Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1722-1733.doi: 10.3864/j.issn.0578-1752.2024.09.008

• PLANT PROTECTION • Previous Articles     Next Articles

Mitochondrial Protein-Coding Genes Nad5, Nad6 and Atp6 are Involved in Phosphine Resistance of Cryptolestes ferrugineus

CHEH ErHu(), YUAN GuoQing, CHEN Yan, CHEN MengQiu, SUN ShengYuan, TANG PeiAn()   

  1. College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety of Jiangsu Province/Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing 210023
  • Received:2023-12-13 Accepted:2024-01-16 Online:2024-05-01 Published:2024-05-09
  • Contact: TANG PeiAn

Abstract:

【Background】Cryptolestes ferrugineus is one of the most economically important stored-grain pests, and its phosphine resistance is particularly prominent. Mitochondria are important organelles in living organisms, which are the core site for insects to undergo respiratory metabolic reactions. Mitochondrial protein-coding genes (PCGs) are involved in regulating physiological processes of insects, such as respiratory rate, energy metabolism, and cell signal transduction.【Objective】The objective of this study is to clarify the roles of mitochondrial PCGs in phosphine resistance of C. ferrugineus.【Method】The respiratory rates of different phosphine resistant populations of C. ferrugineus were measured by using a CO2 detector. The Taicang and Shanghai populations of C. ferrugineus with greatest differences in phosphine resistance levels and respiratory rates were selected to analyze the expression patterns of mitochondrial PCGs by using RT-qPCR technology, and the activities of mitochondrial complexes I and V were measured as well. The expression levels of three key mitochondrial PCGs including Nad5, Nad6 and Atp6, and the activities of mitochondrial complex I and V were determined after phosphine fumigation treatments in C. ferrugineus. RNA interference (RNAi) was used to silence Nad5, Nad6 and Atp6, and then the changes of respiratory rate and phosphine sensitivity of C. ferrugineus were analyzed.【Result】There was a negative correlation between the respiratory rate and phosphine resistance levels of C. ferrugineus, that is, the respiratory rates significantly decreased with the increase of phosphine resistance levels. The RT-qPCR results showed that the expression levels of mitochondrial PCGs in the highly phosphine resistant population (Taicang population, RR=1 906.8) of C. ferrugineus were significantly lower than those in the relatively sensitive population (Shanghai population, RR=1.4), and the enzyme activities of mitochondrial complexes I and V were consistent with the expression patterns of mitochondrial PCGs. The expression levels of three key mitochondrial PCGs, Nad5, Nad6 and Atp6, and the activities of mitochondrial complexes I and V were significantly inhibited after phosphine fumigation treatments in C. ferrugineus. The key mitochondrial PCGs, Nad5, Nad6 and Atp6 were silenced by injecting dsRNA, which resulted in a significant decrease in respiratory rate and phosphine sensitivity of C. ferrugineus.【Conclusion】The mitochondrial PCGs are involved in phosphine resistance of C. ferrugineus.

Key words: Cryptolestes ferrugineus, stored-grain pest, phosphine resistance, mitochondria, RNA interference (RNAi)

Table 1

Primer sequences used for RT-qPCR in this study"

