Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (17): 3285-3301.doi: 10.3864/j.issn.0578-1752.2023.17.005

• SPECIAL FOCUS: HERBICIDE-TOLERANCE COTTON CREATION BY GENETIC TRANSFORMATION AND GENOME EDITING • Previous Articles     Next Articles

Opportunities and Challenges for Developing Herbicide-Resistance Crops in the Post-Genomic Era

WU YuanLong1(), HUI FengJiao2(), PAN ZhenYuan1, YOU ChunYuan3, LIN HaiRong1, LI ZhiBo1, JIN ShuangXia2(), NIE XinHui1()   

  1. 1Agricultural College, Shihezi University/Key Laboratory of Oasis Ecology Agriculture, Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang
    2College of Plant Sciences & Technology, Huazhong Agricultural University/National Key Laboratory of Crop Genetic Improvement, Wuhan 430070
    3Cotton Research Institute of Shihezi Academy of Agricultural Sciences, Shihezi 832011, Xinjiang
  • Received:2023-05-03 Accepted:2023-06-25 Online:2023-09-01 Published:2023-09-08
  • Contact: JIN ShuangXia, NIE XinHui

Abstract:

Global agriculture is facing severe challenges, and breeding technology is the foundation and key to the development of the seed industry. Gene editing technology refers to the precise modification of target genes to achieve deletion, insertion, and replacement of specific target gene fragments. It can precisely modify target genes or introduce certain excellent genes into crops to produce crops with excellent agronomic traits, which has great potential in molecular design breeding and is of great significance to ensuring food security. Weed damage has a huge impact on the yield and quality of crops. To control weed damage efficiently, safely and sustainably has always been a hot research topic. Currently, more than 200 types of chemical herbicides have emerged in the global market. Using chemical methods to control weeds has become an important part of modern agriculture, and the cost of weed control has been significantly reduced by promoting herbicide-resistant crops. However, with the large-scale promotion of herbicide-resistant crops and the long-term use of single herbicides, environmental safety problems such as weed resistance and escape of resistant genes have gradually been discovered. Currently, the development of functional genomics, bioinformatics and genetic engineering technology (especially the widespread application of gene editing technology in plants) has created conditions for the creation of herbicide-resistant crops and new efficient weed control systems. In this article, the main target genes of herbicides that inhibit amino acid biosynthesis, lipid metabolism, carotenoid, plastoquinone and tocopherol biosynthesis pathways and their action mechanisms are introduced at first. Secondly, two methods for mining new herbicide resistance genes and herbicide systems are introduced, including the directed mutation method of herbicide resistance genes within crops based on CRISPR/Cas system and the resistance gene guidance method based on the co-evolution theory of natural product and organisms in nature. Moreover, the research progress of three breeding methods for herbicide resistant crops was reviewed, including conventional breeding, transgenic breeding and CRISPR/Cas genome editing based breeding. Among them, the research progress of CIRSPR/Cas system, base editing technology, and prime editing system in cultivating herbicide resistant crops were highlighted. The main challenge faced by chemical control of weeds and herbicide resistant crops is resistant weeds and environmental safety issues, and gene escape, respectively. At present, the rapid development of genome editing technology provides new solutions and new opportunities for the development of herbicide resistant crops in the post genome era. Finally, the prospects for the future of herbicide-resistant crops were provided.

Key words: gene editing technology, herbicides, herbicide-resistant genes, breeding of herbicide-resistant crops

Fig. 1

Schematic model illustrating amino acid metabolism pathway and herbicide inhibition mechanism in plants A: Schematic model illustrating branched-chain amino acid biosynthesis pathway and inhibition locus of acetyl hydroxyl acid synthetase herbicide; B: Schematic model illustrating inhibition locus of 5-enolpyruvyl shikimic acid 3-phosphate synthetase herbicide; C: Schematic model illustrating inhibition locus of glutamine synthetase herbicide. GS: Glutamine synthetase; GOGAT: Glutamate synthase"

Fig. 2

Schematic model illustrating inhibition locus of acetyl-CoA carboxylase herbicide [4]"

Fig. 3

Schematic model illustrating inhibition locus in carotenoid, plastoquinone and tocopherol biosynthetic pathways HPPD: 4-hydroxyphenylpyruvate dioxygenase; DXS: 1-deoxy-D-xylulose 5-phosphate synthase; SPS: Solanyl diphosphate synthase; HST: Homogentisate solanesyl transferase; PDS: Phytoene desaturase"

Table 1

Breeding herbicide-resistant crops based on gene editing"

