Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1748-1765.doi: 10.3864/j.issn.0578-1752.2024.09.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Study on the Matching Relationship Between Pattern of Grain Production and Arable Land Resources in Hubei Province Based on Geomorphological Divisions

ZHANG JunFeng1(), DING JianCheng1, WENG YuWei2, ZHANG Xiong3()   

  1. 1 School of Public Administration, Zhongnan University of Economics and Law, Wuhan 430073
    2 School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073
    3 College of Public Administration, South-Central University for Nationalities, Wuhan 430074
  • Received:2023-06-26 Accepted:2023-09-07 Online:2024-05-01 Published:2024-05-09
  • Contact: ZHANG Xiong

Abstract:

【Objective】The matching relationship between grain production pattern and regional arable land resources in different geomorphologic zones was studied to provide decision-making basis for grain production distribution and arable land resources protection.【Method】Concentration index, coefficient of variation method, spatial center of gravity model, matching degree and LMDI model were used.【Result】From 1990 to 2020, the proportion of grain output of Western Mountains, Central Heights, Eastern Hills and Jianghan Plain in the total grain output of Hubei Province was gradually adjusted to 11.2%, 30.6%, 26.2% and 32.0%. There are significant differences in the concentration and changing trends of grain crop production with different geomorphological division in Hubei Province from 1990 to 2020. Grain production in Hubei Province has a clear tendency to concentrate in Central Heights, mainly wheat and corn, while soybean production is concentrated in Jianghan Plain. In the past 30 years, the barycenter of grains planting and the barycenter of grains production in Hubei Province have both shifted to the northwest, with a distance of 5.37 km and 14.63 km, respectively. However, the barycenter of grain production in the Central Heights moves to the northeast, while the Jianghan Plain and the Western Mountains move to the southwest. The average spatial distances between grains production and the barycenter of arable land resources in the Western Mountains, the Central Heights, the Eastern Hills and the Jianghan Plain of Hubei Province are 6.20 km, 3.35 km, 10.57 km and 6.82 km. And their average index of consistency of change are 0.49, 0.44, 0.40 and 0.27, respectively. The Gini coefficients of grain production and arable land resources in Hubei Province are all greater than 0.5 and tend to increase, while the imbalance indices of Western Mountains and Jianghan Plain are positive, and the imbalance indices of Central Heights and Eastern Hills are negative. The quantity effect and intensive effect of arable land for grain production change in the four geomorphological divisions in the last 30 years are negative, and the utilization effect and quality effect of arable land are positive, among which the decreasing effect of arable land planting structure change on grain production in the Eastern Hills reaches 3.097 million t, while the increasing effect of replanting index change on grain production in the Central Heights reaches 3.0046 million t.【Conclusion】In the past 30 years, the incremental effect of quality and structure of arable land in the geomorphological divisions of Hubei Province is weakening, and the decreasing effect of quantity is increasing. Grain production in Hubei faces the planting risk of decreasing quality cropland and the yield risk of grain planting structure adjustment. Grain production and arable land resources have long been mismatched in the geomorphological divisions of Hubei Province and show obvious regional characteristics. The spatial layout of grain production and the adjustment of planting structure should fully consider the natural geography and arable land resource endowment characteristics of different geomorphological divisions to promote the coordinated development of food production and arable land use.

Key words: grain production, spatial-temporal variation, geomorphological divisions, arable land resources, matching, Hubei Province

Fig. 1

Geomorphological divisions of Hubei Province"

Fig. 2

Grain planting area and production with different geomorphological division in Hubei Province from 1990 to 2020 AWM, ACH, AEH, and AJP represents the grain planting area of Western Mountains, Central Heights, Eastern Hills, and Jianghan Plain, respectively; PWM, PCH, PEH, and PJP represents the grain production of Western Mountains, Central Heights, Eastern Hills, and Jianghan Plain, respectively"

Fig. 3

Planting area and production of main grain crops with different geomorphological division in Hubei Province from 1990 to 2020 Awheat, Arice, Amaize, Asoybean, and Apotato represents the planting area of wheat, rice, maize, soybean, and potato, respectively; Pwheat, Price, Pmaize, Psoybean, and Ppotato represents the production of of wheat, rice, maize, soybean, and potato, respectively"

Fig. 4

Planting area and production concentration of main grain crops with different geomorphological division in Hubei Province from 1990 to 2020"

Fig. 5

Fluctuation variation of grain planting area and production of main grain crops with different geomorphological division in Hubei Province from 1990 to 2020"

