Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1674-1686.doi: 10.3864/j.issn.0578-1752.2024.09.005

• SPECIAL FOCUS: DROUGHT RESISTANCE IDENTIFICATION AND GENETIC RESOURCE MINING IN WHEAT • Previous Articles     Next Articles

Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data

YAN Wen1,2(), JIN XiuLiang2, LI Long2, XU ZiHan3, SU Yue1,2, ZHANG YueQiang3, JING RuiLian2, MAO XinGuo2(), SUN DaiZhen1()   

  1. 1 College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081
    3 Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Region, Ministry of Agriculture and Rural Affairs/Xinjiang Key Laboratory of Crop Biotechnology, Urumqi 830091
  • Received:2024-01-05 Accepted:2024-03-11 Online:2024-05-01 Published:2024-05-09
  • Contact: MAO XinGuo, SUN DaiZhen

Abstract:

【Objective】To evaluate the drought resistance of synthetic wheat germplasm based on multi-source images collected by unmanned aerial vehicle (UAV) and yield data, explore high-throughput indices for drought resistance evaluation, and identify synthetic wheat germplasm resources with drought resistance. This provides technical support and germplasm materials for accelerating the expansion of drought-resistant genetic resources for wheat and enhancing the level of breeding for dryland wheat.【Method】Eighty synthetic wheat germplasm and the control variety Xin Chun 37 were used as plant materials, which were sown in the field and treated with a water regime of drought stress and irrigation. Multi-source images of test materials during filling stage were collected by multi-spectral and thermal infrared cameras equipped with unmanned aerial vehicle, and the spectral index of each test material was extracted by threshold segmentation. The analyses of Pearson’s correlation and principal component were performed to identify drought resistance-related spectral indices, and the drought resistance of each synthetic wheat germplasm was determined by single index and comprehensive evaluation methods. 【Result】The drought resistance coefficients of 19 spectral indices of 80 synthetic wheat germplasm were calculated based on multisource imagery data obtained from unmanned aerial vehicles. The correlation analysis between the spectral indices and the yield-based drought index (DRI) showed that among the drought resistance coefficients of the 19 spectral indices, OSAVI exhibited the highest correlation with the drought index, while NDVI, CIre, and NDRE demonstrated relatively strong associations with the drought index. However, the different drought indices showed a high correlation, resulting in redundant information. The drought resistance coefficients of the 19 spectral indices were transformed into three independent comprehensive indicators through principal component analysis, with contribution rates of 59.6%, 12.0% and 9.6%, respectively. The comprehensive drought resistance index (D) for each synthetic wheat germplasm were calculated by aggregating the three independent comprehensive indicators using the weighted membership function method. 6 and 5 synthetic wheat germplasms with strong drought resistance were identified based on DRI and D, respectively. Among them, 2 germplasms (SW004 and SW009) with high drought resistance were detected based on both DRI and D. Furthermore, the drought resistance of the 80 synthetic wheat germplasms was graded based on the drought resistance coefficient of OSAVI, and the grading results were found to be consistent with that based on the D value. Among the six strongly drought-resistant germplasms identified based on the drought resistance coefficient of OSAVI, five of them were also classified as strongly drought-resistant germplasms based on comprehensive drought resistance evaluation.【Conclusion】The spectral indices NDVI, OSAVI, CIre and NDRE extracted from UAV-based multi-source images, as well as the drought resistance comprehensive evaluation value can be used to assist in the identification of drought resistance of wheat germplasm.

Key words: multi-source images, spectral index, synthetic wheat, drought resistance, grain filling

Fig. 1

Image processing steps"

Table 1

Formulas for spectral index calculation"

