Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1281-1294.doi: 10.3864/j.issn.0578-1752.2024.07.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat

GAO ChenKai1(), LIU ShuiMiao1, LI YuMing1, ZHAO ZhiHeng1, SHAO Jing1, YU HaoLin1, WU PengNian2, WANG YanLi2, GUAN XiaoKang1, WANG TongChao1(), WEN PengFei1()   

  1. 1 Agronomy College of Henan Agriculture University, Zhengzhou 450046
    2 Resources and Environment College of Henan Agriculture University, Zhengzhou 450046
  • Received:2023-10-11 Accepted:2023-12-13 Online:2024-04-01 Published:2024-04-09
  • Contact: WANG TongChao, WEN PengFei

Abstract:

【Objective】The water use efficiency can comprehensively reflect the growth suitability and energy conversion efficiency of winter wheat. The driving factors of winter wheat in response to standardized water use efficiency (WP*) at different growth stages were screened and explored, and the WP* prediction model of related driving factors was constructed, which was of great significance for the monitoring of water use efficiency and efficient use of water resources in winter wheat in the Huang-Huai-Hai Plain.【Method】Three water treatments were set up, including water deficit treatments (W1:35 mm, and W2:48 mm) and control treatment (W3: 68 mm), and the canopy temperature parameters, physiological indexes and standardized WP* of winter wheat at the jointing, booting and filling stages were measured. Stepwise regression and pathway analysis were used to screen the main driving factors in response to WP* changes at each growth stage, the relationship between WP* and related drivers was explored, and finally the partial least squares regression (PLSR) and support vector machine (SVM) methods were used to construct a driver-based WP* prediction model in each growth stage. 【Result】 Compared with W3, the canopy temperature parameters, physiological indexes and WP* of winter wheat under the water deficit treatments showed significant differences. Based on the stepwise regression method, the main driving factors in response to WP* at each growth stage were screened, and the sensitivity of each driving factor in response to WP* was ranked by pathway analysis, that is, maximum temperature difference (MTD), stomatal conductance (Gs), leaf water content (LWC) and POD were selected at the jointing stage; canopy relative temperature difference (CRTD), equivalent water thickness (EWT), soluble sugar content (SSC) and crop water stress index (CWSI) were selected at the booting stage; SSC, standard deviation of canopy temperature (CTSD), LWC and Gs were selected at the filling stage. Finally, the driver-based WP* prediction model for each growth stage was construct by using PLSR and SVM. Among them, the prediction model of WP* at booting stage constructed by SVM had the best accuracy, with R2cal (R2val), RMSEcal (RMSEval) and nRMSEcal (nRMSEval) of 0.945 (0.926), 0.533 g·m-2 (0.580 g·m-2) and 2.844% (3.075%), respectively. 【Conclusion】 By screening the relevant driving factors of WP* at each growth stage of winter wheat and constructing a prediction model of winter wheat water use efficiency, this paper provided a theoretical basis for accurate monitoring and management of winter wheat moisture in the Huang-Huai-Hai Plain.

Key words: winter wheat, standardized water use efficiency (WP*), driving factor, pathway analysis, support vector machine

Table 1

Effects of different water treatments on canopy temperature parameters, physiological traits and WP* of two wheat varieties"

