Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (24): 4880-4894.doi: 10.3864/j.issn.0578-1752.2023.24.007

• SOIL & FERTILIZER・WATER-SAVING IRRIGATION・AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Relationship Between Grain Nitrogen Content and Yield Formation, Uptake and Partitioning of NPK of High-Yielding Wheat Cultivars in Drylands

XU JunFeng1(), ZHANG XueMei1, YANG Jun1, GUO ZiKang1, HUANG Cui1, DING YuLan1, HUANG Ning1, SUN RuiQing1, TIAN Hui1, WANG ZhaoHui1,2(), SHI Mei1,2()   

  1. 1 College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2 Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
  • Received:2022-12-20 Accepted:2023-02-27 Online:2023-12-21 Published:2023-12-21
  • Contact: WANG ZhaoHui, SHI Mei

Abstract:

【Objective】The aim of this study was to understand the variations of grain nitrogen (N) content and its relationships with yield formation as well as uptake, transfer and partitioning of nitrogen, phosphorus, and potassium (NPK) within high-yielding wheat cultivars, which was of great significance for screening and breeding superior wheat cultivars with high yield and grain N content, and for nutrient management in green production of wheat with high yield and high quality in drylands.【Method】Field experiments were carried out, and 14 high-yielding wheat cultivars of similar yields and different grain N content were cultivated on the typical dryland area of the Loess Plateau from 2017 to 2022. Differences in grain N contents of high-yielding wheat cultivars and its relation to yields, yield components as well as N, P and K content in different organs were analyzed. Meanwhile, biomass accumulation and yield formation as well as uptake, transfer and partitioning of NPK in response to fertilization were investigated.【Result】Significant positive correlation was found between the grain N content and 1000-grain weight of wheat cultivars, and for each 1.0 g increase of the 1000-grain weight, the grain N content increased by 0.3 g·kg-1. The grain N content showed significant differences in the tested wheat cultivars, with the mean of high-N group being 24.9 g·kg-1, and 16% higher than that of the low-N group (21.5 g·kg-1), respectively, while the average yields were not significantly different from each other of the two groups. The yield, biomass and spike number of high-N group exhibited higher response to N and P fertilizer application. The grain P content and straw K content of the high-N group were higher than the low-N group under different fertilization conditions, and the increases of N, P and K uptake in grain and shoot were larger than that of low-N group after N and P application. The abilities of N transfer from glumes to grains in the high-N group was greater than that in the low-N group, but the capacities of K transfer from straws to grains and glumes was lower than that in low-N cultivars. The abilities of K transfer from straws to other organs decreased significantly after N application. Application of N, P and K was conducive to increase the partitioning of K from shoots to straws of the high-N group.【Conclusion】The high-yielding wheat cultivars exhibited significant differences in the grain N content. The 1000-grain weight and grain P content of high-N cultivars were higher, its straw K content was also higher, but its capacities of K transfer from straws to grains and glumes was lower. The N, P and K uptake of the high-N group in grains and shoots increased extremely after N and P application. Therefore, to screen and breed superior wheat cultivars with high grain N content on the basis of high yield, the attention should be paid to select the cultivars with high grain 1000-grain weight as well as the strong transferring and partitioning abilities of P to grains and K to straws. The efforts should be also made to cooperate the supply of P, K and N in wheat production, with the purpose to increase the grain N content.

Key words: dryland, high-yielding wheat cultivars, grain N content, nutrient uptake, nutrient transfer, nutrient partitioning, wheat yield

Fig. 1

Precipitation during fallow and growing seasons of winter wheat in 5 years"

Table 1

Basic properties of the 0-20 cm layer soil sampled at sowing of the field experiment of 2017 and 2020"

年份
Year
pH 全氮
Total N
(g·kg-1)
有机质
Organic matter (g·kg-1)
硝态氮
NO3--N
(mg·kg-1)
铵态氮
NH4+-N
(mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
2017 8.1 0.8 14.1 6.4 0.2 3.3 167.5
2020 8.6 0.7 15.6 4.0 0.1 2.0 142.0

Fig. 2

Average of grain yields and N content of different wheat cultivars in 5 years The black solid line and square inside the box are the median and the mean values, respectively; the lower and upper edges of the box represent the 25th and 75th percentile, respectively; the lower and upper error line represent the 5th and 95th percentile, respectively; the different uppercase and small letters indicate significant differences within grain nitrogen contents and grain yields at P<0.05 for different cultivars, respectively. (1) - (14) represent Jimai 22; WanKenmai 12; Tianmai 166; Zhoumai 18; Luomai 33; Zhengnong17; Han 11-5272; Fannong 16; Han 13-4656; Bei 9; Jimai 78; Shiyou 20; Jinan17; Hengguan 35, respectively"

