Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (17): 3251-3260.doi: 10.3864/j.issn.0578-1752.2023.17.002

• SPECIAL FOCUS: HERBICIDE-TOLERANCE COTTON CREATION BY GENETIC TRANSFORMATION AND GENOME EDITING • Previous Articles     Next Articles

Identification of Target Traits and Genetic Stability of Transgenic Cotton GGK2

LIANG ChengZhen(), ZANG YouYi, MENG ZhiGang, WANG Yuan, MUBASHIR Abbas, HE HaiYan, ZHOU Qi, WEI YunXiao, ZHANG Rui(), GUO SanDui()   

  1. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2023-01-17 Accepted:2023-02-23 Online:2023-09-01 Published:2023-09-08
  • Contact: LIANG ChengZhen, ZHANG Rui, GUO SanDui

Abstract:

【Objective】The objective of this study is to confirm the target traits and genetic stability of transgenic glyphosate- resistant cotton GGK2 and provide technical support for its commercialization. 【Method】T3, T4, and T5 transgenic cotton plants GGK2 were subjected to insertion site-specific PCR, Southern blot, ELISA, bioassays in the laboratory and field, analysis of target herbicide tolerance, and investigation of nutritional constituents. 【Result】The results indicated that the target genes, GR79 EPSPS and GAT, were integrated into the cotton genome as single copies and stably inherited in GGK2 plants. In GGK2 cotton, GR79 EPSPS, GAT, and NPTⅡ proteins were expressed at different stages and in different tissues, with relatively high expression levels in the leaves. At the four-leaf stage, bud stage and boll opening stag, the expression levels in leaves were 128.7-192.4 µg·g-1, 24.4-35.0 µg·g-1, and 17.0-23.9 µg·g-1 fresh weight for GR79 EPSPS, GAT, and NPTⅡ, respectively. In the field, transgenic cotton GGK2 tolerated up to four times the recommended medium dose of glyphosate application. No significant differences were observed in agronomic traits and nutritional constituents compared to the control, Coker312. 【Conclusion】These data demonstrate that transgenic cotton GGK2 is genetically stable and highly resistant to herbicides. Therefore, it can be utilized for breeding high-glyphosate- resistant commercial cotton varieties.

Key words: cotton, GGK2, herbicide tolerance, glyphosate, genetic stability

Fig. 1

PCR analysis of the target genes and flanking sequence in the T3 to T5 generation of transgenic cotton GGK2 The amplified fragment size of primers GR79 EPSPS FP + RP, GAT FP + RP, NPTII FP + RP, RB FP+LB RP, and RB FP+LB RP were 645, 466, 760, 810, 420 bp, respectively. Coker312: The Coker312 cotton was used as negative control; DNA Ladder: DNA marker. The GR79GAT plasmid was used as positive control. T3, T4 and T5 refer to the homozygous lines of GGK2 transgenic cotton T3 to T5 generation. The same as below"

Fig. 2

Southern blot analysis of the target genes in the T3 to T5 generations of transgenic cotton GGK2 A: Schematic representation of the pGR79GAT vector with the position of restriction enzyme and probes. B: Hybridization results of probe 1, genomic DNA was digested by HindⅢ, EcoRⅠ, and BamHⅠ. C: Hybridization results of probe 2, genomic DNA was digested by EcoRⅠ, NheⅠ, and BamHⅠ. D: Hybridization results of probe 3, genomic DNA was digested by HindⅢ, BamHⅠ, and NheⅠ. E: Hybridization results of probe 4, genomic DNA was digested by HindⅢ, EcoRⅠ, and BamHⅠ. F: Hybridization results of probe 5, genomic DNA was digested by HindⅢ, EcoRⅠ, and BamHⅠ"

Fig. 3

Expression analysis of the target genes in the T3 to T5 generation of transgenic cotton GGK2 A: GR79 EPSPS; B: GAT; C: NPTII. Different lowercase letters indicate the significant difference among different transgenic lines (P<0.05). The same as below"

Fig. 4

Expression analysis of the target proteins in the T3 to T5 generation of transgenic cotton GGK2 The expression of GR79 EPSPS (A), GAT (B), and NPTⅡ (C) protein in 4-leaf stage, flowering stage, and boll opening stage. D: ImmunoStrip for the detection of GGK2 cotton in the T3-T5 generations. The arrow indicates the target band. PC: Positive control. NC: Negative control"

Table 1

Glyphosate tolerance analysis of T3 to T5 transgenic cotton GGK2"