植株性状
Plant trait
处理
Treatment
拔节期 Jointing stage 孕穗期 Booting stage 灌浆期 Filling stage
洛麦22
Luomai 22
周麦27
Zhoumai 27
洛麦22
Luomai 22
周麦27
Zhoumai 27
洛麦22
Luomai 22
周麦27
Zhoumai 27
冠层温度极差
MTD (X1)
W1 10.85-14.14 14.29-15.26 9.43-13.40 9.59-13.67 11.37-12.21 10.70-13.35
W2 8.03-8.63 8.26-9.52 5.99-6.36 7.15-8.06 7.80-8.38 8.41-9.63
W3 5.52-7.03 6.24-6.68 4.43-5.71 5.38-6.12 5.99-7.40 7.65-8.52
冠层温度标准差
CTSD (X2)
W1 1.21-1.46 1.09-1.64 1.55-1.94 1.66-2.29 1.72-1.95 1.98-2.53
W2 0.92-1.00 0.96-1.08 0.73-0.87 0.85-0.93 1.35-1.61 1.29-1.63
W3 0.83-0.88 0.83-0.87 0.55-0.69 0.64-0.79 0.61-0.89 0.73-1.15
冠层相对温差
CRTD (X3)
W1 0.163-0.184 0.174-0.191 0.179-0.191 0.216-0.244 0.167-0.185 0.173-0.208
W2 0.136-0.144 0.169-0.178 0.117-0.134 0.131-0.143 0.115-0.146 0.126-0.144
W3 0.113-0.124 0.134-0.162 0.088-0.116 0.101-0.127 0.085-0.106 0.119-0.123
作物水分胁迫指数
CWSI (X4)
W1 0.41-0.45 0.42-0.49 0.42-0.48 0.41-0.49 0.45-0.51 0.50-0.55
W2 0.34-0.36 0.40-0.43 0.37-0.39 0.42-0.48 0.42-0.45 0.43-0.46
W3 0.30-0.32 0.34-0.37 0.29-0.33 0.29-0.39 0.31-0.38 0.37-0.41
POD activity
(U·g-1·min-1) (X5)
W1 244.99±1.93a 234.58±8.90a 393.81±11.03a 374.91±10.89a 495.31±15.98a 460.67±13.66a
W2 154.22±7.05b 160.52±7.95b 300.15±13.64b 290.72±18.13b 367.40±14.98b 354.13±14.39b
W3 129.77±5.43c 122.21±5.30c 214.57±13.67c 203.89±10.58c 282.41±8.77c 270.00±11.47c
SOD activity
(U·g-1·min-1) (X6)
W1 142.87±11.82a 120.10±6.11a 188.94±10.66a 171.51±15.86a 211.25±6.52a 206.24±4.90a
W2 123.77±7.64a 111.73±10.64a 142.33±8.57b 137.22±5.08b 195.18±3.83b 194.07±3.10b
W3 95.17±3.48b 77.70±7.58b 116.52±5.07c 102.29±15.42c 183.81±3.31c 180.47±5.64c
可溶性糖含量
Soluble sugar content
(mg·g-1) (X7)
W1 50.98±3.10a 46.70±4.03a 85.70±8.14a 82.33±8.58a 127.44±9.29a 108.13±3.35a
W2 38.54±2.11b 36.54±2.01b 66.89±6.78b 53.10±1.54b 109.62±5.76a 91.00±7.33b
W3 33.35±1.17c 27.16±3.11c 41.16±7.30c 39.52±2.12c 83.47±3.75b 63.75±4.13c
脯氨酸含量
Proline content (mg·g-1) (X8)
W1 94.37±3.70a 89.09±6.03a 149.61±14.80a 136.49±5.74a 226.20±16.21a 202.54±13.54a
W2 68.34±4.99b 53.45±5.25b 117.94±0.87b 107.05±6.21b 193.19±5.28b 169.05±6.13b
W3 38.16±3.78c 35.28±3.94c 96.69±8.67c 74.35±6.42c 153.86±5.84c 136.59±8.42c
叶片含水量
Leaf water content (g·g-1) (X9)
W1 0.772±0.004c 0.739±0.015b 0.640±0.008c 0.623±0.013c 0.529±0.013c 0.514±0.011c
W2 0.783±0.001b 0.774±0.003a 0.673±0.009b 0.657±0.012b 0.581±0.002b 0.564±0.008b
W3 0.800±0.002a 0.790±0.002a 0.730±0.008a 0.693±0.013a 0.658±0.005a 0.629±0.015a
等效水厚度
Equivalent water thickness (g·cm-2) (X10)
W1 0.14±0.002c 0.13±0.007c 0.09±0.001c 0.09±0.001c 0.06±0.005c 0.05±0.003c
W2 0.15±0.004b 0.15±0.002b 0.11±0.001b 0.11±0.004b 0.07±0.002b 0.06±0.004b
W3 0.17±0.004a 0.16±0.003a 0.13±0.006a 0.12±0.003a 0.08±0.006a 0.07±0.004a
气孔导度
Stomatal conductance
(mol·m-2·s-1) (X11)
W1 0.18±0.018b 0.15±0.007c 0.21±0.003c 0.20±0.014c 0.19±0.005c 0.16±0.014c
W2 0.21±0.017b 0.26±0.012b 0.24±0.008b 0.23±0.009b 0.21±0.015b 0.21±0.011b
W3 0.26±0.005a 0.28±0.012a 0.30±0.020a 0.29±0.017a 0.25±0.007a 0.23±0.006a
蒸腾速率
Transpirationrate (mol·m-2·s-1) (X12)
W1 2.60±0.015c 2.51±0.086c 3.90±0.042c 3.74±0.125c 3.03±0.083c 3.00±0.135c
W2 2.98±0.152b 2.97±0.035b 4.54±0.054b 4.42±0.124b 4.20±0.021b 4.08±0.059b
W3 3.43±0.047a 3.41±0.101a 5.74±0.138a 5.80±0.113a 4.50±0.019a 4.35±0.025a
标准化水分利用效率
WP* (g·m-2) (Y)
W1 16.19±0.32b 15.97±0.64b 18.18±0.34b 18.23±0.39b 18.56±0.35b 18.62±0.06b
W2 17.65±0.39a 17.69±0.21a 18.83±0.37b 18.53±0.15b 19.21±0.37b 19.19±0.09b
W3 18.52±0.22a 18.83±0.18a 19.35±0.13a 19.59±0.18a 19.84±0.12a 19.90±0.06a