光谱指数Spectral index 公式Formulaa 参考文献Reference
蓝色归一化植被指数BNDVI (RNIR-RBlue)/(RNIR+RBlue) [12]
绿边叶绿素指数CIgreen RNIR/RGreen-1 [13]
红边叶绿素指数CIre RNIR/RRe-1 [13]
差值植被指数DVI RNIR-RRed [14]
蓝-绿归一化植被指数GBNDVI [RNIR-(RGreen+RBlue)]/[RNIR+(RGreen+RBlue)] [12]
绿色色度坐标GCC RGreen/(RRed+RBlue+RGreen) [15]
绿色归一化植被指数GNDVI (RNIR-RGreen)/(RNIR+RGreen) [16]
修正叶绿素调节植被指数MCARI [(RRe-Rred)-0.2×(RRe-RGreen)](RRe/RRed) [17]
修正蓝光归一化植被指数mNDblue (RBlue-RRed)/(RBlue+RNIR) [18]
MERIS陆地叶绿素指数MTCI (RNIR-RRe)/(RRe-RRed) [19]
标准化差分红边指数NDRE (RNIR-RRe)/(RNIR+RRe) [20]
归一化植被指数NDVI (RNIR-RRed)/(RNIR+RRed) [21]
归一化绿蓝差异指数NGBDI (RGreen-RBlue)/(RGreen+RBlue) [22]
归一化叶绿素比值指数NPCI (RRed-RBlue)/(RRed+RBlue) [23]
归一化相对冠层温度NRCT (CTi-CTmin)/(CTmax-CTmin) [24]
优化土壤调整植被指数OSAVI (RNIR-RRed)/(RNIR+RRed+0.16) [25]
结构不敏感色素指数SIPI (RNIR-RBlue)/(RNIR-RRed) [26]
简单比值植被指数SR RNIR/RRed [27]
三角形植被指数TVI 0.5×[120×(RNIR-RGreen)-200×(RRed-RGreen)] [28]

Fig. 2

Comparison of agronomic traits of wheat materials under well-watered and drought stress conditions a: Remote sensing image of experimental field; b: Yield comparison between synthetic wheat and control variety; c: Plant height difference of synthetic wheat; d: Thousand grain weight difference of synthetic wheat; e: Yield difference of synthetic wheat. WW: Well-watered; DS: Drought stress. *, ** indicate significant differences at the levels of 0.05 and 0.01, respectively"

Fig. 3

Drought resistance evaluation of synthetic wheat a: Evaluation results based on drought resistance index (DRI); b: Evaluation results based on drought resistance comprehensive evaluation value (D); c: Venn diagram of evaluation results based on different indicators; d: Information on highly drought-resistant (HR) and drought-resistant (R) synthetic wheat. HR: Highly drought-resistant germplasm; R: Drought-resistant germplasm; MR: Moderately drought-resistant germplasm; S: Drought-sensitive germplasm; HS: Highly drought-sensitive germplasm. DRI-HR: High drought-resistant germplasm evaluated by drought resistance index; DRI-R: Drought-resistant germplasm evaluated by drought resistance index; D-HR: High drought-resistant germplasm evaluated by drought resistance comprehensive evaluation value; D-R: Drought-resistant germplasm evaluated by drought resistance comprehensive evaluation value; OSAVI-DC-HR/R: High drought-resistant and drought-resistant germplasm evaluated by OSAVI drought resistance coefficient"

Table 2

Yield difference of drought-resistant synthetic wheat (kg·hm-2)"

人工合成小麦
Synthetic wheat
2022 2023
对照WW 干旱DS 差值Difference 对照WW 干旱DS 差值Difference
SW004 5875.5 6346.5 -471.0 7420.5 7378.5 42.0
SW009 6148.5 6258.0 -109.5 6961.5 7066.5 -105.0
SW019 6342.0 6280.5 61.5 7587.0 7378.5 208.5
SW034 6540.0 6946.5 -406.5 8754.0 6336.0 2418.0
SW037 5512.5 6663.0 -1151.5 8463.0 5586.0 2877.0
SW051 6687.0 6780.0 -93.0 8587.5 6177.0 2410.5

Fig. 4

Correlation analysis between drought resistance coefficient of spectral index and drought resistance index *, ** indicate significant differences at the levels of 0.05 and 0.01, respectively"

Table 3

The principal component analysis for the drought resistance coefficients of spectral indices"