抗除草剂作物
Herbicide resistance crops
突变位点
Mutation sites
修复途径
Repair pathway
靶标基因
Target gene
靶标除草剂
Target herbicide
参考文献
Rferences
水稻Rice Trp548/Ser627 HDR ALS 双草醚Bispyribac-sodium [48, 58, 60, 79-80]
水稻Rice Gly628 NHEJ ALS 咪草烟Imazethapyr [55]
水稻Rice Ala96 CBE ALS 甲氧咪草烟Imazamox [81]
水稻Rice Gly628 CBE ALS 咪唑啉酮Imidazolinone [82]
水稻Rice Ser627 Prime editing ALS 咪唑啉酮Imidazolinone [83]
水稻Rice Try548 Prime editing OsALS 双草醚Bispyribac sodium [84]
水稻Rice / ABE/CBE OsALS1 双草醚Bispyribac-sodium [85]
水稻Rice Cys2186 ABE ACCase 吡氟乙草灵Haloxyfop [53]
水稻Rice / ABE/CBE ACCase 吡氟乙草灵Haloxyfop [70]
水稻Rice Trp2125 CBE OsACCase 氟草灵Gallant [86]
水稻Rice Trp2125 Prime editing OsACCase1 吡氟乙草灵Haloxyfop [87]
水稻Rice / Prime editing OsACCase1 氟草灵Gallant [28]
水稻Rice / NHEJ EPSPS 草甘膦Glyphosate [88]
水稻Rice Thr1981 ABE OsTubA2 二硝基苯胺Dinitroaniline [89]
西瓜Watermelon Pro190 CBE ClALS 苯磺隆Tribenuron0 [90]
小麦Wheat Ala1992 CBE TaALS 烟嘧磺隆Nicosulfuron [91]
小麦Wheat Pro174 CBE TaALS, ACCase 磺酰脲类、咪唑啉酮、芳氧苯氧丙酸酯Sulfonylurea, Imidazolinone, Aryloxyphenoxy propionate [68]
玉米Maize Pro165 CBE ZmALS 磺酰脲类Sulfonylurea [66]
玉米Maize Pro165 HDR ALS 氯磺隆Chlorsulfuron [92]
油菜Oilseed rape Pro197 CBE BnALS1 苯磺隆Tribenuron-methyl [67]
烟草N. tabacum Pro194 CBE ALS 吡嘧磺隆乙酯Pyrazosulfuron ethyl [93]
西红柿Tomato Pro184/Pro186 CBE ALS 氯磺隆Chlorsulfuron [94]
大豆Soybean Pro178 HDR ALS1 氯磺隆Chlorsulfuron [95]
亚麻Flax Thr178/Pro182 HDR EPSPS 草甘膦Glyphosate [96]
木薯Cassava / HDR EPSPS 草甘膦Glyphosate [97]
土豆Potato / HDR ALS1 咪唑啉酮Imidazolinone [98]
[1]
POWLES S B, YU Q. Evolution in action: plants resistant to herbicides. Annual Review of Plant Biology, 2010, 61: 317-347.

doi: 10.1146/annurev-arplant-042809-112119 pmid: 20192743
[2]
杨红梅, 冯莉, 陈光辉. 作物田杂草种子库研究进展. 广东农业科学, 2008, 35(10): 57-60, 67.
YANG H M, FENG L, CHEN G H. Research development of crop field weed seed-bank. Guangdong Agricultural Sciences, 2008, 35(10): 57-60, 67. (in Chinese)
[3]
孙金秋, 任相亮, 胡红岩, 姜伟丽, 马亚杰, 王丹, 宋贤鹏, 马艳, 马小艳. 农田杂草群落演替的影响因素综述. 杂草学报, 2019, 37(2): 1-9.
SUN J Q, REN X L, HU H Y, JIANG W L, MA Y J, WANG D, SONG X P, MA Y, MA X Y. The factors influencing weed community succession in the crop field. Journal of Weed Science, 2019, 37(2): 1-9. (in Chinese)
[4]
JIN M, CHEN L, DENG X W, TANG X Y. Development of herbicide resistance genes and their application in rice. The Crop Journal, 2022, 10(1): 26-35.

doi: 10.1016/j.cj.2021.05.007
[5]
李扬汉. 中国杂草志. 北京: 中国农业出版社, 1998.
LI Y H. Weeds of China. 北京: China Agriculture Press, 1998. (in Chinese)
[6]
OERKE E C. Crop losses to pests. The Journal of Agricultural Science, 2006, 144(1): 31-43.

doi: 10.1017/S0021859605005708
[7]
李香菊. 近年我国农田杂草防控中的突出问题与治理对策. 植物保护, 2018, 44(5): 77-84.
LI X J. Main problems and management strategies of weeds in agricultural fields in China in recent years. Plant Protection, 2018, 44(5): 77-84. (in Chinese)
[8]
BURGOS N R, SINGH V, TSENG T M, BLACK H, YOUNG N D, HUANG Z, HYMA K E, GEALY D R, CAICEDO A L. The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice. Plant Physiology, 2014, 166(3): 1208-1220.

doi: 10.1104/pp.114.242719 pmid: 25122473
[9]
檀琮萍, 江昌俊. 作物抗除草剂基因工程与抗除草剂转基因小麦的研究进展. 安徽农业大学学报, 2003, 30(1): 27-33.
TAN C P, JIANG C J. Research progress on herbicide resistant gene engineering of crop and transgenic herbicide resistant wheat. Journal of Anhui Agricultural University, 2003, 30(1): 27-33. (in Chinese)
[10]
强胜, 宋小玲, 戴伟民. 抗除草剂转基因作物面临的机遇与挑战及其发展策略. 农业生物技术学报, 2010, 18(1): 114-125.
QIANG S, SONG X L, DAI W M. The opportunity and challenge faced by transgenic herbicide-resistant crops and their development strategy. Journal of Agricultural Biotechnology, 2010, 18(1): 114-125. (in Chinese)
[11]
ZHANG D B, SHI J X, YANG X J. Role of lipid metabolism in plant pollen exine development. Sub-Cellular Biochemistry, 2016, 86: 315-337.