引物名称
Primer name
引物序列
Primer sequence (5′ to 3′)
产物长度
Product length (bp)
扩增效率
Amplification efficiency (%)
Nad1-F TAATGGGTTAGTTCAGCCTT 296 91.46
Nad1-R AAATAGTTTGAGCAACAGCC
Nad2-F TAGTATATGGCTAGGACTGGA 92 88.10
Nad2-R TTAAGGCTGATTCTGATGGA
Nad3-F TTGACCCTAAATCTACCGCA 219 102.41
Nad3-R TGGCTCAGTTTAAGGCTCCT
Nad4-F TGCTTATTCTTCTGTTGCTC 166 102.74
Nad4-R ACTTCGTCTATGAGTTCGTT
Nad4L-F TTAACTATAAGTGTATGTGAGGG 63 91.20
Nad4L-R ATAATATAATCATTTCCATGC
Nad5-F GCCCTTTCAACTTTAAGTCA 89 106.1
Nad5-R TAAAGCCTTAAAGAGGGCAT
Nad6-F TCACCCCTTATCTTTCGGAGT 188 90.76
Nad6-R TGAAATTTTTCATTAGAGGCTACA
Cytb-F GAGGTGCCACAGTTATTAC 109 102.52
Cytb-R CGAGTTAATGTTGCGTTATC
Cox1-F TGCTCATGGAGGATCTTCAG 122 102.68
Cox1-R TTATACCTTGGGGCCGTATA
Cox2-F CGTTCGTCCAATAATTGTTG 128 93.28
Cox2-R AAGTCCTTCCGATTCCAG
Cox3-F CGCCGTTTACTATTGCTGAT 153 103.23
Cox3-R ACCCAAAATGGTGAGTTCTT
Atp6-F ATATTAGCCCATTTAGTCCCACA 115 93.26
Atp6-R CAGATAGCCGGACAGCCAAA
Atp8-F TTCCTCAAATAGCCCCTTTAAGT 50 97.46
Atp8-R AGTAAAATAGAAGAAAAGAGTTAAT
RPS13-F ATCCGTAAGCATTTGGAACG 162 91.58
RPS13-R AGCCACTAAGGCTGAAGCTG
EF1α-F CCAGGCATGGTAGTGACCTT 184 96.03
EF1α-R TTGGAGGGTTGTTTTTGGAG

Table 2

Primer sequences used for dsRNA in this study"

引物名称
Primer name
引物序列
Primer sequence (5′ to 3′)
dsNad5-F ggatcctaatacgactcactataggTCGTATTGGGGATGTTGCTTTAT
dsNad5-R ggatcctaatacgactcactataggTCAAACTCAAAACAGGCTCCT
dsNad6-F ggatcctaatacgactcactataggACCCCTTATCTTTCGGAGTTACA
dsNad6-R ggatcctaatacgactcactataggGCGTAATGGGCCATATTTGATAT
dsAtp6-F ggatcctaatacgactcactataggTTTCCTCATTTGACCCCTCA
dsAtp6-R ggatcctaatacgactcactataggAATAGGCGGAGTTCCTTGTG
dsGFP-F ggatcctaatacgactcactataggATGGTGAGCAAGGGCGAGA
dsGFP-R ggatcctaatacgactcactataggTTACTTGTACAGCTCGTCCA

Fig. 1

Changes of respiratory rate in different phosphine resistance populations of C. ferrugineus"

Fig. 2

The expression patterns of mitochondrial protein-coding genes in TC and SH populations of C. ferrugineus"

Fig. 3

Differences in mitochondrial complex activity in TC and SH populations of C. ferrugineus"

Fig. 4

Changes in expression levels of mitochondrial protein-coding genes in C. ferrugineus after phosphine treatment A: Nad5; B: Nad6; C: Atp6"

Fig. 5

Changes in mitochondrial complex activity in C. ferrugineus after phosphine treatment"

Fig. 6

Changes in expression levels of mitochondrial protein-coding genes in C. ferrugineus after RNA interference"

Fig. 7

Changes of respiratory rate in C. ferrugineus after RNA interference"

Fig. 8

Changes of sensitivity to phosphine in C. ferrugineus after RNA interference"

[1]
BHARATHI V S K, JIAN F J, JAYAS D S. Biology, ecology, and behavior of rusty grain beetle (Cryptolestes ferrugineus (Stephens)). Insects, 2023, 14(7): 590.

doi: 10.3390/insects14070590
[2]
WU Y, LI F, LI Z, STEJSKAL V, KUČEROVÁ Z, OPIT G, AULICKY R, ZHANG T, HE P, CAO Y. Microsatellite markers for Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) and other Cryptolestes species. Bulletin of Entomological Research, 2016, 106(2): 154-160.

doi: 10.1017/S0007485315000899
[3]
ZHANG R, ZHANG Z J, YU Y, HUANG Y P, QIAN A R, TAN A J. Proboscipedia and sex combs reduced are essential for embryonic labial palpus specification in Bombyx mori. Journal of Integrative Agriculture, 2020, 19(6): 1482-1491.