性状
Trait
主成分Principle factor
PC1 PC2 PC3
BNDVI-DC 0.84 0.31 0.4
CIgreen-DC 0.87 0.4 0.11
CIre-DC 0.94 0.23 -0.17
DVI-DC 0.78 -0.45 0.14
GBNDVI-DC 0.22 0.28 0.6
GCC-DC 0.88 -0.12 -0.22
GNDVI-DC 0.86 0.36 0.25
MCARI-DC 0.79 -0.51 0.15
mNDblue-DC -0.73 -0.16 0.64
MTCI-DC 0.37 0.83 -0.25
NDRE-DC 0.95 0.19 -0.1
NDVI-DC 0.95 -0.14 0.02
NGBDI-DC 0.68 0.19 0.47
NPCI-DC -0.58 0.06 0.61
NRCT-DC 0.01 0.19 -0.15
OSAVI-DC 0.95 -0.26 0.04
SIPI-DC -0.83 0.35 0.06
SR-DC 0.82 0.02 -0.06
TVI-DC 0.81 -0.49 0.1
特征值Eigen value 11.31 2.28 1.81
贡献率Contribution rate (%) 59.55 12.00 9.55
累积贡献率Cumulative contribution (%) 59.55 71.55 81.10

Fig. 5

The correlation between drought resistance comprehensive evaluation value (D), OSAVI-DC and drought resistance index (DRI)"

[1]
QIN W L, WANG J, MA L F, WANG F L, HU N Y, YANG X Y, XIAO Y Y, ZHANG Y H, SUN Z C, WANG Z M, YU K. UAV-based multi-temporal thermal imaging to evaluate wheat drought resistance in different deficit irrigation regimes. Remote Sensing, 2022, 14(21): 5608.

doi: 10.3390/rs14215608
[2]
BAPELA T, SHIMELIS H, TSILO T J, MATHEW I. Genetic improvement of wheat for drought tolerance: Progress, challenges and opportunities. Plants, 2022, 11(10): 1331.

doi: 10.3390/plants11101331
[3]
廖祥政, 王瑾, 周荣华, 任正隆, 贾继增. 发掘人工合成小麦中千粒重QTL的有利等位基因. 作物学报, 2008, 34(11): 1877-1884.

doi: DOI: 10.3724/SP.J.1006.2008.01877
LIAO X Z, WANG J, ZHOU R H, REN Z L, JIA J Z. Mining favorable alleles of QTLs conferring 1000-grain weight from synthetic wheat. Acta Agronomica Sinica, 2008, 34(11): 1877-1884. (in Chinese)
[4]
王晓鸣, 邱丽娟, 景蕊莲, 任贵兴, 李英慧, 李春辉, 秦培友, 谷勇哲, 李龙. 作物种质资源表型性状鉴定评价: 现状与趋势. 植物遗传资源学报, 2022, 23(1): 12-20.