Fig. 3

Relationship between grain nitrogen contents and biomass accumulation, yield components of wheat cultivars * Indicates the effect of this index for grain N content at P<0.05, and ** Indicates the effect of this index for grain N content at P<0.01; The equation is a linear regression equation, y represents the nitrogen content of grain, x represents different indexes. The same as below"

Table 2

Biomass accumulation and yield components of high and low grain N groups of high-yielding wheat in different treatments"

处理
Treatment
产量
Yield
(kg·hm-2 )
地上部生物量
Shoot biomass (kg·hm-2 )
茎叶生物量
Straw biomass (kg·hm-2 )
颖壳生物量
Glume biomass (kg·hm-2 )
穗数
Spike number
(×104 )
穗粒数(粒)
Grain per spike
千粒重
1000-grain
weight (g)
高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N
NPK 5109 5209 11058 11119 4523 4584 1490 1327 300 311 35 35 49.7 # 48.1
-N 3380 * 3766 * 7520 * 8079 * 3196 * 3349 * 1053 * 965 * 221 * 248 * 32 32 48.8 47.8
-P 3236 * 3451 * 6576 * # 7394 * 2549 * # 3035 * 876 * 943 * 198 * 207 * 33 37 47.7 * # 45.4 *
-K 5073 5326 10883 11169 4539 4607 1424 1321 312 317 34 # 36 49.2 # 47.3

Fig. 4

Relationship between grain nitrogen content and NPK uptake and utilization in different wheat cultivars Red represents positive correlation and blue represents negative correlation. The darker the color and the narrower the ellipse, the greater the correlation coefficient"

Table 3

Nitrogen uptake and utilization of high and low grain N groups of high-yielding wheat in different treatments"

处理
Treatment
含氮量 N content (g·kg-1 ) 吸氮量 N uptake (kg·hm-2)
籽粒 Grain 茎叶 Straw 颖壳 Glume 籽粒 Grain 茎叶 Straw 颖壳 Glume 地上部 Shoot
高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N
NPK 23.3 # 21.4 3.4 3.3 3.2 3.4 118.4 111.3 15.1 15.2 4.8 4.5 138.3 131
-N 18.8 * # 16.8 * 2.1 * 2.0 * 3.0 3.2 62.6 * 62.1 * 6.9 * 6.9 * 3.2 * 3.1 * 72.7 * 72.1 *
-P 27.1 * # 24.0 * 3.6 3.6 3.7 * 4.0 * 85.5 * 81.2 * 9.0 * # 10.7 * 3.1 * # 3.8 97.6 * 95.8 *
-K 23.6 # 20.4 3.3 3.1 3.1 3.2 119.1 109.2 15.0 14.4 4.5 4.3 138.6 127.8

Table 4

Phosphorus uptake and utilization of high and low grain N groups of high-yielding wheat in different treatments"

处理 Treatment 含磷量 P content (g·kg-1 ) 吸磷量 P uptake (kg·hm-2)
籽粒 Grain 茎叶 Straw 颖壳 Glume 籽粒 Grain 茎叶 Straw 颖壳 Glume 地上部 Shoot
高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N
NPK 2.7 # 2.4 0.16 0.15 0.25 0.25 13.9 12.8 0.73 0.68 0.38 0.32 15.0 13.8
-N 3.3 * # 3.1 * 0.15 0.15 0.35 * 0.37 * 10.9 * 11.5 * 0.5 * 0.49 * 0.37 0.36 11.8 * 12.4 *
-P 2.5 * # 2.3 * 0.12 * 0.11 * 0.23 0.22 8.1 * 7.8 * 0.33 * 0.4 * 0.24 * 0.19 * 8.7 * 8.4 *
-K 2.6 # 2.5 0.14 0.14 0.21 0.21 13.3 13.3 0.64 0.64 0.30 0.29 14.3 14.2

Table 5

Potassium uptake and utilization of high and low grain N groups of high-yielding wheat in different treatments"