Fig. 6

Migration path of the grain production barycenter in Hubei Province from 1990 to 2020"

Fig. 7

Migration path of the grain production barycenter with different geomorphological division in Hubei Province from 1990 to 2020"

Table 1

Correlation coefficients between grain production and arable land in different geomorphological division"

地貌分区
Geomorpholo-gical division
耕地数量Number of cultivated land 耕地质量Quality of cultivated land
粮食作物播种面积
Grain crops planting area
粮食产量
Grain production
粮食作物种植结构
Grain crops cultivation structure
粮食作物播种面积
Grain crops planting area
粮食产量
Grain production
粮食作物种植结构
Grain crops cultivation structure
湖北省 Hubei 0.457** -0.061 0.704** -0.316 0.440* -0.755**
鄂西山地 Western Mountains 0.144 0.871** 0.929** -0.796** 0.168 -0.920**
鄂中岗地 Central Heights 0.852** 0.734** 0.532** -0.439* 0.010 -0.479**
鄂东丘陵 Eastern Hills 0.447* 0.463** -0.104 -0.487** 0.353 -0.585**
江汉平原 Jianghan Plain 0.167 -0.238 0.330 -0.665** 0.019 -0.799**

Fig. 8

Spatial distance and the change consistency index of the barycenter of grain production and arable land in Hubei Province from 1990 to 2020"

Fig. 9

Spatial distance and the change consistency index of the barycenter of grain production and arable land with different geomorphological division in Hubei Province from 1990 to 2020"

Table 2

Matching of arable land and grain production in Hubei Province from 1990 to 2020"

年份
Year
基尼系数Gini coefficient 不平衡指数Unbalance index
湖北省gp
Hubei gp
湖北省gq
Hubei gq
鄂西山地
Western Mountains
鄂中岗地
Central Heights
鄂东丘陵
Eastern Hills
江汉平原
Jianghan Plain
1990 0.527 0.533 0.083 -0.035 -0.045 -0.003
2000 0.502 0.500 0.062 -0.050 -0.038 0.025
2010 0.494 0.512 0.054 -0.073 -0.023 0.043
2020 0.523 0.539 0.072 -0.077 -0.003 0.008

Fig. 10

Changes of grain production factor in Hubei Province from 1990 to 2020"

Table 3

Decomposition of the arable land effect of grain production in Hubei Province from 1990 to 2020 (×104 t)"

年份
Year
粮食产量变化
Grain production change
数量效应
Quantitative effect
集约效应
Intensive effect
结构效应
Structural effect
质量效应
Quality effect
1991-1995 149.70(1.00) -60.70(-0.41) 144.60(0.97) -440.96(-2.95) 506.77(3.39)
1996-2000 -306.11(1.00) -16.86(0.06) -30.74(0.10) -140.50(0.46) -118.00(0.39)
2001-2005 33.88(1.00) -55.48(-1.64) 82.99(2.45) -65.14(-1.92) 71.51(2.11)
2006-2010 423.82(1.00) 24.88(0.06) 220.28(0.52) -58.06(-0.14) 236.73(0.56)
2011-2015 141.12(1.00) 23.51(0.17) -105.96(-0.75) 197.31(1.40) 26.26(0.19)
2016-2020 -202.93(1.00) -117.52(0.58) -78.85(0.39) 24.20(-0.12) -30.75(0.15)
1991-2020 239.48(1.00) -202.19(-0.84) 232.31(0.97) -483.15(-2.02) 692.52(2.89)

Table 4

Decomposition of the arable land effect of grain production with different geomorphological division in Hubei Province from 1990 to 2020 (×104 t)"

地貌区
Geomorphological division
粮食产量变化
Grain production change
数量效应
Quantitative effect
集约效应
Intensive effect
结构效应
Structural effect
质量效应
Quality effect
鄂西山地Western Mountains -16.55(1.00) -88.24(5.33) 134.97(-8.15) -166.69(10.07) 103.41(-6.25)
鄂中岗地Central Heights 252.19(1.00) -14.67(-0.06) 300.46(1.19) -78.57(-0.31) 44.96(0.19)
鄂东丘陵Eastern Hills -17.69(1.00) -51.48(2.91) 185.50(-10.49) -309.70(17.51) 158.00(-8.93)
江汉平原Jianghan Plain 21.53(1.00) -144.61(-6.72) 189.30(8.79) -219.32(-10.19) 196.16(9.11)
[1]
郑亚楠, 张凤荣, 谢臻, 张天柱, 李超, 王秀丽. 中国粮食生产时空演变规律与耕地可持续利用研究. 世界地理研究, 2019, 28(6): 120-131.