doi: 10.1007/978-3-319-25979-6_13 pmid: 27023241
[12]
PICHERSKY E, LEWINSOHN E. Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology, 2011, 62: 549-566.

doi: 10.1146/annurev-arplant-042110-103814 pmid: 21275647
[13]
NAKKA S, JUGULAM M, PETERSON D, ASIF M. Herbicide resistance: Development of wheat production systems and current status of resistant weeds in wheat cropping systems. The Crop Journal, 2019, 7(6): 750-760.

doi: 10.1016/j.cj.2019.09.004
[14]
GALILI G, AMIR R, FERNIE A R. The regulation of essential amino acid synthesis and accumulation in plants. Annual Review of Plant Biology, 2016, 67: 153-178.

doi: 10.1146/annurev-arplant-043015-112213 pmid: 26735064
[15]
TAN S Y, EVANS R R, DAHMER M L, SINGH B K, SHANER D L. Imidazolinone-tolerant crops: History, current status and future. Pest Management Science, 2005, 61(3): 246-257.

doi: 10.1002/ps.993 pmid: 15627242
[16]
YAN Y, LIU Q K, ZANG X, YUAN S G, BAT-ERDENE U, NGUYEN C, GAN J H, ZHOU J H, JACOBSEN S E, TANG Y. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature, 2018, 559(7714): 415-418.

doi: 10.1038/s41586-018-0319-4
[17]
AMRHEIN N, DEUS B, GEHRKE P, STEINRUCKEN H C. The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiology, 1980, 66(5): 830-834.

doi: 10.1104/pp.66.5.830 pmid: 16661535
[18]
DUKE S O, POWLES S B. Glyphosate: A once-in-a-century herbicide. Pest Management Science, 2008, 64(4): 319-325.

doi: 10.1002/ps.1518 pmid: 18273882
[19]
DILL G M. Glyphosate-resistant crops: History, status and future. Pest Management Science, 2005, 61(3): 219-224.

pmid: 15662720
[20]
陈世国, 强胜. 生物除草剂研究与开发的现状及未来的发展趋势. 中国生物防治学报, 2015, 31(5): 770-779.

doi: 10.16409/j.cnki.2095-039x.2015.05.017
CHEN S G, QIANG S. The status and future directions of bioherbicide study and development. Chinese Journal of Biological Control, 2015, 31(5): 770-779. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2015.05.017
[21]
JAMES D, BORPHUKAN B, FARTYAL D, RAM B, SINGH J, MANNA M, SHERI V, PANDITI V, YADAV R, REDDY M K. Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): Impact on tolerance to abiotic stresses. Frontiers in Plant Science, 2018, 9: 786.

doi: 10.3389/fpls.2018.00786
[22]
TANG W, ZHOU F Y, CHEN J, ZHOU X G. Resistance to ACCase-inhibiting herbicides in an Asia minor bluegrass (Polypogon fugax) population in China. Pesticide Biochemistry and Physiology, 2014, 108: 16-20.

doi: 10.1016/j.pestbp.2013.11.001 pmid: 24485310
[23]
NDIKURYAYO F, MOOSAVI B, YANG W C, YANG G F. 4-hydroxyphenylpyruvate dioxygenase inhibitors: From chemical biology to agrochemicals. Journal of Agricultural and Food Chemistry, 2017, 65(39): 8523-8537.

doi: 10.1021/acs.jafc.7b03851 pmid: 28903556
[24]
COMAI L, SEN L C, STALKER D M. An altered aroa gene product confers resistance to the herbicide glyphosate. Science, 1983, 221(4608): 370-371.

pmid: 17798892
[25]
MIKI B, MCHUGH S. Selectable marker genes in transgenic plants: Applications, alternatives and biosafety. Journal of Biotechnology, 2004, 107(3): 193-232.

doi: 10.1016/j.jbiotec.2003.10.011 pmid: 14736458
[26]
DONG H R, HUANG Y, WANG K J. The development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing. Genes, 2021, 12(6): 912.

doi: 10.3390/genes12060912
[27]
HUSSAIN A, DING X, ALARIQI M, MANGHWAR H, HUI F J, LI Y P, CHENG J Q, WU C L, CAO J L, JIN S X. Herbicide resistance: Another hot agronomic trait for plant genome editing. Plants, 2021, 10(4): 621.

doi: 10.3390/plants10040621
[28]
XU R F, LIU X S, LI J, QIN R Y, WEI P C. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice. Nature Plants, 2021, 7(7): 888-892.

doi: 10.1038/s41477-021-00942-w pmid: 34112987
[29]
YAN D R, REN B, LIU L, YAN F, LI S F, WANG G R, SUN W X, ZHOU X P, ZHOU H B. High-efficiency and multiplex adenine base editing in plants using new TadA variants. Molecular Plant, 2021, 14(5): 722-731.