Table 2

Stepwise regression analysis based on physiological indexes at different growth stages"

响应变量
Response
variable
步骤
Step
拔节期 Jointing stage 孕穗期 Booting stage 灌浆期 Filling stage
入选变量
Variable entered
R2 入选变量
Variable entered
R2 入选变量
Variable entered
R2
标准化水分利用效率
WP*
S1 MTD 0.798 CRTD 0.861 SSC 0.694
S2 LWC 0.829 CWSI 0.916 CTSD 0.816
S3 Gs 0.862 EWT 0.927 LWC 0.888
S4 POD 0.886 SSC 0.939 Gs 0.913

Table 3

Stepwise regression equations based on WP* and physiological indexes at different growth stages"

生育时期
Growing stage
逐步回归方程
Stepwise regression equation
决定系数
R2
拔节期Jointing stage Y= 6.546-0.228 X1+0.006 X5+13.259 X9+8.001 X11 0.886
孕穗期Booting stage Y=19.390-5.983 X3-1.593 X4+11.730 X10-0.007 X7 0.939
灌浆期Filling stage Y=18.642-0.476 X2-0.010 X7+2.808 X9+1.761 X11 0.913

Fig. 1

Correlation analysis between WP * and driving factors at different growth stages Different colors indicate the strength of the correlation, the closer to red (positive) or blue (negative) indicates higher correlation, larger square indicate greater correlation coefficients, and non* indicates no significant correlation (P<0.05)"

Fig. 2

Pathway analysis of WP*-related drivers at different growth stages"

Fig. 3

Modeling and validation effect of WP* prediction model for different growth stages based on driver factors and all indicators"

[1]
杜玲, 徐长春, 尹小刚, 遆晋松, 陈阜. 气候变化对河北低平原冬小麦需水量及水分生态适应性的影响. 中国农业大学学报, 2017, 22(12): 1-9.
DU L, XU C C, YIN X G, TI J S, CHEN F. Impact of climate change on crop evapotranspiration and water ecological adaptability of winter wheat in Hebei lowland plain. Journal of China Agricultural University, 2017, 22(12): 1-9. (in Chinese)
[2]
PIAO S L, CIAIS P, HUANG Y, SHEN Z H, PENG S S, LI J S, ZHOU L P, LIU H Y, MA Y C, DING Y H, FRIEDLINGSTEIN P, LIU C Z, TAN K, YU Y Q, ZHANG T Y, FANG J Y. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467(7311): 43-51.