doi: 10.3969/j.issn.1004-9479.2019.06.2018304
ZHENG Y N, ZHANG F R, XIE Z, ZHANG T Z, LI C, WANG X L. Research on spatial-temporal evolution of grain production and sustainable use of cultivated land in China. World Regional Studies, 2019, 28(6): 120-131. (in Chinese)

doi: 10.3969/j.issn.1004-9479.2019.06.2018304
[2]
柴玲欢, 朱会义. 中国粮食生产区域集中化的演化趋势. 自然资源学报, 2016, 31(6): 908-919.

doi: 10.11849/zrzyxb.20150536
CHAI L H, ZHU H Y. Evolution trend of regional centralization of grain production in China. Journal of Natural Resources, 2016, 31(6): 908-919. (in Chinese)
[3]
LU C X, LIU A M, XIAO Y, LIU X J, XIE G D, CHENG S K. Changes in China’s grain production pattern and the effects of urbanization and dietary structure. Journal of Resources and Ecology, 2020, 11(4): 358.

doi: 10.5814/j.issn.1674-764x.2020.04.004
[4]
黄海潮, 温良友, 孔祥斌, 陈文广, 孙晓兵. 中国耕地空间格局演化对耕地适宜性的影响及政策启示. 中国土地科学, 2021, 35(2): 61-70.
HUANG H C, WEN L Y, KONG X B, CHEN W G, SUN X B. The impact of spatial pattern evolution of cultivated land on cultivated land suitability in China and its policy implication. China Land Science, 2021, 35(2): 61-70. (in Chinese)
[5]
李圆圆, 谈明洪, 张红旗. 中国耕地空间格局变化对粮食生产的影响. 中国工程科学, 2018, 20(5): 90-95.
LI Y Y, TAN M H, ZHANG H Q. The impact of cropland spatial pattern change on grain production in China. Strategic Study of CAE, 2018, 20(5): 90-95. (in Chinese)
[6]
HE C Y, LIU Z F, XU M, MA Q, DOU Y Y. Urban expansion brought stress to food security in China: evidence from decreased cropland net primary productivity. The Science of the Total Environment, 2017, 576: 660-670.

doi: S0048-9697(16)32292-6 pmid: 27810753
[7]
LI S T, ZHANG D J, XIE Y, YANG C. Analysis on the spatio- temporal evolution and influencing factors of China’s grain production. Environmental Science and Pollution Research, 2022, 29(16): 23834-23846.

doi: 10.1007/s11356-021-17657-2
[8]
胡忆雨, 朱颖璇, 杨雨豪, 邹军, 陈阜, 尹小刚. 1951—2015年中国主要粮食与油料作物种植结构变化分析. 中国农业大学学报, 2019, 24(11): 183-196.
HU Y Y, ZHU Y X, YANG Y H, ZOU J, CHEN F, YIN X G. Changes of the planting structure of major food and oil crops in China from 1951 to 2015. Journal of China Agricultural University, 2019, 24(11): 183-196. (in Chinese)
[9]
PAN J W, CHEN Y Y, ZHANG Y, CHEN M, FENNELL S, LUAN B, WANG F, MENG D, LIU Y L, JIAO L M, WANG J. Spatial-temporal dynamics of grain yield and the potential driving factors at the County level in China. Journal of Cleaner Production, 2020, 255: 120312.

doi: 10.1016/j.jclepro.2020.120312
[10]
刘传明, 范观宇, 毛广雄, 何品蓉. 近20年淮河生态经济带粮食生产效率时空变化与影响因素. 自然资源学报, 2023, 38(3): 707-720.

doi: 10.31497/zrzyxb.20230310
LIU C M, FAN G Y, MAO G X, HE P R. Spatio-temporal variation and influencing factors of grain production efficiency in Huaihe Eco-Economic Belt in recent 20 years. Journal of Natural Resources, 2023, 38(3): 707-720. (in Chinese)

doi: 10.31497/zrzyxb.20230310
[11]
WANG J Y, ZHANG Z W, LIU Y S. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy, 2018, 74: 204-213.

doi: 10.1016/j.landusepol.2017.11.037
[12]
YE Y J, QI Q W, JIANG L L, LI X F. Spatial-temporal changes in grain input-output and the driving mechanism in China since 1985. International Journal of Agricultural Sustainability, 2017, 15(4): 445-456.