处理
Treatment
含钾量 K content (g·kg-1) 吸钾量 K uptake (kg·hm-2)
籽粒 Grain 茎叶 Straw 颖壳 Glume 籽粒 Grain 茎叶 Straw 颖壳 Glume 地上部 Shoot
高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N 高氮High-N 低氮Low-N
NPK 3.9 3.8 11.4 # 10.1 3.5 # 4.1 19.7 19.9 51.0 47.2 5.2 5.4 75.9 72.5
-N 4.3 * 4.2 * 10.1 * # 9.4 * 3.5 # 3.8 14.5 * 15.7 * 32.0 * 30.8 * 3.7 * 3.7 * 50.2 * 50.2 *
-P 3.8 3.9 11.9 # 10.4 4.0 * # 4.7 * 12.5 * 13.6 * 30.1 * 32 * 3.4 * # 4.5 * 46 * 50.0 *
-K 3.8 3.8 10.4 * # 8.9 * 3.6 # 4.1 19.5 20.4 47.7 41.4 5.1 5.4 72.3 67.2

Fig. 5

Relationship between grain N content and NPK transfer(a) and partitioning(b) in different wheat cultivars"

Table 6

NPK transfer factor of high and low grain N groups of high-yielding wheat in different treatments"

处理
Treatment
氮转移系数 N transfer factor 磷转移系数 P transfer factor 钾转移系数 K transfer factor
茎叶-籽粒
Straw-Grain
茎叶-颖壳
Straw-Glume
颖壳-籽粒
Glume-Grain
茎叶-籽粒
Straw-Grain
茎叶-颖壳
Straw-Glume
颖壳-籽粒
Glume-Grain
茎叶-籽粒
Straw-Grain
茎叶-颖壳
Straw-Glume
颖壳-籽粒
Glume-Grain
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
NPK 7.2 6.6 1.0 1.0 7.4 # 6.4 17.8 17.4 1.6 1.7 11.7 10.4 0.34 # 0.39 0.31 # 0.41 1.1 # 1.0
-N 9.3 * 8.5 * 1.5 * 1.6 * 6.4 * # 5.4 * 22.8 * 22.9 * 2.5 * 2.7 * 10.1 9.2 0.43 * 0.46 * 0.35 * # 0.42 1.2 * # 1.1 *
-P 7.7 6.9 1.0 1.1 7.9 # 6.2 20.1 18.2 1.9 1.9 12.8 # 10.1 0.33 # 0.39 0.34 # 0.46 * 1.0 * # 0.86 *
-K 7.3 6.7 0.9 1.0 7.8 # 6.5 19.6 18.5 1.5 1.6 13.6 12.7 0.38 * # 0.44 * 0.35 * # 0.46 * 1.1 # 0.96

Table 7

NPK partitioning of high and low grain N groups of high-yielding wheat in different treatments"

处理
Treatment
氮分配指数 N partitioning index (%) 磷分配指数 P partitioning index (%) 钾分配指数 K partitioning index (%)
籽粒 Grain 茎叶 Straw 颖壳 Glume 籽粒 Grain 茎叶 Straw 颖壳 Glume 籽粒 Grain 茎叶 Straw 颖壳 Glume
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
高氮
High-N
低氮
Low-N
NPK 85.5 85.2 11.0 11.4 3.5 3.4 92.7 92.7 4.8 4.9 2.5 2.4 26.5 28.6 66.6 63.9 6.9 7.5
-N 86.4 86.3 9.4 * 9.3 * 4.3 * 4.4 * 92.8 93.2 4.1 * 4.0 * 3.3 * 3.0 * 28.9 31.6 63.7 * 60.9 * 7.5 7.5
-P 87.6 * # 84.8 9.2 * # 11.2 3.1 # 3.8 93.9 * # 92.4 3.9 * # 4.9 2.1 2.5 29.6 * 30.7 62.9 * 60.7 7.5 # 9.1 *
-K 86.1 85.6 10.8 11.0 3.2 3.4 93.4 93.3 4.6 4.7 2.1 2.1 30.5 * # 31.8 * 64.9 * # 60.1 * 7.2 # 8.1
[1]
中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国农业出版社, 2022.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Agriculture Press, 2022. (in Chinese)
[2]
ZÖRB C, LUDEWIG U, HAWKESFORD M J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends in Plant Science, 2018, 23(11): 1029-1037.