doi: 10.1038/nature09364
[3]
杨晓琳, 宋振伟, 王宏, 石全红, 陈阜, 褚庆全. 黄淮海农作区冬小麦需水量时空变化特征及气候影响因素分析. 中国生态农业学报, 2012, 20(3): 356-362.
YANG X L, SONG Z W, WANG H, SHI Q H, CHEN F, CHU Q Q. Spatio-temporal variations of winter wheat water requirement and climatic causes in Huang-Huai-Hai Farming Region. Chinese Journal of Eco-Agriculture, 2012, 20(3): 356-362. (in Chinese)

doi: 10.3724/SP.J.1011.2012.00356
[4]
姚宁, 宋利兵, 刘健, 冯浩, 吴淑芳, 何建强. 不同生长阶段水分胁迫对旱区冬小麦生长发育和产量的影响. 中国农业科学, 2015, 48(12): 2379-2389. doi: 10.3864/j.issn.0578-1752.2015.12.011.
YAO N, SONG L B, LIU J, FENG H, WU S F, HE J Q. Effects of water stress at different growth stages on the development and yields of winter wheat in arid region. Scientia Agricultura Sinica, 2015, 48(12): 2379-2389. doi: 10.3864/j.issn.0578-1752.2015.12.011. (in Chinese)
[5]
SALLAM A, ALQUDAH A M, DAWOOD M F A, BAENZIGER P S, BÖRNER A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. International Journal of Molecular Sciences, 2019, 20(13): 3137.
[6]
WU J J, CHENG G, WANG N, SHEN H Z, MA X Y. Spatiotemporal patterns of multiscale drought and its impact on winter wheat yield over North China Plain. Agronomy, 2022, 12(5): 1205-1209.

doi: 10.3390/agronomy12051205
[7]
张岁岐, 山仑. 植物水分利用效率及其研究进展. 干旱地区农业研究, 2002, 20(4): 1-5.
ZHANG S Q, SHAN L. Research progress on water use efficiency of plant. Agricultural Reseach in the Arid Areas, 2002, 20(4): 1-5. (in Chinese)
[8]
胡瑾, 隆星月, 邓一飞, 完香蓓, 李斌, 吴华瑞. 基于水分利用率与光合速率的温室作物需水模型研究. 农业机械学报, 2020, 51(10): 362-370.
HU J, LONG X Y, DENG Y F, WAN X B, LI B, WU H R. Water demand model for greenhouse crops considering water use efficiency and photosynthetic rate. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 362-370. (in Chinese)
[9]
THORP K, THOMPSON A, HARDERS S, FRENCH A, WARD R. High-throughput phenotyping of crop water use efficiency via multispectral drone imagery and a daily soil water balance model. Remote Sensing, 2018, 10(11): 1682.
[10]
曹生奎, 冯起, 司建华, 常宗强, 卓玛错, 席海洋, 苏永红. 植物叶片水分利用效率研究综述. 生态学报, 2009, 29(7): 3882-3892.
CAO S K, FENG Q, SI J H, CHANG Z Q, ZHUO M C, XI H Y, SU Y H. Summary on the plant water use efficiency at leaf level. Acta Ecologica Sinica, 2009, 29(7): 3882-3892. (in Chinese)
[11]
刘轩, 粟晓玲, 姜田亮, 刘雨翰. 基于水分利用效率的生态干旱敏感性评估. 西北农林科技大学学报(自然科学版), 2023, 51(6): 81-90.
LIU X, SU X L, JIANG T L, LIU Y H. Assessment of ecological drought sensitivity based on water use efficiency. Journal of Northwest A & F University (Natural Science Edition), 2023, 51(6): 81-90. (in Chinese)
[12]
崔茜琳, 何云玲, 李宗善. 青藏高原植被水分利用效率时空变化及与气候因子的关系. 应用生态学报, 2022, 33(6): 1525-1532.