doi: 10.1080/14735903.2017.1335571
[13]
姚成胜, 殷伟, 黄琳, 崔会芳. 中国粮食生产与消费能力脆弱性的时空格局及耦合协调性演变. 经济地理, 2019, 39(12): 147-156.
YAO C S, YIN W, HUANG L, CUI H F. Spatial-temporal pattern and coupling coordination evolution of the vulnerability of food production and consumption ability in China. Economic Geography, 2019, 39(12): 147-156. (in Chinese)
[14]
蒋凌霄, 安悦, 谭雪兰, 米胜渊, 熊亚东, 谭杰扬. 近30年来长株潭地区农作物种植结构演变及优化对策. 经济地理, 2020, 40(1): 173-180.
JIANG L X, AN Y, TAN X L, MI S Y, XIONG Y D, TAN J Y. Temporal and spatial evolution and optimized countermeasure of crop planting structure in the Changsha-Zhuzhou-xiangtan area in recent 30 years. Economic Geography, 2020, 40(1): 173-180. (in Chinese)

doi: 10.2307/142196
[15]
邱孟龙, 曹小曙, 周建, 冯小龙, 高兴川. 基于GWR模型的渭北黄土旱塬粮食单产空间分异及其影响因子分析: 以陕西彬县为例. 中国农业科学, 2019, 52(2): 273-284. doi: 10.3864/j.issn.0578-1752.2019.02.007.
QIU M L, CAO X S, ZHOU J, FENG X L, GAO X C. Spatial differentiation and impact factors of grain yield per hectare in Weibei Plateau based on GWR model: a case study of Binxian County, shannxi. Scientia Agricultura Sinica, 2019, 52(2): 273-284. doi: 10.3864/j.issn.0578-1752.2019.02.007. (in Chinese)
[16]
ZHANG D H, WANG H Q, LOU S. Research on grain production efficiency in China’s main grain-producing areas from the perspective of grain subsidy. Environmental Technology & Innovation, 2021, 22: 101530.
[17]
胡慧芝, 王建力, 王勇, 龙晓泳. 1990—2015年长江流域县域粮食生产与粮食安全时空格局演变及影响因素分析. 长江流域资源与环境, 2019, 28(2): 359-367.
HU H Z, WANG J L, WANG Y, LONG X Y. Spatial-temporal pattern and influencing factors of grain production and food security at County level in the Yangtze River Basin from 1990 to 2015. Resources and Environment in the Yangtze Basin, 2019, 28(2): 359-367. (in Chinese)
[18]
XU S W, WU J Z, SONG W, LI Z Q, LI Z M, KONG F T. Spatial-temporal changes in grain production, consumption and driving mechanism in China. Journal of Integrative Agriculture, 2013, 12(2): 374-385.

doi: 10.1016/S2095-3119(13)60236-1
[19]
侯孟阳, 邓元杰, 姚顺波. 城镇化、耕地集约利用与粮食生产: 气候条件下有调节的中介效应. 中国人口·资源与环境, 2022, 32(10): 160-171.
HOU M Y, DENG Y J, YAO S B. Urbanization, intensive cropland use, and grain production: a moderated mediating effect test under climate conditions. China Population, Resources and Environment, 2022, 32(10): 160-171. (in Chinese)
[20]
何理, 尹方平, 赵文仪, 夏军. 中国水-土-人口资源多元时空匹配格局及其对粮食生产与安全的影响研究. 水利水电技术(中英文), 2022, 53(3): 11-27.
HE L, YIN F P, ZHAO W Y, XIA J. Multivariate spatiotemporal matching pattern of water-land-population resources in China and its impact on food production and security. Water Resources and Hydropower Engineering, 2022, 53(3): 11-27. (in Chinese)
[21]
刘正佳, 钟会民, 李裕瑞, 文琦, 刘雪琦, 简钰清. 近20年中国粮食生产变化特征及其对区域粮食供需格局的影响. 自然资源学报, 2021, 36(6): 1413-1425.

doi: 10.31497/zrzyxb.20210605
LIU Z J, ZHONG H M, LI Y R, WEN Q, LIU X Q, JIAN Y Q. Change in grain production in China and its impacts on spatial supply and demand distributions in recent two decades. Journal of Natural Resources, 2021, 36(6): 1413-1425. (in Chinese)

doi: 10.31497/zrzyxb.20210605
[22]
周志刚, 郑明亮. 基于对数均值迪氏指数法的中国粮食产量影响因素分解. 农业工程学报, 2015, 31(2): 1-6.
ZHOU Z G, ZHENG M L. Influential factors decomposition for China’s grain yield based on logarithmic mean Divisia index method. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 1-6. (in Chinese)
[23]
LI L H, JIANG P S, LIU W F, SUN Y X, DANG Z H. Increasing spatial mismatch of cropland-grain production-population in China over the past two decades. Land, 2022, 11(10): 1685.