doi: 10.1016/j.molp.2021.02.007 pmid: 33631420
[30]
MAEDA H, MURATA K, SAKUMA N, TAKEI S, YAMAZAKI A, AHIRM M R, KAWATA M, HIROSE S, KAWAGISHI-KOBAYASHI M, TANIGUCHI Y, SUZUKI S, SEKINO K, OHSHIMA M, KATO H, YOSHIDA H, TOZAWA Y. A rice gene that confers broad-spectrum resistance to β-triketone herbicides. Science, 2019, 365(6451): 393-396.

doi: 10.1126/science.aax0379 pmid: 31346065
[31]
ZHAO D L, HAN X B, WANG M, ZENG Y T, LI Y Q, MA G Y, LIU J, ZHENG C J, WEN M X, ZHANG Z F, ZHANG P, ZHANG C S. Herbicidal and antifungal xanthone derivatives from the Alga-derived fungus Aspergillus versicolor D5. Journal of Agricultural and Food Chemistry, 2020, 68(40): 11207-11214.

doi: 10.1021/acs.jafc.0c04265
[32]
WU G B, YUAN M R, WEI L, ZHANG Y, LIN Y J, ZHANG L L, LIU Z D. Characterization of a novel cold-adapted phosphinothricin N-acetyltransferase from the marine bacterium Rhodococcus sp. strain YM12. Journal of Molecular Catalysis B: Enzymatic, 2014, 104: 23-28.

doi: 10.1016/j.molcatb.2014.03.001
[33]
YI S Y, WU G B, LIN Y J, HU N, LIU Z D. Characterization of a new type of glyphosate-tolerant 5-enolpyruvyl shikimate-3-phosphate synthase from Isoptericola variabilis. Journal of Molecular Catalysis B: Enzymatic, 2015, 111: 1-8.

doi: 10.1016/j.molcatb.2014.11.009
[34]
LIU X, WANG S J, YU W S, ZHANG J Q, FANG S, ZHANG J G, QIU J, KONG F Y, DUAN X G. Single platinum atoms anchored on holy carbon nitride for efficient photodegradation of sulfonylurea herbicide. Chemical Engineering Journal, 2022, 446: 137426.

doi: 10.1016/j.cej.2022.137426
[35]
LONHIENNE T, CHENG Y, GARCIA M D, HU S H, LOW Y S, SCHENK G, WILLIAMS C M, GUDDAT L W. Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nature Communications, 2022, 13(1): 3368.

doi: 10.1038/s41467-022-31023-x pmid: 35690625
[36]
NEWHOUSE K E, SMITH W A, STARRETT M A, SCHAEFER T J, SINGH B K. Tolerance to imidazolinone herbicides in wheat. Plant physiology, 1992, 100(2): 882-886.

doi: 10.1104/pp.100.2.882 pmid: 16653071
[37]
SALA C A, BULOS M, ALTIERI E, RAMOS M L. Genetics and breeding of herbicide tolerance in sunflower. Helia, 2012, 35(57): 57-69.

doi: 10.2298/HEL1257057S
[38]
SEBASTIAN S A, FADER G M, ULRICH J F, FORNEY D R, CHALEFF R S. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Science, 1989, 29(6): 1403-1408.

doi: 10.2135/cropsci1989.0011183X002900060014x
[39]
ENDO M, TOKI S. Creation of herbicide-tolerant crops by gene targeting. Journal of Pesticide Science, 2013, 38(2): 49-59.

doi: 10.1584/jpestics.D12-073
[40]
CASTLE L A, SIEHL D L, GORTON R, PATTEN P A, CHEN Y H, BERTAIN S, CHO H J, DUCK N, WONG J, LIU D L, LASSNER M W. Discovery and directed evolution of a glyphosate tolerance gene. Science, 2004, 304(5674): 1151-1154.

pmid: 15155947
[41]
THOMPSON C J, MOVVA N R, TIZARD R, CRAMERI R, DAVIES J E, LAUWEREYS M, BOTTERMAN J. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. The EMBO Journal, 1987, 6(9): 2519-2523.

doi: 10.1002/embj.1987.6.issue-9
[42]
CUI Y, LIU Z D, LI Y, ZHOU F, CHEN H, LIN Y J. Application of a novel phosphinothricin N-acetyltransferase (RePAT) gene in developing glufosinate-resistant rice. Scientific Reports, 2016, 6(1): 21259.

doi: 10.1038/srep21259
[43]
BECKIE H J, HALL L M. Genetically-modified herbicide-resistant (GMHR) crops a two-edged sword? An Americas perspective on development and effect on weed management. Crop Protection, 2014, 66: 40-45.

doi: 10.1016/j.cropro.2014.08.014
[44]
DUN B Q, WANG X J, LU W, CHEN M, ZHANG W, PING S Z, WANG Z X, ZHANG B M, LIN M. Development of highly glyphosate-tolerant tobacco by coexpression of glyphosate acetyltransferase gat and EPSPS G2-aroA genes. The Crop Journal, 2014, 2(2/3): 164-169.