doi: S1360-1385(18)30192-4 pmid: 30249481
[3]
茹振钢, 冯素伟, 李淦. 黄淮麦区小麦品种的高产潜力与实现途径. 中国农业科学, 2015, 48(17): 3388-3393. doi:10.3864/j.issn.0578-1752.2015.17.006.
RU Z G, FENG S W, LI G. High-yield potential and effective ways of wheat in yellow & Huai River valley facultative winter wheat region. Scientia Agricultura Sinica, 2015, 48(17): 3388-3393. doi:10.3864/j.issn.0578-1752.2015.17.006. (in Chinese)
[4]
TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.
[5]
BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327(5967): 812-818.

doi: 10.1126/science.1185383 pmid: 20110467
[6]
杨晓婉, 朱志明, 马自清, 哈东兴, 陈晓军. 小麦品质影响因子研究进展. 耕作与栽培, 2019(5): 30-38.
YANG X W, ZHU Z M, MA Z Q, HA D X, CHEN X J. Research progress on wheat quality impact factors. Tillage and Cultivation, 2019(5): 30-38. (in Chinese)
[7]
AMIRI R, BAHRAMINEJAD S, SASANI S, JALALI-HONARMAND S, FAKHRI R. Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability. European Journal of Agronomy, 2015, 67: 20-26.

doi: 10.1016/j.eja.2015.03.004
[8]
GIUNTA F, MOTZO R, NEMEH A, PRUNEDDU G. Durum wheat cultivars grown in Mediterranean environments can combine high grain nitrogen content with high grain yield. European Journal of Agronomy, 2022, 136: 126512.

doi: 10.1016/j.eja.2022.126512
[9]
邓丽娟, 焦小强. 氮管理对冬小麦产量和品质影响的整合分析. 中国农业科学, 2021, 54(11): 2355-2365. doi:10.3864/j.issn.0578-1752.2021.11.009.
DENG L J, JIAO X Q. A meta-analysis of effects of nitrogen management on winter wheat yield and quality. Scientia Agricultura Sinica, 2021, 54(11): 2355-2365. doi:10.3864/j.issn.0578-1752.2021.11.009. (in Chinese)
[10]
LOLLATO R P, FIGUEIREDO B M, DHILLON J S, ARNALL D B, RAUN W R. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: a synthesis of long-term experiments. Field Crops Research, 2019, 236: 42-57.

doi: 10.1016/j.fcr.2019.03.005
[11]
CHANG J F, HAVLÍK P, LECLÈRE D, DE VRIES W, VALIN H, DEPPERMANN A, HASEGAWA T, OBERSTEINER M. Reconciling regional nitrogen boundaries with global food security. Nature Food, 2021, 2(9): 700-711.

doi: 10.1038/s43016-021-00366-x pmid: 37117470
[12]
ZHANG X, DAVIDSON E A, MAUZERALL D L, SEARCHINGER T D, DUMAS P, SHEN Y. Managing nitrogen for sustainable development. Nature, 2015, 528(7580): 51-59.

doi: 10.1038/nature15743
[13]
田纪春, 张忠义, 梁作勤. 高蛋白和低蛋白小麦品种的氮素吸收和运转分配差异的研究. 作物学报, 1994, 20(1): 76-83.
TIAN J C, ZHANG Z Y, LIANG Z Q. Studies on the difference of nitrogen absorption, transportation and distribution in high and low protein wheat cultivars. Acta Agronomica Sinica, 1994, 20(1): 76-83. (in Chinese)
[14]
王小燕, 于振文. 不同冬小麦品种氮素吸收运转特性及其与子粒蛋白质含量的关系. 植物营养与肥料学报, 2006, 12(3): 301-306.
WANG X Y, YU Z W. The absorption and translocation of nitrogen and their relationship to grain protein content in different winter wheat cultivars. Plant Nutrition and Fertilizer Science, 2006, 12(3): 301-306. (in Chinese)
[15]
杨铁钢, 戴廷波, 曹卫星. 高蛋白和低蛋白型小麦花后氮素的同化特性. 生态学报, 2008, 28(5): 2357-2364.
YANG T G, DAI T B, CAO W X. Research on nitrogen assimilation after anthesis in high and low grain protein wheat cultivars. Acta Ecologica Sinica, 2008, 28(5): 2357-2364. (in Chinese)
[16]
NEHE A S, MISRA S, MURCHIE E H, CHINNATHAMBI K, SINGH TYAGI B, FOULKES M J. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and protein concentration in Indian wheat cultivars. Field Crops Research, 2020, 251: 107778.