doi: 10.13430/j.cnki.jpgr.20210802001
WANG X M, QIU L J, JING R L, REN G X, LI Y H, LI C H, QIN P Y, GU Y Z, LI L. Evaluation on phenotypic traits of crop germplasm: Status and development. Journal of Plant Genetic Resources, 2022, 23(1): 12-20. (in Chinese)
[5]
李龙, 毛新国, 王景一, 李超男, 柳玉平, 景蕊莲. 小麦抗旱性研究进展与展望. 干旱地区农业研究, 2023, 41(3): 11-20.
LI L, MAO X G, WANG J Y, LI C N, LIU Y P, JING R L. Progress and prospect of wheat research on drought resistance. Agricultural Research in the Arid Areas, 2023, 41(3): 11-20. (in Chinese)
[6]
白志英, 李存东, 孙红春, 赵金锋. 小麦代换系抗旱生理指标的主成分分析及综合评价. 中国农业科学, 2008, 41(12): 4264-4272. doi: 10.3864/j.issn.0578-1752.2008.12.043.
BAI Z Y, LI C D, SUN H C, ZHAO J F. Principal component analysis and comprehensive evaluation on physiological indices of drought resistance in wheat substitution lines. Scientia Agricultura Sinica, 2008, 41(12): 4264-4272. doi: 10.3864/j.issn.0578-1752.2008.12.043. (in Chinese)
[7]
王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40(11): 2452-2459. doi: 10.3864/j.issn.0578-1752.at-2006-8460.
WANG S Q, HU Y G, SHE K J, ZHOU L L, MENG F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Scientia Agricultura Sinica, 2007, 40(11): 2452-2459. doi: 10.3864/j.issn.0578-1752.at-2006-8460. (in Chinese)
[8]
张军, 魏国, 彭彦珉, 汪洪涛, 黄修利, 吴金芝, 黄明, 李友军. 8份强筋小麦品种抗旱性评价. 麦类作物学报, 2023. https://link.cnki.net/urlid/61.1359.S.20231107.0924.006.
ZHANG J, WEI G, PENG Y M, WANG H T, HUANG X L, WU JI Z, HUANG M, LI Y J. Drought resistance evaluation of eight strong gluten wheat varieties. Journal of Triticeae Crops, 2023. https://link.cnki.net/urlid/61.1359.S.20231107.0924.006. (in Chinese)
[9]
马玉慧, 张小虎, 马小乐, 司二静, 孟亚雄, 姚立蓉, 王化俊, 汪军成, 李葆春. 干旱胁迫下春小麦品种(系)萌发期抗旱性鉴定与评价. 分子植物育种, 2022, 20(19): 6459-6473.
MA Y H, ZHANG X H, MA X L, SI E J, MENG Y X, YAO L R, WANG H J, WANG J C, LI B C. Identification and evaluation of drought resistance of spring wheat varieties (lines) at germination under drought stress. Molecular Plant Breeding, 2022, 20(19): 6459-6473. (in Chinese)
[10]
孟雨, 温鹏飞, 丁志强, 田文仲, 张学品, 贺利, 段剑钊, 刘万代, 冯伟. 基于热红外图像的小麦品种抗旱性鉴定与评价. 中国农业科学, 2022, 55(13): 2538-2551. doi: 10.3864/j.issn.0578-1752.2022.13.005.
MENG Y, WEN P F, DING Z Q, TIAN W Z, ZHANG X P, HE L, DUAN J Z, LIU W D, FENG W. Identification and evaluation of drought resistance of wheat varieties based on thermal infrared image. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551. doi: 10.3864/j.issn.0578-1752.2022.13.005. (in Chinese)
[11]
DAS S, CHRISTOPHER J, CHOUDHURY M R, APAN A, CHAPMAN S W, MENZIES N P, DANG Y P. Evaluation of drought tolerance of wheat genotypes in rain-fed sodic soil environments using high-resolution UAV remote sensing techniques. Biosystems Engineering, 2022, 217: 68-82.

doi: 10.1016/j.biosystemseng.2022.03.004
[12]
WANG F M, HUANG J F, TANG Y L, WANG X Z. New vegetation index and its application in estimating leaf area index of rice. Rice Science, 2007, 14(3): 195-203.

doi: 10.1016/S1672-6308(07)60027-4
[13]
GITELSON A A, KEYDAN G P, MERZLYAK M N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters, 2006, 33(11): 11402.
[14]
RICHARDSON A, WIEGAND C. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43(12): 1541-1552.
[15]
GILLESPIE A R, KAHLE A B, WALKER R E. Color enhancement of highly correlated images: ⅡChannel ratio and “chromaticity” transformation techniques. Remote Sensing of Environment, 1987, 22(3): 343-365.

doi: 10.1016/0034-4257(87)90088-5
[16]
GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 1996, 58(3): 289-298.

doi: 10.1016/S0034-4257(96)00072-7
[17]
DAUGHTRY C S T, WALTHALL C L, KIM M S, DE COLSTOUN E B, MCMURTREY J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 2000, 74(2): 229-239.

doi: 10.1016/S0034-4257(00)00113-9
[18]
JAY S, GORRETTA N, MOREL J, MAUPAS F, BENDOULA R, RABATEL G, DUTARTRE D, COMAR A, BARET F. Estimating leaf chlorophyll content in sugar beet canopies using millimeter to centimeter-scale reflectance imagery. Remote Sensing of Environment, 2017, 198: 173-186.