doi: 10.13287/j.1001-9332.202206.024
CUI X L, HE Y L, LI Z S. Spatial-temporal variation of vegetation water use efficiency and its relationship with climate factors over the Qinghai-Tibet Plateau, China. Chinese Journal of Applied Ecology, 2022, 33(6): 1525-1532. (in Chinese)
[13]
陈露, 章熙锋, 王艳强, 高美荣, 唐家良. 紫色土坡耕地农田生态系统蒸散发与水分利用效率及其影响因素. 中国生态农业学报(中英文), 2021, 29(6): 991-1007.
CHEN L, ZHANG X F, WANG Y Q, GAO M R, TANG J L. Temporal characteristics and influencing factors of evapotranspiration and water use efficiency on sloping farmlands with purple soil. Chinese Journal of Eco-Agriculture, 2021, 29(6): 991-1007. (in Chinese)
[14]
庄淏然, 冯克鹏, 许德浩. 蒸散分离的玉米水分利用效率变化及影响因素. 干旱区研究, 2023, 40(7): 1117-1130.
ZHUANG H R, FENG K P, XU D H. Changes, influencing factors and sensitivity of water use efficiency in maize farmland ecosystems based on evapotranspiration separation in the Ningxia irrigated area. Arid Zone Research, 2023, 40(7): 1117-1130. (in Chinese)
[15]
周青云, 燕琪琦, 张宝忠, 尹林萍. 冬小麦不同冠层叶片光合蒸腾和水分利用效率变化特征及对灌溉的响应. 麦类作物学报, 2021, 41(10): 1247-1255.
ZHOU Q Y, YAN Q Q, ZHANG B Z, YIN L P. Variation characteristics of photosynthesis, transpiration and WUE of winter wheat leaves in different canopy layers of winter wheat and their response to irrigation. Journal of Triticeae Crops, 2021, 41(10): 1247-1255. (in Chinese)
[16]
JIN N, REN W, TAO B, HE L, REN Q F, LI S Q, YU Q. Effects of water stress on water use efficiency of irrigated and rainfed wheat in the Loess Plateau, China. The Science of the Total Environment, 2018, 642: 1-11.

doi: S0048-9697(18)32090-4 pmid: 29886197
[17]
YUAN M, ZHANG L, GOU F, SU Z, SPIERTZ J H J, VAN DER WERF W. Assessment of crop growth and water productivity for five C3 species in semi-arid Inner Mongolia. Agricultural Water Management, 2013, 122(2): 28-38.

doi: 10.1016/j.agwat.2013.02.006
[18]
CAMPOS I, GONZÁLEZ-GÓMEZ L, VILLODRE J, GONZÁLEZ- PIQUERAS J, SUYKER A E, CALERA A. Remote sensing-based crop biomass with water or light-driven crop growth models in wheat commercial fields. Field Crops Research, 2018, 216(2): 175-188.

doi: 10.1016/j.fcr.2017.11.025
[19]
韩文霆, 汤建栋, 张立元, 牛亚晓, 王彤华. 基于无人机遥感的玉米水分利用效率与生物量监测. 农业机械学报, 2021, 52(5): 129-141.
HAN W T, TANG J D, ZHANG L Y, NIU Y X, WANG T H. Maize water use efficiency and biomass estimation based on unmanned aerial vehicle remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 129-141. (in Chinese)
[20]
孙现军, 姜奇彦, 胡正, 张惠媛, 徐长兵, 邸一桓, 韩龙植, 张辉. 水稻资源全生育期耐盐性鉴定筛选. 作物学报, 2019, 45(11): 1656-1663.

doi: 10.3724/SP.J.1006.2019.92012
SUN X J, JIANG Q Y, HU Z, ZHANG H Y, XU C B, DI Y H, HAN L Z, ZHANG H. Screening and identification of salt-tolerant rice germplasm in whole growth period. Acta Agronomica Sinica, 2019, 45(11): 1656-1663. (in Chinese)
[21]
贺佳, 刘冰锋, 李军. 不同生育时期冬小麦叶面积指数高光谱遥感监测模型. 农业工程学报, 2014, 30(24): 141-150.
HE J, LIU B F, LI J. Monitoring model of leaf area index of winter wheat based on hyperspectral reflectance at different growth stages. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24): 141-150. (in Chinese)
[22]
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000:184-197.
LI H S. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press, 2000: 184-197. (in Chinese)
[23]
MAEHLY A C, CHANCE B. The assay of catalases and peroxidases. Methods of Biochemical Analysis, 1954, 1: 357-424.

pmid: 13193536
[24]
GIANNOPOLITIS C N, RIES S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314.