doi: 10.1016/j.fcr.2020.107778
[17]
党红凯, 李瑞奇, 李雁鸣, 孙亚辉, 张馨文, 刘梦星. 超高产冬小麦对氮素的吸收、积累和分配. 植物营养与肥料学报, 2013, 19(5): 1037-1047.
DANG H K, LI R Q, LI Y M, SUN Y H, ZHANG X W, LIU M X. Absorption, accumulation and distribution of nitrogen in super-highly yielding winter wheat. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1037-1047. (in Chinese)
[18]
IQBAL M, NAVABI A, SALMON D F, YANG R C, SPANER D. Simultaneous selection for early maturity, increased grain yield and elevated grain protein content in spring wheat. Plant Breeding, 2007, 126(3): 244-250.

doi: 10.1111/pbr.2007.126.issue-3
[19]
刁超朋, 王朝辉, 李莎莎, 刘璐, 王森, 黄宁. 旱地高产小麦品种籽粒氮含量差异与氮磷钾吸收利用的关系. 植物营养与肥料学报, 2018, 24(2): 285-295.
DIAO C P, WANG Z H, LI S S, LIU L, WANG S, HUANG N. Differences in grain nitrogen contents of high-yielding wheat cultivars and relation to NPK uptake and utilization in drylands. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 285-295. (in Chinese)
[20]
张美微. 不同蛋白质含量小麦品质特性对氮肥的响应及其生理机制[D]. 郑州: 河南农业大学, 2015.
ZHANG M W. Response of wheat grain quality with different protein content to nitrogen fertilizer levels and its physiological mechanism[D]. Zhengzhou: Henan Agricultural University, 2015. (in Chinese)
[21]
王宪泽, 张树芹. 不同蛋白质含量小麦品种叶片NRA与氮素积累关系的研究. 西北植物学报, 1999, 19(2): 315-320.
WANG X Z, ZHANG S Q. Study on the relation of NRA and nitrogen accumulation in leaves of different protein content wheats. Acta Botanica Boreali-Occidentalia Sinica, 1999, 19(2): 315-320. (in Chinese)
[22]
马瑞琦, 陶志强, 王德梅, 王艳杰, 杨玉双, 朱英杰, 赵凯男, 李俊志, 王玉娇, 常旭虹, 赵广才. 追氮量对强筋和中筋小麦产量与品质的影响. 植物营养与肥料学报, 2019, 25(10): 1799-1807.
MA R Q, TAO Z Q, WANG D M, WANG Y J, YANG Y S, ZHU Y J, ZHAO K N, LI J Z, WANG Y J, CHANG X H, ZHAO G C. Effect of nitrogen topdressing rate on yield and quality of medium and strong gluten wheat cultivars. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1799-1807. (in Chinese)
[23]
付帅, 刘晓明, 马阳, 李皓, 甄怡铭, 张子旋, 王艳群, 门明新, 彭正萍. 氮素形态对强筋和中筋小麦产量和品质的影响. 植物营养与肥料学报, 2022, 28(1): 83-93.
FU S, LIU X M, MA Y, LI H, ZHEN Y M, ZHANG Z X, WANG Y Q, MEN M X, PENG Z P. Effects of nitrogen supply forms on the quality and yield of strong and medium gluten wheat cultivars. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 83-93. (in Chinese)
[24]
张子旋, 王艳群, 甄怡铭, 李皓, 宋利玲, 甄文超, 彭正萍. 强筋和中筋小麦氮肥适宜基追比例研究. 植物营养与肥料学报, 2022, 28(7):1249-1259.
ZHANG Z X, WANG Y Q, ZHEN Y M, LI H, SONG L L, ZHEN W C, PENG Z P. Optimum basal and topdressing ratios of nitrogen fertilizer for strong and medium gluten wheat cultivars. Journal of Plant Nutrition and Fertilizers, 2022, 28(7):1249-1259. (in Chinese)
[25]
HU C L, SADRAS V O, LU G Y, ZHANG P X, HAN Y, LIU L, XIE J Y, YANG X Y, ZHANG S L. A global meta-analysis of split nitrogen application for improved wheat yield and grain protein content. Soil and Tillage Research, 2021, 213: 105111.