处理时间
Time
性状
Phenotype
喷施物
Spray
柯字棉312
Coker312
GGK2
T3 T4 T5
喷施后2周
Two weeks after spraying
株高
Plant height (cm)
草甘膦Glyphosate / 26.74±1.40 27.44±1.74 28.12±1.41
清水Water 27.34±2.29 27.11±1.08 26.42±1.84 26.72±1.22
叶片受害率
Leaf damage rate (%)
草甘膦Glyphosate 100.00±0.00 0.96±0.10 0.71±0.23 0.82±0.07
清水Water 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
喷施后4周
Four weeks after spraying
株高
Plant height (cm)
草甘膦Glyphosate / 46.88±2.54 47.03±1.22 47.23±3.18
清水Water 47.60±1.92 47.27±0.53 46.93±1.52 48.03±1.39
叶片受害率
Leaf damage rate (%)
草甘膦Glyphosate 100.00±0.00 1.21±0.26 0.83±0.03 1.13±0.11
清水Water 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
/:全部死亡 /: All dead

Table 2

Nutritional composition analysis of T3 to T5 transgenic cotton GGK2"

名称Name 水分
Water content (g/100 g)
灰分
Ash content (g/100 g)
蛋白质
Protein content (g/100 g)
脂肪
Fat content (g/100 g)
T3 T4 T5 T3 T4 T5 T3 T4 T5 T3 T4 T5
GGK2 9.10 8.57 8.84 4.10 4.20 4.10 20.80 20.80 23.90 17.30 16.60 18.20
柯字棉312
Coker312
8.15 8.77 8.37 4.00 4.10 4.20 22.10 21.10 23.60 17.20 17.10 18.10
粗纤维
Coarse fiber content (g/100 g)
维生素E
<BOLD>V</BOLD>itamin E content (mg/100 g)
维生素B2
<BOLD>V</BOLD>itamin B2 content (mg/100 g)
肉豆蔻酸
Myristic chemicing (%)
T3 T4 T5 T3 T4 T5 T3 T4 T5 T3 T4 T5
GGK2 14.40 14.60 17.80 8.48 7.84 7.09 5.96×10-2 5.85×10-2 5.68×10-2 0.59 0.60 0.82
柯字棉312
Coker312
15.50 17.00 15.70 9.71 10.30 13.20 5.75×10-2 5.57×10-2 5.65×10-2 0.69 0.69 0.70
棕榈酸
Palmitic acid (%)
棕榈油酸
Palmitoleic acid (%)
十七烷酸
Heptacosanoic acid (%)
硬脂酸
Stearine acid (%)
T3 T4 T5 T3 T4 T5 T3 T4 T5 T3 T4 T5
GGK2 21.30 21.40 25.40 0.64 0.64 0.75 7.39×10-2 7.56×10-2 8.17×10-2 2.20 2.22 2.56
柯字棉312
Coker312
22.10 22.00 22.10 0.61 0.61 0.61 7.91×10-2 7.80×10-2 7.85×10-2 2.35 2.41 2.37
油酸
Oleic acid (%)
亚油酸
Linoleic acid (%)
十九烷酸
Nonadecanoic acid (%)
亚麻酸
Linolenic acid (%)
T3 T4 T5 T3 T4 T5 T3 T4 T5 T3 T4 T5
GGK2 15.70 15.30 14.60 57.50 57.80 52.60 0.23 0.24 0.18 0.23 0.22 0.16
柯字棉312
Coker312
14.70 14.70 14.60 57.50 57.50 57.60 0.25 0.28 0.26 0.18 0.19 0.18
花生酸
Arachic acid (%)
山嵛酸
Behenic acid (%)
棉酚
Gossypol (mg·kg-1)
植酸酶
Phytase (g·kg-1)
T3 T4 T5 T3 T4 T5 T3 T4 T5 T3 T4 T5
GGK2 0.20 0.19 0.26 0.13 0.13 0.13 5.42×103 5.16×103 5.45×103 28.50 29.10 29.10
柯字棉312
Coker312
0.23 0.22 0.22 0.14 0.14 0.14 5.41×103 5.25×103 5.39×103 30.00 26.40 27.70
[1]
郭三堆, 王远, 孙国清, 金石桥, 周焘, 孟志刚, 张锐. 中国转基因棉花研发应用二十年. 中国农业科学, 2015, 48(17): 3372-3387.