doi: 10.1104/pp.59.2.309 pmid: 16659839
[25]
张智韬, 边江, 韩文霆, 付秋萍, 陈硕博, 崔婷. 无人机热红外图像计算冠层温度特征数诊断棉花水分胁迫. 农业工程学报, 2018, 34(15): 77-84.
ZHANG Z T, BIAN J, HAN W T, FU Q P, CHEN S B, CUI T. Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from UAV thermal infrared image. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 77-84. (in Chinese)
[26]
张智韬, 许崇豪, 谭丞轩, 李宇, 宁纪锋. 基于无人机热红外遥感的玉米地土壤含水率诊断方法. 农业机械学报, 2020, 51(3): 180-190.
ZHANG Z T, XU C H, TAN C X, LI Y, NING J F. Diagnosing method of soil moisture content in corn field based on thermal infrared remote sensing of UAV. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 180-190. (in Chinese)
[27]
JONES H G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and Forest Meteorology, 1999, 95(3): 139-149.

doi: 10.1016/S0168-1923(99)00030-1
[28]
ROSENBERG N J, BLAD B L, VERMA S B. Microclimate: The Biological Environment. John Wiley & Sons, 1983.
[29]
STEDUTO P, HSIAO T C, RAES D, FERERES E. AquaCrop-The FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal, 2009, 101(3): 426-437.

doi: 10.2134/agronj2008.0139s
[30]
STEDUTO P, ALBRIZIO R. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea. Agricultural and Forest Meteorology, 2005, 130(3/4): 269-281.

doi: 10.1016/j.agrformet.2005.04.003
[31]
GONZÁLEZ-DUGO M P, MATEOS L. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agricultural Water Management, 2008, 95(1): 48-58.

doi: 10.1016/j.agwat.2007.09.001
[32]
BANNARI A, MORIN D, BONN F, HUETE A R. A review of vegetation indices. Remote Sensing Reviews, 1995, 13(1/2): 95-120.

doi: 10.1080/02757259509532298
[33]
冯禹, 崔宁博, 龚道枝, 王罕博, 郝卫平, 梅旭荣. 基于叶面积指数改进双作物系数法估算旱作玉米蒸散. 农业工程学报, 2016, 32(9): 90-98.
FENG Y, CUI N B, GONG D Z, WANG H B, HAO W P, MEI X R. Estimating rainfed spring maize evapotranspiration using modified dual crop coefficient approach based on leaf area index. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 90-98. (in Chinese)
[34]
赵娜娜, 刘钰, 蔡甲冰. 夏玉米作物系数计算与耗水量研究. 水利学报, 2010, 41(8): 953-959, 969.
ZHAO N N, LIU Y, CAI J B. Calculation of crop coefficient and water consumption of summer maize. Journal of Hydraulic Engineering, 2010, 41(8): 953-959, 969. (in Chinese)
[35]
付元元, 王纪华, 杨贵军, 宋晓宇, 徐新刚, 冯海宽. 应用波段深度分析和偏最小二乘回归的冬小麦生物量高光谱估算. 光谱学与光谱分析, 2013, 32(5): 1315-1319.
FU Y Y, WANG J H, YANG G J, SONG X Y, XU X G, FENG H K. Band depth analysis and partial least square regression based winter wheat biomass estimation using hyperspectral measurements. Spectroscopy and Spectral Analysis, 2013, 32(5): 1315-1319. (in Chinese)
[36]
丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述. 电子科技大学学报, 2011, 40(1): 2-10.
DING S F, QI B J, TAN H Y. An overview on theory and algorithm of support vector machines. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10. (in Chinese)
[37]
ZHANG L Y, ZHANG H H, NIU Y X, HAN W T. Mapping maize water stress based on UAV multispectral remote sensing. Remote Sensing, 2019, 11(6): 605.
[38]
RAES D, STEDUTO P, HSIAO T C, FERERES E. AquaCrop version 3.1 plus: FAO cropwater productivity model to simulate yield response to water. Reference Manual. FAO, Rome, 2011.
[39]
ALBRIZIO R, STEDUTO P. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea. Agricultural and Forest Meteorology, 2005, 130(3/4): 254-268.