doi: 10.1016/j.cj.2014.03.003
[45]
YI S Y, CUI Y, ZHAO Y, LIU Z D, LIN Y J, ZHOU F. A novel naturally occurring class I 5-enolpyruvylshikimate-3-phosphate synthase from Janibacter sp. confers high glyphosate tolerance to rice. Scientific Reports, 2016, 6: 19104.

doi: 10.1038/srep19104
[46]
崔永祯, 杨晓云, 李绍祥, 浦秋红, 杨忠慧, 李宏生, 丁明亮. 转基因技术与基因编辑技术在抗除草剂农作物上的应用. 中国种业, 2022(4): 19-22.
CUI Y Z, YANG X Y, LI S X, PU Q H, YANG Z H, LI H S, DING M L. Application of transgenic technology and gene editing technology in crops with herbicide resistants. China Seed Industry, 2022(4): 19-22. (in Chinese)
[47]
GUO B F, GUO Y, HONG H L, JIN L G, ZHANG L J, CHANG R Z, LU W, LIN M, QIU L J. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean. Frontiers in Plant Science, 2015, 6: 847.
[48]
邱龙, 马崇烈, 刘博林, 章旺根. 耐除草剂转基因作物研究现状及发展前景. 中国农业科学, 2012, 45(12): 2357-2363.

doi: 10.3864/j.issn.0578-1752.2012.12.003
QIU L, MA C L, LIU B L, ZHANG W G. Current situation of research on transgenic crops with herbicide tolerance and development prospect. Scientia Agricultura Sinica, 2012, 45(12): 2357-2363. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.12.003
[49]
FARTYAL D, AGARWAL A, JAMES D, BORPHUKAN B, RAM B, SHERI V, YADAV R, MANNA M, VARAKUMAR P, REDDY M K. Co-expression of P173S mutant rice EPSPS and igrA genes results in higher glyphosate tolerance in transgenic rice. Frontiers in Plant Science, 2018, 9: 144.

doi: 10.3389/fpls.2018.00144
[50]
MANGHWAR H, LINDSEY K, ZHANG X L, JIN S X. CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends in Plant Science, 2019, 24(12): 1102-1125.

doi: S1360-1385(19)30243-2 pmid: 31727474
[51]
HORVATH P, BARRANGOU R. CRISPR/Cas, the immune system of bacteria and Archaea. Science, 2010, 327(5962): 167-170.

doi: 10.1126/science.1179555 pmid: 20056882
[52]
WANG J Y, DOUDNA J A. CRISPR technology: A decade of genome editing is only the beginning. Science, 2023, 379(6629): eadd8643.

doi: 10.1126/science.add8643
[53]
PUCHTA H, FAUSER F. Synthetic nucleases for genome engineering in plants: prospects for a bright future. The Plant Journal, 2014, 78(5): 727-741.

doi: 10.1111/tpj.12338 pmid: 24112784
[54]
ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, SLAYMAKER I M, MAKAROVA K S, ESSLETZBICHLER P, VOLZ S E, JOUNG J, VAN DER OOST J, REGEV A, KOONIN E V, ZHANG F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3): 759-771.

doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[55]
WANG F Q, XU Y, LI W Q, CHEN Z H, WANG J, FAN F J, TAO Y J, JIANG Y J, ZHU Q H, YANG J. Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing. The Crop Journal, 2021, 9(2): 305-312.

doi: 10.1016/j.cj.2020.06.001
[56]
LI S Y, LI J Y, HE Y B, XU M L, ZHANG J H, DU W M, ZHAO Y D, XIA L Q. Precise gene replacement in rice by RNA transcript- templated homologous recombination. Nature Biotechnology, 2019, 37(4): 445-450.

doi: 10.1038/s41587-019-0065-7
[57]
REISS B, KLEMM M, KOSAK H, SCHELL J. Rec A protein stimulates homologous recombination in plants. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(7): 3094-3098.
[58]
WANG M G, LU Y M, BOTELLA J R, MAO Y F, HUA K, ZHU J K. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9. system Molecular Plant, 2017, 10(7): 1007-1010.
[59]
SONG F, STIEGER K. Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Molecular Therapy-Nucleic Acids, 2017, 7: 53-60.

doi: S2162-2531(17)30133-6 pmid: 28624224
[60]
SUN Y W, ZHANG X, WU C Y, HE Y B, MA Y Z, HOU H, GUO X P, DU W M, ZHAO Y D, XIA L Q. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant, 2016, 9(4): 628-631.

doi: 10.1016/j.molp.2016.01.001 pmid: 26768120
[61]
LI S Y, LI J Y, ZHANG J H, DU W M, FU J D, SUTAR S, ZHAO Y D, XIA L Q. Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice. Journal of Experimental Botany, 2018, 69(20): 4715-4721.

doi: 10.1093/jxb/ery245 pmid: 29955893
[62]
LU Y M, TIAN Y F, SHEN R D, YAO Q, WANG M G, CHEN M, DONG J S, ZHANG T E, LI F, LEI M G, ZHU J K. Targeted, efficient sequence insertion and replacement in rice. Nature Biotechnology, 2020, 38(12): 1402-1407.