doi: 10.1016/j.rse.2017.06.008
[19]
DASH J, CURRAN P J. The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 2004, 25(23): 5403-5413.

doi: 10.1080/0143116042000274015
[20]
FITZGERALD G J, RODRIGUEZ D, CHRISTENSEN L K, BELFORD R, SADRAS V O, CLARKE T R. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agriculture, 2006, 7(4): 233-248.

doi: 10.1007/s11119-006-9011-z
[21]
ROUSE J W J, HAAS R H, SCHELL J A, DEERING D W. Monitoring vegetation systems in the great Plains with ERTS. National Aeronautics and Space Administration Special Publication, 1974, 351(1): 309.
[22]
XU F X, GAO Z Q, JIANG X P, SHANG W T, NING J C, SONG D B, AI J Q. A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea. Marine Pollution Bulletin, 2018, 128: 408-414.

doi: S0025-326X(18)30073-0 pmid: 29571390
[23]
PEÑUELAS J, GAMON J A, FREDEEN A L, MERINO J, FIELD C B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, 1994, 48(2): 135-146.

doi: 10.1016/0034-4257(94)90136-8
[24]
ELSAYED S, RISCHBECK P, SCHMIDHALTER U. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought- stressed barley cultivars. Field Crops Research, 2015, 177: 148-160.

doi: 10.1016/j.fcr.2015.03.010
[25]
RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996, 55(2): 95-107.

doi: 10.1016/0034-4257(95)00186-7
[26]
PENUELAS J, BARET F, FILELLA I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 1995, 31(2): 221-230.
[27]
JORDAN C F. Derivation of leaf‐area index from quality of light on the forest floor. Ecology, 1969, 50(4): 663-666.

doi: 10.2307/1936256
[28]
BROGE N, LEBLANC E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 2001, 76(2): 156-172.

doi: 10.1016/S0034-4257(00)00197-8
[29]
李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018, 44(7): 988-999.

doi: 10.3724/SP.J.1006.2018.00988
LI L, MAO X G, WANG J Y, CHANG X P, LIU Y P, JING R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agronomica Sinica, 2018, 44(7): 988-999. (in Chinese)

doi: 10.3724/SP.J.1006.2018.00988
[30]
胡芬, 赵聚宝, 姜雁北, 梅旭荣, 钟兆站. 小麦灌浆期土壤干旱对子粒发育影响的研究. 中国农业气象, 1993, 14(4): 8-11.
HU F, ZHAO J B, JIANG Y B, MEI X R, ZHONG Z Z. Study on the effects of soil drought on grain development during wheat filling stage. Chinese Journal of Agrometeorology, 1993, 14(4): 8-11. (in Chinese)
[31]
YANG J C, ZHANG J H. Grain filling of cereals under soil drying. The New Phytologist, 2006, 169(2): 223-236.

doi: 10.1111/nph.2006.169.issue-2
[32]
FAROOQ M, HUSSAIN M, SIDDIQUE K H M. Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 2014, 33(4): 331-349.

doi: 10.1080/07352689.2014.875291
[33]
吕金印, 山仑, 高俊凤, 覃凤云, 杨淑慎. 干旱对小麦灌浆期旗叶光合等生理特性的影响. 干旱地区农业研究, 2003, 21(2): 77-81.
J Y, SHAN L, GAO J F, QIN F Y, YANG S S. Effect of drought stress on photosynthesis and some other physiological characteristics in flag leaf during grain filling of wheat. Agricultural Research in the Arid Areas, 2003, 21(2): 77-81. (in Chinese)
[34]
王淑荣, 费德友, 唐宗祥. 干旱胁迫对四川小麦品种产量及农艺性状的影响. 农业与技术, 2020, 40(13): 14-17.
WANG S R, FEI D Y, TANG Z X. Effects of drought stress on yield and agronomic traits of wheat varieties in Sichuan. Agriculture and Technology, 2020, 40(13): 14-17. (in Chinese)
[35]
CANDIAGO S, REMONDINO F, DE GIGLIO M, DUBBINI M, GATTELLI M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 2015, 7(4): 4026-4047.