doi: 10.3390/land11101685
[24]
CHAI J, WANG Z Q, YANG J, ZHANG L G. Analysis for spatial-temporal changes of grain production and farmland resource: evidence from Hubei Province, central China. Journal of Cleaner Production, 2019, 207: 474-482.

doi: 10.1016/j.jclepro.2018.10.008
[25]
LI T T, LONG H L, ZHANG Y N, TU S S, GE D Z, LI Y R, HU B Q. Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system. Land Use Policy, 2017, 60: 26-36.

doi: 10.1016/j.landusepol.2016.10.013
[26]
王松南, 穆月英. 我国粮食生产格局演变下的粮地匹配. 中国农业大学学报, 2022, 27(9): 1-11.
WANG S N, MU Y Y. Spatial pattern evolution of grain production and its impact on grain-land matching in China. Journal of China Agricultural University, 2022, 27(9): 1-11. (in Chinese)
[27]
马才学, 温槟荧, 柯新利. 基于SOM神经网络模型的耕地非农化压力区域差异研究: 以湖北省为例. 华中农业大学学报(社会科学版), 2017(4): 109-117, 150.
MA C X, WEN B Y, KE X L. Regional differences of farmland conversion based on SOM neural network model—A case study in Hubei Province. Journal of Huazhong Agricultural University (Social Sciences Edition), 2017(4): 109-117, 150. (in Chinese)
[28]
毛平平, 沈贝贝, 丁蕾, 朱晓昱, 辛晓平, 闫玉春, 王旭, 闫瑞瑞, 徐丽君, 陈宝瑞. 半干旱牧区天然打草场生产力时空变化及对气候响应分析. 中国农业科学, 2020, 53(13): 2743-2756. doi: 10.3864/j.issn.0578-1752.2020.13.021.
MAO P P, SHEN B B, DING L, ZHU X Y, XIN X P, YAN Y C, WANG X, YAN R R, XU L J, CHEN B R. Temporal and spatial variation of productivity and its response to climate in semi-arid pasture of forage harvesting area. Scientia Agricultura Sinica, 2020, 53(13): 2743-2756. doi: 10.3864/j.issn.0578-1752.2020.13.021. (in Chinese)
[29]
杨鑫, 穆月英. 中国粮食生产与水资源的时空匹配格局. 华南农业大学学报(社会科学版), 2019, 18(4): 91-100.
YANG X, MU Y Y. Spatial-temporal matching patterns of grain production and water resources. Journal of South China Agricultural University (Social Science Edition), 2019, 18(4): 91-100. (in Chinese)
[30]
吕明, 范俊楠, 王雅鹏. 湖北省粮食生产时空变动的实证研究: 基于LMDI分解法. 浙江农业学报, 2016, 28(5): 893-900.
M, FAN J N, WANG Y P. Decomposition and measurement of effects of cultivated land use and temporal-spatial variation of grain production based on LMDI method in Hubei. Acta Agriculturae Zhejiangensis, 2016, 28(5): 893-900. (in Chinese)
[31]
ANG B W, LIU N. Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy, 2007, 35(1): 739-742.

doi: 10.1016/j.enpol.2005.12.004
[32]
JIAO J L, QI Y Y, CAO Q, LIU L C, LIANG Q M. China’s targets for reducing the intensity of CO2 emissions by 2020. Energy Strategy Reviews, 2013, 2(2): 176-181.

doi: 10.1016/j.esr.2013.06.001
[33]
宋小青, 欧阳竹. 1999—2007年中国粮食安全的关键影响因素. 地理学报, 2012, 67(6): 793-803.