doi: 10.1016/j.still.2021.105111
[26]
马悦, 田怡, 于杰, 王浩琳, 李永华, 李超, 党海燕, 牟文燕, 黄宁, 邱炜红, 石美, 王朝辉, 何刚. 北方麦区土壤有效磷阈值及小麦产量、籽粒氮磷钾含量对监控施肥的响应. 植物营养与肥料学报, 2021, 27(10): 1675-1691.
MA Y, TIAN Y, YU J, WANG H L, LI Y H, LI C, DANG H Y, MU W Y, HUANG N, QIU W H, SHI M, WANG Z H, HE G. Threshhold of soil available P and the response of wheat yield and grain N, P, and K concentrations to test-integrated fertilizer application in the northern wheat production region of China. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1675-1691. (in Chinese)
[27]
马悦, 田怡, 苑爱静, 王浩琳, 李永华, 黄婷苗, 黄宁, 李超, 党海燕, 邱炜红, 何刚, 王朝辉, 石美. 北方麦区小麦产量与蛋白质含量变化对土壤硝态氮的响应. 中国农业科学, 2021, 54(18): 3903-3918. doi:10.3864/j.issn.0578-1752.2021.18.010.
MA Y, TIAN Y, YUAN A J, WANG H L, LI Y H, HUANG T M, HUANG N, LI C, DANG H Y, QIU W H, HE G, WANG Z H, SHI M. Response of wheat yield and protein concentration to soil nitrate in northern wheat production region of China. Scientia Agricultura Sinica, 2021, 54(18): 3903-3918. doi:10.3864/j.issn.0578-1752.2021.18.010. (in Chinese)
[28]
刁超朋, 李小涵, 王朝辉, 李莎莎, 王森, 刘璐, 惠晓丽, 罗来超, 黄明, 黄宁. 旱地高产小麦品种籽粒含磷量差异与氮磷钾吸收利用的关系. 植物营养与肥料学报, 2019, 25(3): 351-361.
DIAO C P, LI X H, WANG Z H, LI S S, WANG S, LIU L, HUI X L, LUO L C, HUANG M, HUANG N. Difference in grain phosphorus content of high-yielding wheat cultivars and its relation to NPK uptake and utilization in dryland. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 351-361. (in Chinese)
[29]
SIELING K, KAGE H N. Apparent fertilizer N recovery and the relationship between grain yield and grain protein concentration of different winter wheat varieties in a long-term field trial. European Journal of Agronomy, 2021, 124:126246.

doi: 10.1016/j.eja.2021.126246
[30]
马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 王振林, 常旭虹. 不同筋型小麦干物质和氮素积累对追施氮量的响应. 植物营养与肥料学报, 2022, 28(4): 622-631.
MA R Q, WANG D M, TAO Z Q, WANG Y J, YANG Y S, ZHAO G C, WANG Z L, CHANG X H. Response of dry matter and nitrogen accumulation of wheats with different gluten contents to topdressing rate of nitrogen fertilizer. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 622-631. (in Chinese)
[31]
张士昌, 史占良, 李孟军, 李亚青, 底瑞耀, 李雁鸣. 长期定位氮胁迫对小麦碳氮代谢、氮素利用及产量的影响. 河南农业科学, 2016, 45(12): 13-19.
ZHANG S C, SHI Z L, LI M J, LI Y Q, DI R Y, LI Y M. Effect of long-term nitrogen stress on carbon and nitrogen metabolism, nitrogen use efficiency and yield of wheat. Journal of Henan Agricultural Sciences, 2016, 45(12): 13-19. (in Chinese)
[32]
SIELING K, KAGE H N. Winter barley grown in a long-term field trial with a large variation in N supply: grain yield, yield components, protein concentration and their trends. European Journal of Agronomy, 2022, 136: 126505.