doi: 10.3864/j.issn.0578-1752.2015.17.005
GUO S D, WANG Y, SUN G Q, JIN S Q, ZHOU T, MENG Z G, ZHANG R. Twenty years of research and application of transgenic cotton in China. Scientia Agricultura Sinica, 2015, 48(17): 3372-3387. (in Chinese)
[2]
LIANG C Z, SUN B, MENG Z G, MENG Z H, WANG Y, SUN G Q, ZHU T, LU W, ZHANG W, MALIK W, LIN M, ZHANG R, GUO S D. Co-expression of GR79 EPSPS and GAT yields herbicide-resistant cotton with low glyphosate residues. Plant Biotechnology Journal, 2017, 15(12): 1622-1629.

doi: 10.1111/pbi.2017.15.issue-12
[3]
GAUR R K, SHARMA P. Weed stress in plants//Approaches to Plant Stress and Their Management. Berlin: Springer, 2014.
[4]
HOLM L, PLUCKNETT D L, PANCHO J V, HERBERGER J P. The World’s Worst Weeds. Distribution and Biology. Hawaii, USA: The University Press of Hawaii, Honolulu, 1977.
[5]
李扬汉. 中国杂草志. 北京: 中国农业出版社, 1998.
LI Y H. Weeds in China. Beijing: China Agriculture Press, 1998. (in Chinese)
[6]
李香菊. 近年我国农田杂草防控中的突出问题与治理对策. 植物保护, 2018, 44(5): 77-84.
LI X J. Main problems and management strategies of weeds in agricultural fields in China in recent years. Plant Protection, 2018, 44(5): 77-84. (in Chinese)
[7]
BECKIE H J. Herbicide-resistant weed management: Focus on glyphosate. Pest Management Science, 2011, 67(9): 1037-1048.

doi: 10.1002/ps.2195 pmid: 21548004
[8]
HEAP I. Global perspective of herbicide-resistant weeds. Pest Management Science, 2014, 70(9): 1306-1315.

doi: 10.1002/ps.3696 pmid: 24302673
[9]
DUKE S O, POWLES S B. Glyphosate: A once-in-a-century herbicide. Pest Management Science, 2008, 64(4): 319-325.

doi: 10.1002/ps.1518 pmid: 18273882
[10]
金文涌, 叶凤林, 刘定富, 陆永良, 应继锋. 中美转基因作物产业化最新进展. 中国种业, 2022(9): 1-6.
JIN W Y, YE F L, LIU D F, LU Y L, YING J F. The latest progress of of genetically modified crops industrialization in China and the United States. China Seed Industry, 2022(9): 1-6. (in Chinese)
[11]
张娟娟. 转基因作物产业化发展现状及法规监管问题. 分子植物育种, 2022, 20(22): 7469-7473.
ZHANG J J. Current situation of industrialization of genetically modified crops and regulatory issues. Molecular Plant Breeding, 2022, 20(22): 7469-7473. (in Chinese)
[12]
OWEN M D K. Current use of transgenic herbicide-resistant soybean and corn in the USA. Crop Protection, 2000, 19(8/9/10): 765-771.

doi: 10.1016/S0261-2194(00)00102-2
[13]
WATRUD L S, LEE E H, FAIRBROTHER A, BURDICK C, REICHMAN J R, BOLLMAN M, STORM M, KING G, VAN DE WATER P K. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(40): 14533-14538.
[14]
蒋田田, 文君慧. 我国抗除草剂转基因作物面临的机遇和挑战. 安徽农业科学, 2021, 49(22): 239-242.
JIANG T T, WEN J H. Opportunities and challenges facing genetically modified herbicide-resistant crops in China. Journal of Anhui Agricultural Sciences, 2021, 49(22): 239-242. (in Chinese)
[15]
YANG Z R, QANMBER G, WANG Z, YANG Z E, LI F G. Gossypium genomics: Trends, scope, and utilization for cotton improvement. Trends in Plant Science, 2020, 25(5): 488-500.

doi: 10.1016/j.tplants.2019.12.011
[16]
HUANG G, HUANG J Q, CHEN X Y, ZHU Y X. Recent advances and future perspectives in cotton research. Annual Review of Plant Biology, 2021, 72: 437-462.

doi: 10.1146/annurev-arplant-080720-113241 pmid: 33428477
[17]
WANG M J, LI J Y, QI Z Y, LONG Y X, PEI L L, HUANG X H, GROVER C E, DU X M, XIA C J, WANG P C, LIU Z P, YOU J Q, TIAN X H, MA Y Z, WANG R P, CHEN X Y, HE X, FANG D D, SUN Y Q, TU L L, JIN S X, ZHU L F, WENDEL J F, ZHANG X L. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium. Nature Genetics, 2022, 54(12): 1959-1971.