doi: 10.1016/S2095-3119(19)62785-1
[4]
LOSEY S M, DAGLISH G J, PHILLIPS T W. Orientation of rusty grain beetles, Cryptolestes ferrugineus (Coleoptera: Laemophloeidae), to semiochemicals in field and laboratory experiments. Journal of Stored Products Research, 2019, 84: 101513.

doi: 10.1016/j.jspr.2019.101513
[5]
AULICKY R, STEJSKAL V, FRYDOVA B, ATHANASSIOU C. Evaluation of phosphine resistance in populations of Sitophilus oryzae, Oryzaephilus surinamensis and Rhyzopertha dominica in the Czech Republic. Insects, 2022, 13(12): 1162.

doi: 10.3390/insects13121162
[6]
NAYAK M K, HOLLOWAY J C, EMERY R N, PAVIC H, BARTLET J, COLLINS P J. Strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae): Its characterisation, a rapid assay for diagnosis and its distribution in Australia. Pest Management Science, 2013, 69(1): 48-53.

doi: 10.1002/ps.2013.69.issue-1
[7]
AGRAFIOTI P, ATHANASSIOU C G, NAYAK M K. Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. Journal of Stored Products Research, 2019, 82: 40-47.

doi: 10.1016/j.jspr.2019.02.004
[8]
AULICKY R, STEJSKAL V, FRYDOVA B. Field validation of phosphine efficacy on the first recorded resistant strains of Sitophilus granarius and Tribolium castaneum from the Czech Republic. Journal of Stored Products Research, 2019, 81: 107-113.

doi: 10.1016/j.jspr.2019.02.003
[9]
VENKIDUSAMY M, JAGADEESAN R, NAYAK M K, SUBBARAYALU M, SUBRAMANIAM C, COLLINS P J. Relative tolerance and expression of resistance to phosphine in life stages of the rusty grain beetle, Cryptolestes ferrugineus. Journal of Pest Science, 2018, 91(1): 277-286.

doi: 10.1007/s10340-017-0875-7
[10]
CHEN E H, HOU Q L. Identification and expression analysis of cuticular protein genes in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Pesticide Biochemistry and Physiology, 2021, 178: 104943.

doi: 10.1016/j.pestbp.2021.104943
[11]
JAGADEESAN R, SCHLIPALIUS D I, SINGARAYAN V T, NATH N S, NAYAK M K, EBERT P R. Unique genetic variants in dihydrolipoamide dehydrogenase (DLD) gene confer strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens). Pesticide Biochemistry and Physiology, 2021, 171: 104717.

doi: 10.1016/j.pestbp.2020.104717 pmid: 33357567
[12]
CONSTANTIN M, JAGADEESAN R, CHANDRA K, EBERT P, NAYAK M K. Synergism between phosphine (PH3) and carbon dioxide (CO2): Implications for managing PH3 resistance in rusty grain beetle (Laemophloeidae: Coleoptera). Journal of Economic Entomology, 2020, 113(4): 1999-2006.

doi: 10.1093/jee/toaa081
[13]
NAYAK M K, DAGLISH G J, PHILLIPS T W, EBERT P R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annual Review of Entomology, 2020, 65: 333-350.

doi: 10.1146/annurev-ento-011019-025047 pmid: 31610132
[14]
YANG J, PARK J S, LEE H, KWON M, KIM G H, KIM J. Identification of a phosphine resistance mechanism in Rhyzopertha dominica based on transcriptome analysis. Journal of Asia-Pacific Entomology, 2018, 21(4): 1450-1456.

doi: 10.1016/j.aspen.2018.11.012
[15]
HUANG Y, LI F, LIU M, WANG Y, SHEN F, TANG P. Susceptibility of Tribolium castaneum to phosphine in China and functions of cytochrome P450s in phosphine resistance. Journal of Pest Science, 2019, 92(3): 1239-1248.