doi: 10.1038/s41587-020-0581-5
[63]
KOMOR A C, KIM Y B, PACKER M S, ZURIS J A, LIU D R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420-424.

doi: 10.1038/nature17946
[64]
GAUDELLI N M, KOMOR A C, REES H A, PACKER M S, BADRAN A H, BRYSON D I, LIU D R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464-471.

doi: 10.1038/nature24644
[65]
TONG H W, WANG X C, LIU Y H, LIU N N, LI Y, LUO J M, MA Q, WU D N, LI J Y, XU C L, YANG H. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nature Biotechnology, 2023.
[66]
LI Y M, ZHU J J, WU H, LIU C L, HUANG C L, LAN J H, ZHAO Y M, XIE C X. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. The Crop Journal, 2020, 8(3): 449-456.

doi: 10.1016/j.cj.2019.10.001
[67]
WU J, CHEN C, XIAN G Y, LIU D X, LIN L, YIN S L, SUN Q F, FANG Y J, ZHANG H, WANG Y P. Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnology Journal, 2020, 18(9): 1857-1859.

doi: 10.1111/pbi.13368 pmid: 32096325
[68]
ZHANG R, LIU J X, CHAI Z Z, CHEN S, BAI Y, ZONG Y, CHEN K L, LI J Y, JIANG L J, GAO C X. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 2019, 5(5): 480-485.

doi: 10.1038/s41477-019-0405-0 pmid: 30988404
[69]
HAN H N, WU Z W, ZHENG L, HAN J Y, ZHANG Y, LI J H, ZHANG S J, LI G Y, MA C L, WANG P P. Generation of a high-efficiency adenine base editor with TadA8e for developing wheat dinitroaniline-resistant germplasm. The Crop Journal, 2022, 10(2): 368-374.

doi: 10.1016/j.cj.2021.08.006
[70]
LI C, ZHANG R, MENG X B, CHEN S, ZONG Y, LU C J, QIU J L, CHEN Y H, LI J Y, GAO C X. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology, 2020, 38(7): 875-882.

doi: 10.1038/s41587-019-0393-7 pmid: 31932727
[71]
ANZALONE A V, RANDOLPH P B, DAVIS J R, SOUSA A A, KOBLAN L W, LEVY J M, CHEN P J, WILSON C, NEWBY G A, RAGURAM A, LIU D R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149-157.

doi: 10.1038/s41586-019-1711-4
[72]
ZHUANG Y, LIU J L, WU H, ZHU Q G, YAN Y C, MENG H W, CHEN P R, YI C Q. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nature Chemical Biology, 2022, 18(1): 29-37.

doi: 10.1038/s41589-021-00889-1
[73]
LI X S, ZHOU L N, GAO B Q, LI G Y, WANG X, WANG Y, WEI J, HAN W Y, WANG Z X, LI J F, GAO R Z, ZHU J J, XU W C, WU J, YANG B, SUN X D, YANG L, CHEN J. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nature Communications, 2022, 13(1): 1669.

doi: 10.1038/s41467-022-29339-9 pmid: 35351879
[74]
NELSON J W, RANDOLPH P B, SHEN S P, EVERETTE K A, CHEN P J, ANZALONE A V, AN M, NEWBY G A, CHEN J C, HSU A, LIU D R. Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology, 2022, 40(3): 402-410.

doi: 10.1038/s41587-021-01039-7
[75]
CHEN P J, HUSSMANN J A, YAN J, KNIPPING F, RAVISANKAR P, CHEN P F, CHEN C D, NELSON J W, Newby G A, SAHIN M, OSBORN M J, WEISSMAN J S, ADAMSON B, LIU D R. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell, 2021, 184(22): 5635-5652. e29.

doi: 10.1016/j.cell.2021.09.018 pmid: 34653350
[76]
JIN S, LIN Q P, GAO Q, GAO C X. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs). Nature Protocols, 2023, 18(3): 831-853.

doi: 10.1038/s41596-022-00773-9
[77]
ZONG Y, LIU Y J, XUE C X, LI B S, LI X Y, WANG Y P, LI J, LIU G W, HUANG X X, CAO X F, GAO C X. An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 2022, 40(9): 1394-1402.

doi: 10.1038/s41587-022-01254-w pmid: 35332341
[78]
QIAO D X, WANG J Y, LU M H, XIN C P, CHAI Y P, JIANG Y Y, SUN W, CAO Z H, GUO S Y, WANG X C, CHEN Q J. Optimized prime editing efficiently generates heritable mutations in maize. Journal of Integrative Plant Biology, 2023, 65(4): 900-906.

doi: 10.1111/jipb.13428
[79]
ENDO M, MIKAMI M, TOKI S. Biallelic gene targeting in rice. Plant Physiology, 2016, 170(2): 667-677.

doi: 10.1104/pp.15.01663 pmid: 26668334
[80]
SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, TERADA R, ARAZOE T, ISHII H, TERAMURA H, YAMAMOTO T, KOMATSU H, MIURA K, EZURA H, NISHIDA K, ARIIZUMI T, KONDO A. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology, 2017, 35(5): 441-443.