doi: 10.1016/j.agrformet.2005.03.009
[40]
裴浩杰, 冯海宽, 李长春, 金秀良, 李振海, 杨贵军. 基于综合指标的冬小麦长势无人机遥感监测. 农业工程学报, 2017, 33(20): 74-82.
PEI H J, FENG H K, LI C C, JIN X L, LI Z H, YANG G J. Remote sensing monitoring of winter wheat growth with UAV based on comprehensive index. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 74-82. (in Chinese)
[41]
李敏, 苏慧, 李阳阳, 李金鹏, 李金才, 朱玉磊, 宋有洪. 黄淮海麦区小麦耐热性分析及其鉴定指标的筛选. 中国农业科学, 2021, 54(16): 3381-3393. doi: 10.3864/j.issn.0578-1752.2021.16.002.
LI M, SU H, LI Y Y, LI J P, LI J C, ZHU Y L, SONG Y H. Analysis of heat tolerance of wheat with different genotypes and screening of identification indexes in Huang-Huai-Hai Region. Scientia Agricultura Sinica, 2021, 54(16): 3381-3393. doi: 10.3864/j.issn.0578-1752.2021.16.002. (in Chinese)
[42]
孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判. 作物学报, 2023, 49(2): 570-582.

doi: 10.3724/SP.J.1006.2023.21008
MENG Y, TIAN W Z, WEN P F, DING Z Q, ZHANG X P, HE L, DUAN J Z, LIU W D, GUO T C, FENG W. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages. Acta Agronomica Sinica, 2023, 49(2): 570-582. (in Chinese)

doi: 10.3724/SP.J.1006.2023.21008
[43]
孟雨, 温鹏飞, 丁志强, 田文仲, 张学品, 贺利, 段剑钊, 刘万代, 冯伟. 基于热红外图像的小麦品种抗旱性鉴定与评价. 中国农业科学, 2022, 55(13): 2538-2551. doi: 10.3864/j.issn.0578-1752.2022.13.005.
MENG Y, WEN P F, DING Z Q, TIAN W Z, ZHANG X P, HE L, DUAN J Z, LIU W D, FENG W. Identification and evaluation of drought resistance of wheat varieties based on thermal infrared image. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551. doi: 10.3864/j.issn.0578-1752.2022.13.005. (in Chinese)
[44]
胡程达, 刘荣花, 王秀萍, 刘忠阳, 李彤宵. 干旱对冬小麦光合、渗透调节物质和抗氧化酶活性的影响. 中国农业气象, 2015, 36(5): 602-610.
HU C D, LIU R H, WANG X P, LIU Z Y, LI T X. Effects of drought stress on photosynthetic, osmotic adjustment substance and antioxidase activities of winter wheat level. Chinese Journal of Agrometeorology, 2015, 36(5): 602-610. (in Chinese)
[45]
杨宝华, 陈建林, 陈林海, 曹卫星, 姚霞, 朱艳. 基于敏感波段的小麦冠层氮含量估测模型. 农业工程学报, 2015, 31(22): 176-182.
YANG B H, CHEN J L, CHEN L H, CAO W X, YAO X, ZHU Y. Estimation model of wheat canopy nitrogen content based on sensitive bands. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 176-182. (in Chinese)
[46]
李彦彬, 冯娅, 边泽鹏, 李道西, 朱亚南. 花前干旱胁迫对冬小麦生长指标的影响. 灌溉排水学报, 2021, 40(3): 23-30.
LI Y B, FENG Y, BIAN Z P, LI D X, ZHU Y N. Effect of drought stress before anthesis on growth indexes of winter wheat. Journal of Irrigation and Drainage, 2021, 40(3): 23-30. (in Chinese)
[47]
张鑫, 孔祥, 李勇, 骆永丽, 黄翠, 金敏. 外源ABA对干旱条件下小麦冠层温度及光合同化物积累与分配的调控效应. 麦类作物学报, 2019, 39(9): 1080-1094.
ZHANG X, KONG X, LI Y, LUO Y L, HUANG C, JIN M. Effect of exogenous ABA on the canopy temperature and accumulation and distribution of photoassimilates in wheat under drought conditions. Journal of Triticeae Crops, 2019, 39(9): 1080-1094. (in Chinese)
[48]
李君艳, 姚得秀, 郭晓磊, 王志敏, 张英华. 花后干旱对冬小麦光合、抗氧化特性和C4光合酶活性的影响. 生态学杂志, 2023, 42(1): 49-57.
LI J Y, YAO D X, GUO X L, WANG Z M, ZHANG Y H. Effects of post-anthesis drought on photosynthesis, antioxidant properties, and C 4 photosynthetic enzyme activity in winter wheat. Chinese Journal of Ecology, 2023, 42(1): 49-57. (in Chinese)
[49]
武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015, 48(13): 2497-2507. doi: 10.3864/j.issn.0578-1752.2015.13.002.
WU X L, LIANG H Y, YANG F, LIU W G, SHE Y H, YANG W Y. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Scientia Agricultura Sinica, 2015, 48(13): 2497-2507. doi: 10.3864/j.issn.0578-1752.2015.13.002. (in Chinese)
[50]
樊意广, 冯海宽, 刘杨, 边明博, 孟炀, 杨贵军. 基于冠层光谱特征和株高的马铃薯植株氮含量估算. 农业机械学报, 2022, 53(6): 202-208,294.
FAN Y G, FENG H K, LIU Y, BIAN M B, MENG Y, YANG G J. Estimation of potato plant nitrogen content based on canopy spectral characteristics and plant height. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 202-208,294. (in Chinese)
[51]
LI Z, NIE C, WEI C, XU X, SONG X, WANG J. Comparison of four chemometric techniques for estimating leaf nitrogen concentrations in winter wheat (Triticum aestivum) based on hyperspectral features. Journal of Applied Spectroscopy, 2016, 83(2): 240-247.