doi: 10.1007/s10340-019-01088-7
[16]
SINGH S, NEBAPURE S M, TARIA S, SAGAR D, SUBRAMANIAN S. Current status of phosphine resistance in Indian field populations of Tribolium castaneum and its influence on antioxidant enzyme activities. Scientific Reports, 2023, 13(1): 16497.

doi: 10.1038/s41598-023-43681-y
[17]
陈二虎, 沈丹蓉, 杜文蔚, 孟宏杰, 唐培安. 表皮蛋白基因参与锈赤扁谷盗磷化氢抗性形成. 中国农业科学, 2023, 56(9): 1696-1707. doi: 10.3864/j.issn.0578-1752.2023.09.007.
CHEN E H, SHEN D R, DU W W, MENG H J, TANG P A. Cuticle protein genes are involved in phosphine resistance of Cryptolestes ferrugineus. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707. doi: 10.3864/j.issn.0578-1752.2023.09.007. (in Chinese)
[18]
CHEN E H, DUAN J Y, SONG W, WANG D X, TANG P A. RNA-seq analysis reveals mitochondrial and cuticular protein genes are associated with phosphine resistance in the rusty grain beetle (Coleoptera: Laemophloeidae). Journal of Economic Entomology, 2021, 114(1): 440-453.

doi: 10.1093/jee/toaa273
[19]
SCHLIPALIUS D I, VALMAS N, TUCK A G, JAGADEESAN R, MA L, KAUR R, GOLDINGER A, ANDERSON C, KUANG J, ZURYN S, et al. A core metabolic enzyme mediates resistance to phosphine gas. Science, 2012, 338(6108): 807-810.

doi: 10.1126/science.1224951 pmid: 23139334
[20]
SCHLIPALIUS D I, TUCK A G, PAVIC H, DAGLISH G J, NAYAK M K, EBERT P R. A high-throughput system used to determine frequency and distribution of phosphine resistance across large geographical regions. Pest Management Science, 2019, 75(4): 1091-1098.

doi: 10.1002/ps.5221 pmid: 30255667
[21]
WADA K, YOKOHAMA M. Analysis of mitochondrial DNA protein-coding region in the Yeso Sika deer (Cervus nippon yesoensis). Animal Science Journal, 2004, 75(4): 295-302.

doi: 10.1111/asj.2004.75.issue-4
[22]
陈二虎, 袁国庆, 孙晟源, 唐培安. 环境胁迫对锈赤扁谷盗呼吸速率及线粒体编码基因表达水平的影响. 中国农业科学, 2023, 56(24): 4866-4879. doi: 10.3864/j.issn.0578-1752.2023.24.006.
CHEN E H, YUAN G Q, SUN S Y, TANG P A. The effect of environmental stress on respiratory rate and expression level of mitochondrial protein-coding genes in Cryptolestes ferrugineus. Scientia Agricultura Sinica, 2023, 56(24): 4866-4879. doi: 10.3864/j.issn.0578-1752.2023.24.006. (in Chinese)
[23]
GAO S, REN Y, SUN Y, WU Z, RUAN J, HE B, ZHANG T, YU X, TIAN X, BU W. PacBio full-length transcriptome profiling of insect mitochondrial gene expression. RNA Biology, 2016, 13(9): 820-825.

doi: 10.1080/15476286.2016.1197481 pmid: 27310614
[24]
陈艳. 基于呼吸速率的锈赤扁谷盗监测模型建立及呼吸调控机理研究[D]. 南京: 南京财经大学, 2022.
CHEN Y. Establishment of a monitoring model for the Cryptolestes ferrugineus based on respiration rate and research on the mechanism of respiration regulation[D]. Nanjing: Nanjing University of Finance and Economics, 2022. (in Chinese)
[25]
唐培安, 李敏, 冯润秋, 王娟, 刘蔓文, 王亚洲, 袁明龙. 基于线粒体基因组数据的扁甲系总科间系统发育关系分析. 中国科学: 生命科学, 2019, 49(2): 163-171.
TANG P A, LI M, FENG R Q, WANG J, LIU M W, WANG Y Z, YUAN M L. Phylogenetic relationships among superfamilies of Cucujiformia (Coleoptera: Polyphaga) inferred from mitogenomic data. Scientia Sinica Vitae, 2019, 49(2): 163-171. (in Chinese)