doi: 10.3390/rs70404026
[36]
SHAO G M, HAN W T, ZHANG H H, LIU S Y, WANG Y, ZHANG L Y, CUI X. Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices. Agricultural Water Management, 2021, 252: 106906.

doi: 10.1016/j.agwat.2021.106906
[37]
李映雪, 朱艳, 田永超, 姚霞, 秦晓东, 曹卫星. 小麦叶片氮含量与冠层反射光谱指数的定量关系. 作物学报, 2006, 32(3): 358-362.
LI Y X, ZHU Y, TIAN Y C, YAO X, QIN X D, CAO W X. Quantitative relationship between leaf nitrogen concentration and canopy reflectance spectra. Acta Agronomica Sinica, 2006, 32(3): 358-362. (in Chinese)
[38]
李升东, 王法宏, 司纪升, 孔令安, 冯波, 张宾. 不同基因型小麦NDVI值与产量的关系. 干旱地区农业研究, 2008, 26(6): 47-50.
LI S D, WANG F H, SI J S, KONG L A, FENG B, ZHANG B. The relationship between NDVI values and yield of different genotype wheat varieties. Agricultural Research in the Arid Areas, 2008, 26(6): 47-50. (in Chinese)
[39]
李春情, 刘翔宇, 闫鹏, 周六千, 卢霖, 董志强, 徐江. 不同玉米品种抗旱性的生理鉴定与综合评价. 作物杂志, 2023. https://link.cnki.net/urlid/11.1808.S.20230926.1429.006.
LI C Q, LIU X Y, YAN P, ZHOU L Q, LU L, DONG Z Q, XU J. Physiological identification and comprehensive evaluation of drought resistance of different maize varieties. Crop Journal, 2023. https://link.cnki.net/urlid/11.1808.S.20230926.1429.006. (in Chinese)
[40]
王倩, 董孔军, 薛亚鹏, 刘少雄, 王若楠, 杨佳琪, 陆平, 王瑞云, 杨天育, 刘敏轩. 糜子核心种质成熟期抗旱性鉴定评价与抗旱种质筛选. 中国农业科学, 2023, 56(21): 4163-4174. doi:10.3864/j.issn.0578-1752.2023.21.003.
WANG Q, DONG K J, XUE Y P, LIU S X, WANG R N, YANG J Q, LU P, WANG R Y, YANG T Y, LIU M X. Drought resistance identification and evaluation of mature stage in foxtail millet core germplasm and selection of drought-resistant germplasm. Scientia Agricultura Sinica, 2023, 56(21): 4163-4174. doi:10.3864/j.issn.0578-1752.2023.21.003. (in Chinese)
[41]
张青显. 野生遗传基因种质资源在小麦育种中的应用及遗传特征. 农业科技通讯, 2022(7): 183-184, 188.
ZHANG Q X. Application and genetic characteristics of wild genetic gene germplasm resources in wheat breeding. Bulletin of Agricultural Science and Technology, 2022(7): 183-184, 188. (in Chinese)
[42]
EVENSON R E, GOLLIN D. Assessing the impact of the green revolution, 1960 to 2000. Science, 2003, 300(5620): 758-762.

doi: 10.1126/science.1078710 pmid: 12730592
[43]
DRECCER M F, BORGOGNONE M G, OGBONNAYA F C, TRETHOWAN R M, WINTER B. CIMMYT-selected derived synthetic bread wheats for rainfed environments: Yield evaluation in Mexico and Australia. Field Crops Research, 2007, 100(2/3): 218-228.

doi: 10.1016/j.fcr.2006.07.005
[44]
RATTEY A, SHORTER R. Evaluation of CIMMYT conventional and synthetic spring wheat germplasm in rainfed sub-tropical environments: I. Grain yield. Field Crops Research, 2010, 118(3): 273-281.