doi: 10.1038/nbt.3833 pmid: 28346401
[81]
SHIMATANI Z, FUJIKURA U, ISHII H, MATSUI Y, SUZUKI M, UEKE Y, TAOKA K I, TERADA R, NISHIDA K, KONDO A. Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiology and Biochemistry, 2018, 131: 78-83.

doi: S0981-9428(18)30186-4 pmid: 29778643
[82]
ZHANG R, CHEN S, MENG X B, CHAI Z Z, WANG D L, YUAN Y G, CHEN K L, JIANG L J, LI J, GAO C X. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Science China Life Sciences, 2021, 64(10): 1624-1633.

doi: 10.1007/s11427-020-1800-5
[83]
HUA K, JIANG Y W, TAO X P, ZHU J K. Precision genome engineering in rice using prime editing system. Plant Biotechnology Journal, 2020, 18(11): 2167-2169.

doi: 10.1111/pbi.v18.11
[84]
BUTT H, RAO G S, SEDEEK K, AMAN R, KAMEL R, MAHFOUZ M. Engineering herbicide resistance via prime editing in rice. Plant Biotechnology Journal, 2020, 18(12): 2370-2372.

doi: 10.1111/pbi.v18.12
[85]
KUANG Y J, LI S F, REN B, YAN F, SPETZ C, LI X J, ZHOU X P, ZHOU H B. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Molecular Plant, 2020, 13(4): 565-572.

doi: S1674-2052(20)30010-1 pmid: 32001363
[86]
LIU X S, QIN R Y, LI J, LIAO S X, SHAN T F, XU R F, WU D X, WEI P C. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice. Plant Biotechnology Journal, 2020, 18(9): 1845-1847.

doi: 10.1111/pbi.13348 pmid: 31985873
[87]
XU R F, LI J, LIU X S, SHAN T F, QIN R Y, WEI P C. Development of plant prime-editing systems for precise genome editing. Plant Communications, 2020, 1(3): 100043.

doi: 10.1016/j.xplc.2020.100043
[88]
LI J, MENG X B, ZONG Y, CHEN K L, ZHANG H W, LIU J X, LI J Y, GAO C X. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nature Plants, 2016, 2(10): 16139.

doi: 10.1038/nplants.2016.139
[89]
LIU L, KUANG Y J, YAN F, LI S F, REN B, GOSAVI G, SPETZ C, LI X J, WANG X F, ZHOU X P, ZHOU H B. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2. Plant Biotechnology Journal, 2021, 19(1): 5-7.

doi: 10.1111/pbi.v19.1
[90]
TIAN S W, JIANG L J, CUI X X, ZHANG J, GUO S G, LI M Y, ZHANG H Y, REN Y, GONG G Y, ZONG M, LIU F, CHEN Q J, XU Y. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Reports, 2018, 37(9): 1353-1356.

doi: 10.1007/s00299-018-2299-0 pmid: 29797048
[91]
ZONG Y, SONG Q N, LI C, JIN S, ZHANG D B, WANG Y P, QIU J L, GAO C X. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 2018, 36(10): 950-953.

doi: 10.1038/nbt.4261
[92]
SVITASHEV S, YOUNG J K, SCHWARTZ C, GAO H R, FALCO S C, CIGAN A M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 2015, 169(2): 931-945.

doi: 10.1104/pp.15.00793 pmid: 26269544
[93]
KANG B C, WOO J W, KIM S T, BAE S J, CHOI M, KIM J S, KIM S G. Guidelines for C to T base editing in plants: Base-editing window, guide RNA length, and efficient promoter. Plant Biotechnology Reports, 2019, 13(5): 533-541.

doi: 10.1007/s11816-019-00572-x
[94]
VEILLET F, PERROT L, CHAUVIN L, KERMARREC M P, GUYON-DEBAST A, CHAUVIN J E, NOGUÉ F, MAZIER M. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. International Journal of Molecular Sciences, 2019, 20(2): 402.

doi: 10.3390/ijms20020402
[95]
LI Z S, LIU Z B, XING A Q, MOON B P, KOELLHOFFER J P, HUANG L X, WARD R T, CLIFTON E, FALCO S C, CIGAN A M. Cas9-guide RNA directed genome editing in soybean. Plant Physiology, 2015, 169(2): 960-970.

doi: 10.1104/pp.15.00783 pmid: 26294043
[96]
SAUER N J, NARVÁEZ-VÁSQUEZ J, MOZORUK J, MILLER R B, WARBURG Z J, WOODWARD M J, MIHIRET Y A, LINCOLN T A, SEGAMI R E, SANDERS S L, WALKER K A, BEETHAM P R, SCHÖPKE C R, GOCAL G F W. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology, 2016, 170(4): 1917-1928.

doi: 10.1104/pp.15.01696 pmid: 26864017
[97]
HUMMEL A W, CHAUHAN R D, CERMAK T, MUTKA A M, VIJAYARAGHAVAN A, BOYHER A, STARKER C G, BART R, VOYTAS D F, TAYLOR N J. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal, 2018, 16(7): 1275-1282.