doi: 10.1360/N052018-00119
[26]
TANG P A, DUAN J Y, WU H J, JU X R, YUAN M L. Reference gene selection to determine differences in mitochondrial gene expressions in phosphine-susceptible and phosphine-resistant strains of Cryptolestes ferrugineus, using qRT-PCR. Scientific Reports, 2017, 7(1): 7047.

doi: 10.1038/s41598-017-07430-2
[27]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262
[28]
POWNER M B, PRIESTLEY G, HOGG C, JEFFERY G. Improved mitochondrial function corrects immunodeficiency and impaired respiration in neonicotinoid exposed bumblebees. PLoS ONE, 2021, 16(8): e0256581.
[29]
VERCELLINO I, SAZANOV L A. The assembly, regulation and function of the mitochondrial respiratory chain. Nature Reviews Molecular Cell Biology, 2022, 23(2): 141-161.

doi: 10.1038/s41580-021-00415-0
[30]
PIMENTEL M A G, FARONI L R D A, TÓTOLA M R, GUEDES R N C. Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Management Science, 2007, 63(9): 876-881.

pmid: 17597470
[31]
ALZAHRANI S M, EBERT P R. Oxygen and arsenite synergize phosphine toxicity by distinct mechanisms. Toxicological Sciences, 2019, 167(2): 419-425.

doi: 10.1093/toxsci/kfy248 pmid: 30304530
[32]
OPIT G P, PHILLIPS T W, AIKINS M J, HASAN M M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. Journal of Economic Entomology, 2012, 105(4): 1107-1114.

doi: 10.1603/EC12064
[33]
ZURYN S, KUANG J, EBERT P. Mitochondrial modulation of phosphine toxicity and resistance in Caenorhabditis elegans. Toxicological Sciences, 2008, 102(1): 179-186.

doi: 10.1093/toxsci/kfm278
[34]
ANDERSON S, BANKIER A T, BARRELL B G, DE BRUIJN M H, COULSON A R, DROUIN J, EPERON I C, NIERLICH D P, ROE B A, SANGER F, SCHREIER P H, SMITH A J, STADEN R, YOUNG I G. Sequence and organization of the human mitochondrial genome. Nature, 1981, 290(5806): 457-465.

doi: 10.1038/290457a0
[35]
SARASTE M. Oxidative phosphorylation at the fin de siècle. Science, 1999, 283(5407): 1488-1493.

doi: 10.1126/science.283.5407.1488 pmid: 10066163
[36]
郎宁. 辣根素熏蒸处理下三色书虱线粒体相关基因表达研究[D]. 重庆: 西南大学, 2019.
LANG N. Expression of mitochondrial associated genes in Liposcelis tricolor under allyl isothiocyanate fumigation[D]. Chongqing: Southwest University, 2019. (in Chinese)
[37]
张超. 辣根素熏蒸对玉米象线粒体作用机理研究[D]. 杨凌: 西北农林科技大学, 2016.
ZHANG C. Mechanisms of allyl isothiocyanate fumigation on mitochondria in Sitophilus zeamais Mostch[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[38]
MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 1961, 191: 144-148.

doi: 10.1038/191144a0
[39]
TAUBER J, DLASKOVÁ A, ŠANTOROVÁ J, SMOLKOVÁ K, ALÁN L, ŠPAČEK T, PLECITÁ-HLAVATÁ L, JABŮREK M, JEŽEK P. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells. The International Journal of Biochemistry & Cell Biology, 2013, 45(3): 593-603.