doi: 10.1016/j.fcr.2010.06.006
[45]
张泽全, 舒长生, 赖运平, 董雪芳, 李俊, 魏会廷, 彭正松, 杨武云. 人工合成小麦幼苗耐低温特性鉴定. 中国农学通报, 2010, 26(12): 135-138.
ZHANG Z Q, SHU C S, LAI Y P, DONG X F, LI J, WEI H T, PENG Z S, YANG W Y. Evaluation of low-temperature tolerant germplasm resource on seedling traits of synthetic hexaploid wheats. Chinese Agricultural Science Bulletin, 2010, 26(12): 135-138. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2010-0049
[46]
王秋云, 冯雯杰, 张巧玲, 赵凯, 张宪军, 刘淑珍, 鲍印广. 56份人工合成六倍体小麦的遗传多样性分析. 麦类作物学报, 2021, 41(8): 960-968.
WANG Q Y, FENG W J, ZHANG Q L, ZHAO K, ZHANG X J, LIU S Z, BAO Y G. Genetic diversity analysis of 56 synthetic hexaploid wheats. Journal of Triticeae Crops, 2021, 41(8): 960-968. (in Chinese)
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] NI ShuHui, SHI DongMei, PAN LiDong, YE Qing, WU JunHao. Response of Cultivated-Layer Water-Holding and Drought Resistance Performance and Productivity to Erosion Degree in Purple Soil Sloping Farmland [J]. Scientia Agricultura Sinica, 2024, 57(7): 1350-1362.
[4] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[5] SHI HaoLei, CAO HongXia, ZHANG WeiJie, ZHU Shan, HE ZiJian, ZHANG Ze. Leaf Area Index Inversion of Cotton Based on Drone Multi-Spectral and Multiple Growth Stages [J]. Scientia Agricultura Sinica, 2024, 57(1): 80-95.
[6] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
[7] LIU Meng, ZHANG Yao, GE JunZhu, YANG YongAn, WU XiDong, HOU HaiPeng. Effects of Nitrogen Application on Delayed Harvest Summer Maize Grain Yield, Superior and Inferior Grains Morphology and Weight Under Different Rainfall Years [J]. Scientia Agricultura Sinica, 2023, 56(20): 3975-3995.
[8] YU HaoDong, CHU ZhenYu, WANG ShunYuan, GUO YanQing, REN BaiZhao, ZHANG JiWang. Effects of Different Controlled Nitrogen Ratios on Leaf Senescence and Grain Filling Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2023, 56(18): 3511-3529.
[9] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[10] FENG XiangQian, YIN Min, WANG MengJia, MA HengYu, CHU Guang, LIU YuanHui, XU ChunMei, ZHANG XiuFu, ZHANG YunBo, WANG DanYing, CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[11] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[12] XIAO ShanShan, ZHANG YiFei, YANG KeJun, MING LiWei, DU JiaRui, XU RongQiong, SUN YiShan, LI WeiQing, LI GuiBin, LI ZeSong, LI JiaYu. Effects of Intercropping with Different Maturity Varieties on Grain Filling, Dehydration Characteristics and Yield of Spring Maize [J]. Scientia Agricultura Sinica, 2022, 55(12): 2294-2310.
[13] HU DanDan,LI RongFa,LIU Peng,DONG ShuTing,ZHAO Bin,ZHANG JiWang,REN BaiZhao. Mixed-Cropping Improved on Grain Filling Characteristics and Yield of Maize Under High Planting Densities [J]. Scientia Agricultura Sinica, 2021, 54(9): 1856-1868.
[14] ZHANG ZhiXing,MIN XiuMei,SONG Guo,CHEN Hua,XU HaiLong,LIN WenXiong. Identification of 14-3-3 Client Proteins in Rice Grains and Their Response to Exogenous Hormones During the Grain Filling Stage [J]. Scientia Agricultura Sinica, 2021, 54(12): 2523-2537.
[15] WEI Xin, WANG HanTao, WEI HengLing, FU XiaoKang, MA Liang, LU JianHua, WANG XingFen, YU ShuXun. Cloning and Drought Resistance Analysis of GhWRKY33 in Upland Cotton [J]. Scientia Agricultura Sinica, 2020, 53(22): 4537-4549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!