MENG Jian, JIA XiuLing. Analysis of Common Characteristics of Widely Adaptation Wheat Cultivars [J]. Scientia Agricultura Sinica, 2023, 56(11): 2064-2077.
[10] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[11] XIONG ShuPing, GAO Ming, ZHANG ZhiYong, QIN BuTan, XU SaiJun, FU XinLu, WANG XiaoChun, MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[12] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[13] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[14] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[15] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!