doi: 10.1016/j.biocel.2012.11.019
[40]
FORMOSA L E, DIBLEY M G, STROUD D A, RYAN M T. Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Seminars in Cell & Developmental Biology, 2018, 76: 154-162.
[41]
FORMOSA L E, MUELLNER-WONG L, RELJIC B, SHARPE A J, JACKSON T D, BEILHARZ T H, STOJANOVSKI D, LAZAROU M, STROUD D A, RYAN M T. Dissecting the roles of mitochondrial complex I intermediate assembly complex factors in the biogenesis of complex I. Cell Reports, 2020, 31(3): 107541.
[42]
URRA F A, MUNOZ F, LOVY A, CÁRDENAS C. The mitochondrial complex(I)ty of cancer. Frontiers in Oncology, 2017, 7: 118.

doi: 10.3389/fonc.2017.00118 pmid: 28642839
[43]
WIRTH C, BRANDT U, HUNTE C, ZICKERMANN V. Structure and function of mitochondrial complex I. Biochimica et Biophysica Acta - Bioenergetics, 2016, 1857(7): 902-914.

doi: 10.1016/j.bbabio.2016.02.013
[44]
ZHANG C, MA Z, ZHANG X, WU H. Transcriptomic alterations in Sitophilus zeamais in response to allyl isothiocyanate fumigation. Pesticide Biochemistry and Physiology, 2017, 137: 62-70.

doi: 10.1016/j.pestbp.2016.10.001
[45]
ZHANG C, WU H, ZHAO Y, MA Z, ZHANG X. Comparative studies on mitochondrial electron transport chain complexes of Sitophilus zeamais treated with allyl isothiocyanate and calcium phosphide. Pesticide Biochemistry and Physiology, 2016, 126: 70-75.

doi: 10.1016/j.pestbp.2015.07.009
[46]
KAUR R, SUBBARAYALU M, JAGADEESAN R, DAGLISH G J, NAYAK M K, NAIK H R, RAMASAMY S, SUBRAMANIAN C, EBERT P R, SCHLIPALIUS D I. Phosphine resistance in India is characterised by a dihydrolipoamide dehydrogenase variant that is otherwise unobserved in eukaryotes. Heredity, 2015, 115(3): 188-194.

doi: 10.1038/hdy.2015.24 pmid: 25853517
[47]
STEINAU M, RAJEEVAN M S, UNGER E R. DNA and RNA references for qRT-PCR assays in exfoliated cervical cells. The Journal of Molecular Diagnostics, 2006, 8(1): 113-118.

doi: 10.2353/jmoldx.2006.050088
[1] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[2] ZHAO YiYan, GUO HongFang, LIU WeiMin, ZHAO XiaoMing, ZHANG JianZhen. Effects of Apolipophorin on Ovarian Development and Lipid Deposition in Locusta migratoria [J]. Scientia Agricultura Sinica, 2024, 57(4): 711-720.
[3] LI ChuXin, SONG ChenHu, ZHOU JinHuan, LI JiaXin, WANG XinLiang, TIAN XuBin, SONG Zhen. Research on Prevention and Control Technology of Citrus Yellow Vein Clearing Virus Based on VIGS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4473-4482.
[4] YUAN GuoQing, CHEN ErHu, TANG PeiAn. The Mechanisms of Mitochondrial Protein-Coding Genes ND6 and ATP6 in Regulating Cold Tolerance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(22): 4483-4494.
[5] WANG Ni, SHI ZheYi, YOU YuanZheng, ZHANG Chao, ZHOU WenWu, ZHOU Ying, ZHU ZengRong. Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 4022-4034.
[6] ZHAO FengYun, CHENG ZhiHong, TAN QiangFei, ZHU JiaNing, SUN WanHe, ZHANG WenWei, YUN JianMin. Effects of Mannitol on Production Characteristics and ROS Scavenging Ability of Volvariella volvacea Subcultured Strains [J]. Scientia Agricultura Sinica, 2024, 57(1): 190-203.
[7] CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707.
[8] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[9] CHEH ErHu, YUAN GuoQing, SUN ShengYuan, TANG PeiAn. The Effect of Environmental Stress on Respiratory Rate and Expression Level of Mitochondrial Protein-Coding Genes in Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(24): 4866-4879.
[10] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[11] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[12] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[13] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[14] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[15] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!