doi: 10.1111/pbi.12868 pmid: 29223136
[98]
BUTLER N M, BALTES N J, VOYTAS D F, DOUCHES D S. Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Frontiers in Plant Science, 2016, 7: 1045.
[99]
强胜, 陈世国. 生物除草剂研发现状及其面临的机遇与挑战. 杂草科学, 2011, 29(1): 1-6.
QIANG S, CHEN S G. Current status of bioherbicide research and development and its opportunities and challenges. Journal of Weed Science, 2011, 29(1): 1-6. (in Chinese)
[100]
蒋田田, 文君慧. 我国抗除草剂转基因作物面临的机遇和挑战. 安徽农业科学, 2021, 49(22): 239-242.
JIANG T T, WEN J H. Opportunities and challenges facing genetically modified herbicide-resistant crops in China. Journal of Anhui Agricultural Sciences, 2021, 49(22): 239-242. (in Chinese)
[101]
HE B, HU Y H, WANG W, YAN W, YE Y H. The Progress towards novel herbicide modes of action and targeted herbicide development. Agronomy, 2022, 12(11): 2792.

doi: 10.3390/agronomy12112792
[102]
DUKE S O, STIDHAM M A, DAYAN F E. A novel genomic approach to herbicide and herbicide mode of action discovery. Pest Management Science, 2019, 75(2): 314-317.

doi: 10.1002/ps.5228 pmid: 30280497
[103]
HU J H, MILLER S M, GEURTS M H, TANG W, CHEN L, SUN N, ZEINA C M, GAO X, REES H A, LIN Z, LIU D R. Evolved Cas 9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556(7699): 57-63.

doi: 10.1038/nature26155
[104]
ZENG D C, LI X T, HUANG J F, LI Y Y, CAI S Q, YU W Z, LI Y L, HUANG Y P, XIE X R, GONG Q, TAN J T, ZHENG Z Y, GUO M H, LIU Y G, ZHU Q L. Engineered Cas 9 variant tools expand targeting scope of genome and base editing in rice. Plant Biotechnology Journal, 2020, 18(6): 1348-1350.

doi: 10.1111/pbi.v18.6
[105]
CHRISTIE K A, GUO J A, SILVERSTEIN R A, DOLL R M, MABUCHI M, STUTZMAN H E, LIN J, MA L, WALTON R T, PINELLO L, ROBB G B, KLEINSTIVER B P. Precise DNA cleavage using CRISPR-SpRYgests. Nature Biotechnology, 2023, 41(3): 409-416.

doi: 10.1038/s41587-022-01492-y
[106]
WALTON R T, CHRISTIE K A, WHITTAKER M N, KLEINSTIVER B P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science, 2020, 368(6488): 290-296.

doi: 10.1126/science.aba8853
[107]
SCHINDELE P, MERKER L, SCHREIBER T, PRANGE A, TISSIER A, PUCHTA H. Enhancing gene editing and gene targeting efficiencies in Arabidopsis thaliana by using an intron-containing version of ttLbCas12a. Plant Biotechnology Journal, 2023, 21(3): 457-459.

doi: 10.1111/pbi.v21.3
[108]
KLEINSTIVER B P, SOUSA A A, WALTON R T, TAK Y E, HSU J Y, CLEMENT K, WELCH M M, Horng J E, MALAGON-LOPEZ J, SCARFÒ I, MAUS M V, PINELLO L, ARYEE M J, JOUNG J K. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 2019, 37(3): 276-282.

doi: 10.1038/s41587-018-0011-0 pmid: 30742127
[109]
LIU Q, ZHAO C L, SUN K, DENG Y L, LI Z H. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. Molecular Plant, 2023, 16(3): 616-631.

doi: 10.1016/j.molp.2023.02.003 pmid: 36751129
[110]
LI T D, HU J C, SUN Y, LI B S, ZHANG D L, LI W L, LIU J X, LI D W, GAO C X, ZHANG Y L, WANG Y P. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Molecular Plant, 2021, 14(11): 1787-1798.

doi: 10.1016/j.molp.2021.07.010 pmid: 34274523
[111]
CAO X S, XIE H T, SONG M L, LU J H, MA P, HUANG B Y, WANG M G, TIAN Y F, CHEN F, PENG J, LANG Z B, LI G F, ZHU J K. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. The Innovation, 2023, 4(1): 100345.

doi: 10.1016/j.xinn.2022.100345
[112]
MAHER M F, NASTI R A, VOLLBRECHT M, STARKER C G, CLARK M D, VOYTAS D F. Plant gene editing through de novo induction of meristems. Nature Biotechnology, 2020, 38(1): 84-89.

doi: 10.1038/s41587-019-0337-2 pmid: 31844292
[1] PING Hua, LI Yang, LI BingRu, HE ZhaoYing, LIU JiPei, MA ZhiHong. Simultaneous Determination of Multi Herbicides Residues in Vegetables by Dispersive Solid Phase Extraction and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2017, 50(21): 4159-4169.
[2] QIU Long, MA Chong-Lie, LIU Bo-Lin, ZHANG Wang-Gen. Current Situation of Research on Transgenic Crops with Herbicide Tolerance and Development Prospect [J]. Scientia Agricultura Sinica, 2012, 45(12): 2357-2363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!