doi: 10.11821/xb201206007
SONG X Q, OUYANG Z. Key influencing factors of food security guarantee in China during 1999-2007. Acta Geographica Sinica, 2012, 67(6): 793-803. (in Chinese)

doi: 10.11821/xb201206007
[34]
陈印军, 易小燕, 方琳娜, 杨瑞珍. 中国耕地资源与粮食增产潜力分析. 中国农业科学, 2016, 49(6): 1117-1131. doi: 10.3864/j.issn.0578-1752.2016.06.008.
CHEN Y J, YI X Y, FANG L N, YANG R Z. Analysis of cultivated land and grain production potential in China. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131. doi: 10.3864/j.issn.0578-1752.2016.06.008. (in Chinese)
[35]
汪涌, 王滨, 马仓, 钟晓琳, 蔡运龙. 基于耕地面积订正的中国复种指数研究. 中国土地科学, 2008, 22(12): 46-52.
WANG Y, WANG B, MA C, ZHONG X L, CAI Y L. Study on the multiple cropping index based on revised cultivated land area in China. China Land Science, 2008, 22(12): 46-52. (in Chinese)
[36]
卢新海, 崔海莹, 柯善淦, 匡兵. 湖北省耕地利用绿色转型与粮食全要素生产率的耦合协调及其驱动机制研究. 中国土地科学, 2022, 36(8): 75-84.
LU X H, CUI H Y, KE S G, KUANG B. Coupling coordination and driving mechanism of green transition of farmland use and total factor productivity of grain in Hubei Province. China Land Science, 2022, 36(8): 75-84. (in Chinese)
[1] ZHANG WeiJian, YAN ShengJi, ZHANG Jun, JIANG Yu, DENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[2] TIAN Yun,WANG MengChen. Research on Spatial and Temporal Difference of Agricultural Carbon Emission Efficiency and Its Influencing Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 5063-5072.
[3] FANG HuiTing,MENG JiHua,CHENG ZhiQiang. Spatio-Temporal Variability of Soil Available Nutrients Based on Remote Sensing and Crop Model [J]. Scientia Agricultura Sinica, 2019, 52(3): 478-490.
[4] LI Bo,DU JianGuo,LIU XueQi. Spatial-Temporal Characteristics and Economic Relevance of Agricultural Carbon Emissions in Hubei Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4309-4319.
[5] XiaoBin WU, DeShui TAN, HaiTao LIN, GuoLiang ZHU, ZiShuang LI, AiLing HE, JianHua GUO, ZhaoHui LIU. Yield Effect and Nitrogen Fertilizer Screening of One-off Application of Controlled Release Fertilizer for Winter Wheat [J]. Scientia Agricultura Sinica, 2018, 51(20): 3863-3875.
[6] LIU ZhiJuan1, YANG XiaoGuang1, Lü Shuo1, WANG Jing1,2, LIN XiaoMao3. Spatial-Temporal Variations of Yield Gaps of Spring Maize in Northeast China [J]. Scientia Agricultura Sinica, 2017, 50(9): 1606-1616.
[7] LI Jian-jun, XU Ming-gang, XIN Jing-shu, DUAN Jian-jun, REN Yi, LI Dong-chu, HUANG Jing, SHEN Hua-ping, ZHANG Hui-min. Spatial and Temporal Characteristics of Basic Soil Productivity in China [J]. Scientia Agricultura Sinica, 2016, 49(8): 1510-1519.
[8] CHEN Yin-jun, YI Xiao-yan, FANG Lin-na, YANG Rui-zhen. Analysis of Cultivated Land and Grain Production Potential in China [J]. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131.
[9] JI Xing-jie,YU Yong-qiang,ZHANG Wen,YU Wei-dong
. Spatial-Temporal Patterns of Winter Wheat Harvest Index in China in Recent Twenty Years
[J]. Scientia Agricultura Sinica, 2010, 43(17): 3511-3519 .
[10]

CHEN Yu-ping,WU Hai-tao,TAO Da-yun,Sushil Pandey,XU Peng,HU Feng-yi,DING Shi-jun,WANG Huai-yu,FENG Lu

.

Assessing the Effects of Agricultural Technology Adoption on Farmers’ Income Using Propensity Score Matching Method ——Evidence from Upland Rice Farmers in Southwestern Yunnan

[J]. Scientia Agricultura Sinica, 2010, 43(17): 3667-3676 .
[11] LIU Yan-sui,WANG Jie-yong,GUO Li-ying. The Spatial-Temporal Changes of Grain Production and Arable Land in China
[J]. Scientia Agricultura Sinica, 2009, 42(12): 4269-4274 .
[12] Qi-Feng LI. Farmers' acceptance and response to new agricultural technology based on participatory rural appraisal [J]. Scientia Agricultura Sinica, 2008, 41(7): 1963-1968 .
[13] . Climate Change and Main Agrometeorological disasters Corresponding to in Hubei Province [J]. Scientia Agricultura Sinica, 2007, 40(8): 1646-1653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!