doi: 10.1038/s41588-022-01237-2
[18]
MA Z Y, ZHANG Y, WU L Q, ZHANG G Y, SUN Z W, LI Z K, JIANG Y F, KE H F, CHEN B, LIU Z W, GU Q S, WANG Z C, WANG G N, YANG J, WU J H, YAN Y Y, MENG C S, LI L H, LI X X, MO S J, WU N, MA L M, CHEN L T, ZHANG M, SI A J, YANG Z W, WANG N, WU L Z, ZHANG D M, CUI Y R, CUI J, LV X, LI Y, SHI R K, DUAN Y H, TIAN S L, WANG X F. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics, 2021, 53(9): 1385-1391.

doi: 10.1038/s41588-021-00910-2 pmid: 34373642
[19]
陈佳, 王燕, 白玉兰. 我国棉花产业现状和产出效率分析及对策. 棉花科学, 2022, 44(5): 3-10.
CHEN J, WANG Y, BAI Y L. Current situation and output efficiency analysis and countermeasures of Chinese cotton industry. Cotton Sciences, 2022, 44(5): 3-10. (in Chinese)
[20]
朱玉永, 赵冰梅, 王林. 新疆棉田杂草发生与防除现状及对策. 中国棉花, 2021, 48(2): 1-7.
ZHU Y Y, ZHAO B M, WANG L. Current status of weed occurrence and control in cotton field of Xinjiang and its countermeasures. China Cotton, 2021, 48(2): 1-7. (in Chinese)
[21]
王新玲, 马小艳, 姜伟丽, 任相亮, 马亚杰, 马艳. 杂草与棉花的竞争作用. 棉花学报, 2015, 27(5): 474-480.
WANG X L, MA X Y, JIANG W L, REN X L, MA Y J, MA Y. Review on competition between weeds and cotton. Cotton Science, 2015, 27(5): 474-480. (in Chinese)
[22]
LIANG A M, SHA J Y, LU W, CHEN M, LI L, JIN D, YAN Y L, WANG J, PING S Z, ZHANG W, WANG Y D, LIN M. A single residue mutation of 5-enoylpyruvylshikimate-3-phosphate synthase in Pseudomonas stutzeri enhances resistance to the herbicide glyphosate. Biotechnology Letters, 2008, 30(8): 1397-1401.

doi: 10.1007/s10529-008-9703-8
[23]
DUN B Q, LU W, PING S Z, ZHANG W, CHEN M, XU Y Q, JIN D, ZHAO Z, LIN M. Isolation of a novel glyphosate tolerance N-acetyltransferase gene and expression in E. coli. Chinese High Technology Letter, 2006, 16: 943-947.
[24]
ABID M A, WEI Y X, MENG Z G, WANG Y, YE Y L, WANG Y N, HE H Y, ZHOU Q, LI Y Y, WANG P L, LI X G, YAN L H, MALIK W, GUO S D, CHU C C, ZHANG R, LIANG C Z. Increasing floral visitation and hybrid seed production mediated by beauty mark in Gossypium hirsutum. Plant Biotechnology Journal, 2022, 20(7): 1274-1284.

doi: 10.1111/pbi.v20.7
[25]
WANG Y Q, LIANG C Z, WU S J, ZHANG X Y, TANG J Y, JIAN G L, JIAO G L, LI F G, CHU C C. Significant improvement of cotton Verticillium wilt resistance by manipulating the expression of Gastrodia antifungal proteins. Molecular Plant, 2016, 9(10): 1436-1439.

doi: 10.1016/j.molp.2016.06.013
[26]
李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析. 生物技术通报, 2023, 39(1): 21-30.

doi: 10.13560/j.cnki.biotech.bull.1985.2022-0536
LI S Y, LI X Y, LI P C, ZHANG M J, ZHANG J, LANG Z H. Identification of target traits and genetic stability of transgenic maize 2HVB5. Biotechnology Bulletin, 2023, 39(1): 21-30. (in Chinese)
[27]
CARRIÈRE Y, CRICKMORE N, TABASHNIK B E. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nature Biotechnology, 2015, 33(2): 161-168.

doi: 10.1038/nbt.3099 pmid: 25599179
[28]
CARRIÈRE Y, FABRICK J A, TABASHNIK B E. Can Pyramids and seed mixtures delay resistance to bt crops? Trends in Biotechnology, 2016, 34(4): 291-302.