doi: 10.1007/s10812-016-0276-3
[1] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[2] ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964.
[3] WANG Yu, SONG YiFan, ZHANG Rong, MU HaiMeng, SUN LiFang, FU KaiXia, WU ZiJun, HUANG QingQing, XU YingMing, LI GeZi, WANG YongHua, GUO TianCai. Effects of Soil Application of Passivating Agent and Compound Microbial Fertilizer on Cadmium Accumulation in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(1): 126-141.
[4] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[5] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[6] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[7] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[8] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[9] GAO ChenKai, LIU ShuiMiao, LI YuMing, WU PengNian, WANG YanLi, LIU ChangShuo, QIAO YiBo, GUAN XiaoKang, WANG TongChao, WEN PengFei. Prediction of Water Content of Winter Wheat Plant Based on Comprehensive Index Synergetic Optimization [J]. Scientia Agricultura Sinica, 2023, 56(22): 4403-4416.
[10] TANG ZhenSan, YUAN JianLong, KANG LiangHe, CHENG LiXiang, LÜ Tai, YANG Chen, ZHANG Feng. Potato Tuber Skin Roughness Classification Analysis Based on Image Characteristics Recognition [J]. Scientia Agricultura Sinica, 2023, 56(22): 4428-4440.
[11] AI DaiLong, LEI Fang, ZOU QiaoSheng, HE Peng, YANG HongKun, FAN GaoQiong. Effects of Straw Mulching and Nitrogen Application on the Improvement of Wheat Root Architecture and the Absorption and Utilization of H+ and NO3- in Hilly Dry Land [J]. Scientia Agricultura Sinica, 2023, 56(21): 4192-4207.
[12] SHI XinRui, HAN BaiShu, WANG ZiQian, ZHANG YuanLing, LI Ping, ZONG YuZheng, ZHANG DongSheng, GAO ZhiQiang, HAO XingYu. Investigation on the Effects of Climate Change on the Growth and Yield of Different Maturity Winter Wheat Varieties in Northern China Based on the APSIM Model [J]. Scientia Agricultura Sinica, 2023, 56(19): 3772-3787.
[13] LIN JiangYun, YIN BenSu, WANG XingShu, LIU ChenRui, SUN Qing, XIE XingXing, CHENG LingLing, SUN LiWei, SHI Mei, WANG ZhaoHui. The Accumulation of Iron and Manganese in Wheat and Its Relationship with Soil Nutrients Under Long-Term Application of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(17): 3372-3382.
[14] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[15] DONG YiFan, REN Yi, CHENG YuKun, WANG Rui, ZHANG ZhiHui, SHI XiaoLei, GENG HongWei. Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!