doi: 10.1016/j.eja.2022.126505
[33]
马悦, 田怡, 牟文燕, 张学美, 张露露, 于杰, 李永华, 王浩琳, 何刚, 石美, 王朝辉, 邱炜红. 北方麦区小麦产量与籽粒氮磷钾含量对监控施钾和土壤速效钾的响应. 中国农业科学, 2022, 55(16): 3155-3169. doi:10.3864/j.issn.0578-1752.2022.16.008.
MA Y, TIAN Y, MU W Y, ZHANG X M, ZHANG L L, YU J, LI Y H, WANG H L, HE G, SHI M, WANG Z H, QIU W H. Response of wheat yield and grain nitrogen, phosphorus and potassium concentrations to test-integrated potassium application and soil available potassium in northern wheat production regions of China. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169. doi:10.3864/j.issn.0578-1752.2022.16.008. (in Chinese)
[34]
吴可, 谢慧敏, 刘文奇, 莫并茂, 韦国良, 陆献, 李壮林, 邓森霞, 韦善清, 梁和, 江立庚. 氮、磷、钾肥对南方双季稻区水稻产量及产量构成因子的影响. 作物杂志, 2021(4): 178-183.
WU K, XIE H M, LIU W Q, MO B M, WEI G L, LU X, LI Z L, DENG S X, WEI S Q, LIANG H, JIANG L G. Effects of nitrogen, phosphorus and potassium fertilizer on rice grain yield and yield components in double cropping rice area of Southern China. Crops, 2021(4): 178-183. (in Chinese)
[35]
孙凯. 氮磷钾肥对旱地小麦氮素吸收利用特性及产量和籽粒蛋白质形成的影响[D]. 太谷: 山西农业大学, 2017.
SUN K. Effects of different application of N, P and K on nitrogen absorption and utilization, and yield and grain protein accumulation in dryland wheat[D]. Taigu: Shanxi Agricultural University, 2017. (in Chinese)
[36]
薛佳, 毛晖, 王朝辉, 赵护兵, 昝亚玲, 李小涵. 黄土高原旱地大量营养元素缺乏对小麦产量和营养元素含量的影响. 干旱地区农业研究, 2011, 29(2): 117-123.
XUE J, MAO H, WANG Z H, ZHAO H B, ZAN Y L, LI X H. Effect of macroelement deficiency on wheat yield and grain nutrient content in the dryland of the Loess Plateau. Agricultural Research in the Arid Areas, 2011, 29(2): 117-123. (in Chinese)
[37]
党红凯, 李瑞奇, 李雁鸣, 孙亚辉, 张馨文, 孟建. 超高产冬小麦对钾的吸收、积累和分配. 植物营养与肥料学报, 2013, 19(2): 274-287.
DANG H K, LI R Q, LI Y M, SUN Y H, ZHANG X W, MENG J. Absorption, accumulation and distribution of potassium in super highly-yielding winter wheat. Plant Nutrition and Fertilizer Science, 2013, 19(2): 274-287. (in Chinese)
[38]
盛婧, 张鹏, 孙国锋, 王鑫. 基于污染控制的小麦品种氮磷钾吸收与移除特征研究. 生态环境学报, 2015, 24(3): 487-493.

doi: 10.16258/j.cnki.1674-5906.2015.03.018
SHENG J, ZHANG P, SUN G F, WANG X. Nutrient absorption characteristics and removal from soil with different wheat varieties based on pollution control. Ecology and Environmental Sciences, 2015, 24(3): 487-493. (in Chinese)
[39]
KROUK G, KIBA T. Nitrogen and Phosphorus interactions in plants: from agronomic to physiological and molecular insights. Current Opinion in Plant Biology, 2020, 57: 104-109.

doi: S1369-5266(20)30089-3 pmid: 32882570
[40]
徐阳春, 蒋廷惠, 张春兰, 王义炳, 蔡大同. 不同面包小麦品种的产量及蛋白质含量对氮肥用量的反应. 作物学报, 1998, 24(6): 731-737.
XU Y C, JIANG T H, ZHANG C L, WANG Y B, CAI D T. Responses of grain yield and protein content of bread-making wheat cultivars to nitrogen application rate. Acta Agronomica Sinica, 1998, 24(6): 731-737. (in Chinese)
[41]
曹承富, 孔令聪, 汪建来, 赵斌, 赵竹. 施氮量对强筋和中筋小麦产量和品质及养分吸收的影响. 植物营养与肥料学报, 2005, 11(1): 46-50.
CAO C F, KONG L C, WANG J L, ZHAO B, ZHAO Z. Effects of nitrogen on yield, quality and nutritive absorption of middle and strong gluten wheat. Plant Nutrition and Fertilizing Science, 2005, 11(1): 46-50. (in Chinese)
[42]
王秀荣, 曾秀成, 王文明, 罗敏娜, 廖红. 缺素培养对大豆养分含量的影响. 华南农业大学学报, 2011, 32(4): 31-34, 46.
WANG X R, ZENG X C, WANG W M, LUO M N, LIAO H. Effects of different element deficiencies on soybean nutrient concentration. Journal of South China Agricultural University, 2011, 32(4): 31-34, 46. (in Chinese)
[43]
BARRACLOUGH P B, LOPEZ-BELLIDO R, HAWKESFORD M J. Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. Field Crops Research, 2014, 156: 242-248.