doi: S0167-7799(15)00271-1 pmid: 26774592
[29]
SHENG K, SUN Y, LIU M, CAO Y F, HAN Y F, LI C, MUHAMMAD U, DAUD M K, WANG W R, LI H Z, SAMRANA S, HUI Y X, ZHU S J, CHEN J H, ZHAO T L. A reference-grade genome assembly for Gossypium bickii and insights into its genome evolution and formation of pigment glands and gossypol. Plant Communcations, 2023, 4(1): 100421.
[30]
郑曙峰. 棉花的多功能利用: 大自然对人类的馈赠, 超乎想象的棉花. 中国棉花, 2022, 49(1): 7-9.
ZHENG S F. Multifunctional utilization of cotton: Nature’s gift to humanity, the cotton beyond imagination. China Cotton, 2022, 49(1): 7-9. (in Chinese)
[31]
祁潇哲, 黄昆仑. 转基因食品安全评价研究进展. 中国农业科技导报, 2013, 15(4): 14-19.
QI X Z, HUANG K L. Research progress on safety assessment of genetically modified food. Journal of Agricultural Science and Technology, 2013, 15(4): 14-19. (in Chinese)

doi: 10.3969/j.issn.10080864.2013.04.03
[32]
王友华, 孙国庆, 连正兴. 国内外转基因生物研发新进展与未来展望. 生物技术通报, 2015, 31(3): 223-230.

doi: 10.135601j.cnki.biotech.bull.1985.2015.04.033
WANG Y H, SUN G Q, LIAN Z X. Progress and prospect of the genetically modified organism in the domestic and international. Biotechnology Bulletin, 2015, 31(3): 223-230. (in Chinese)
[33]
BUSI R, VILA-AIUB M M, BECKIE H J, GAINES T A, GOGGIN D E, KAUNDUN S S, LACOSTE M, NEVE P, NISSEN S J, NORSWORTHY J K, RENTON M, SHANER D L, TRANEL P J, WRIGHT T, YU Q, POWLES S B. Herbicide-resistant weeds: From research and knowledge to future needs. Evolutionary Applications, 2013, 6(8): 1218-1221.

doi: 10.1111/eva.12098 pmid: 24478803
[34]
DILL G M, CAJACOB C A, PADGETTE S R. Glyphosate-resistant crops: Adoption, use and future considerations. Pest Management Science, 2008, 64(4): 326-331.

pmid: 18078304
[35]
余国新, 吕海洋, 甘昶春. 新疆棉花成本收益与价格时变特征研究. 价格理论与实践, 2022(2): 116-119, 201.
YU G X, H Y, GAN C C. Research on time-varying characteristics of cost-benefit and price of cotton in Xinjiang. Price: Theory & Practice, 2022(2): 116-119, 201. (in Chinese)
[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[3] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[4] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[5] LIU Fang, XU MengBei, WANG QiaoLing, MENG Qian, LI GuiMing, ZHANG HongJu, TIAN HuiDan, XU Fan, LUO Ming. Cloning and Functional Characterization of the Promoter of GhSLD1 Gene That Predominantly Expressed in Cotton Fiber [J]. Scientia Agricultura Sinica, 2023, 56(19): 3712-3722.
[6] DING GuoHua, XIAO GuangHui, ZHU LiPing. Genome-Wide Identification and Expression Analysis of NLP (NIN- Like Protein) Transcription Factor Gene Family in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(19): 3723-3746.
[7] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[8] WANG WanRu, CAO YueFen, SHENG Kuang, CHEN JinHong, ZHAO TianLun, ZHU ShuiJin. The Creation and Characteristics of Cotton Germplasm Lines Transgenic 1174AALdico-2+CTP Gene with Excellent Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3261-3276.
[9] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[10] DANG WenWen, LIU Bing, CHU Dong, LU YanHui. Dominated Species and the Predation Assessment of Natural Enemies on Thrips in Cotton Fields in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(17): 3347-3357.
[11] LOU ShanWei, TIAN LiWen, LUO HongHai, DU MingWei, LIN Tao, YANG Tao, ZHANG PengZhong. Analysis on Key Production Techniques of Cotton with Good Quality and High Yield in Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(14): 2673-2685.
[12] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[13] SONG Ci, GU FengXu, XING ZhenZhen, ZHANG JunMing, HE WenXue, WANG TianBo, WANG YuLu, CHEN JunYing. Physiological Changes and Integrity of ATP Synthase Subunits mRNA in Naturally Aged Cotton Seeds [J]. Scientia Agricultura Sinica, 2023, 56(10): 1827-1837.
[14] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[15] WANG JunJuan, LU XuKe, WANG YanQin, WANG Shuai, YIN ZuJun, FU XiaoQiong, WANG DeLong, CHEN XiuGui, GUO LiXue, CHEN Chao, ZHAO LanJie, HAN YingChun, SUN LiangQing, HAN MingGe, ZHANG YueXin, FAN YaPeng, YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!