pmid: 26412936
[44]
GAJU O, ALLARD V, MARTRE P, LE GOUIS J, MOREAU D, BOGARD M, HUBBART S, FOULKES M J. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research, 2014, 155: 213-223.

doi: 10.1016/j.fcr.2013.09.003
[45]
黄绍敏, 宝德俊, 郭斗斗, 张水清, 许为钢, 胡琳, 吴政卿. 河南省不同类型小麦养分吸收分配规律. 河南农业科学, 2011, 40(11): 30-34.
HUANG S M, BAO D J, GUO D D, ZHANG S Q, XU W G, HU L, WU Z Q. Uptake and distribution of N, P, K in different wheat gluten types. Journal of Henan Agricultural Sciences, 2011, 40(11): 30-34. (in Chinese)
[46]
蔡艳, 郝明德. 黄土高原旱地小麦长期施氮的效应. 麦类作物学报, 2013, 33(5): 983-987.
CAI Y, HAO M D. Effects of long-term nitrogen fertilization on wheat in loess plateau. Journal of Triticeae Crops, 2013, 33(5): 983-987. (in Chinese)
[47]
杨玉敏, 张庆玉, 李俊, 雷建容, 万洪深, 张冀, 王琴, 阳路芳, 田丽, 杨武云. 川农16和川麦42在氮磷钾胁迫下养分积累、分配和利用. 西南农业学报, 2015, 28(4): 1675-1682.
YANG Y M, ZHANG Q Y, LI J, LEI J R, WAN H S, ZHANG J, WANG Q, YANG L F, TIAN L, YANG W Y. Effect of nutrient accumulation, distribution and use efficiency of Chuannong 16 and Chuanmai 42 under N, P and K stress. Southwest China Journal of Agricultural Sciences, 2015, 28(4): 1675-1682. (in Chinese)
[1] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] TENG YunFei, SHANG Bin, TAO XiuPing. Nutritional Effects of Liquid Digestate on Tomatoes Grown in Facility Substrates [J]. Scientia Agricultura Sinica, 2023, 56(19): 3869-3878.
[6] LIN JiangYun, YIN BenSu, WANG XingShu, LIU ChenRui, SUN Qing, XIE XingXing, CHENG LingLing, SUN LiWei, SHI Mei, WANG ZhaoHui. The Accumulation of Iron and Manganese in Wheat and Its Relationship with Soil Nutrients Under Long-Term Application of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(17): 3372-3382.
[7] ZHAO KaiNan, WU JinZhi, HUANG Ming, LI YouJun, WANG HongTao, HUANG XiuLi, WU ShanWei, ZHANG Jun, ZHAO ZhiMing, ZHAO WenXin, LI ShuJing, LI Shuang, LI WenNa. Effects of Supplemental Irrigation After Regreening and Nitrogen Fertilizer Application Rates on Wheat Yield, Water and Nitrogen Use Efficiency in Dryland [J]. Scientia Agricultura Sinica, 2023, 56(17): 3383-3398.
[8] CUI WeiNan, NIE ZhiGang, LI Guang, WANG Jun. Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm [J]. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287.
[9] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effect of Dextran Modified Phosphate Fertilizer on the Winter Wheat Yield and Fertilizer Utilization Rate [J]. Scientia Agricultura Sinica, 2023, 56(12): 2317-2328.
[10] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[11] XIONG ShuPing, GAO Ming, ZHANG ZhiYong, QIN BuTan, XU SaiJun, FU XinLu, WANG XiaoChun, MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[12] GAO RenCai, CHEN SongHe, MA HongLiang, MO Piao, LIU WeiWei, XIAO Yun, ZHANG Xue, FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[13] LIU Yuan,YUAN Liang,ZHANG ShuiQin,ZHAO BingQiang,LI YanTing. Effects of Polyaspartic Acid with Different Molecular Weights on Root Growth and Nutrient Uptake of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(13): 2526-2537.
[14] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[15] HUANG Ming,WU JinZhi,LI YouJun,FU GuoZhan,ZHAO KaiNan,ZHANG ZhenWang,YANG ZhongShuai,HOU YuanQuan. Effects of Tillage Practices and Nitrogen Fertilizer Application Rates on Grain Yield, Protein Content in Winter Wheat and Soil Nitrate Residue in Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5206-5219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!