Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (12): 2317-2328.doi: 10.3864/j.issn.0578-1752.2023.12.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Dextran Modified Phosphate Fertilizer on the Winter Wheat Yield and Fertilizer Utilization Rate

YAN YanGe(), ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2022-05-10 Accepted:2022-06-04 Online:2023-06-16 Published:2023-06-27

Abstract:

【Objective】The aim of this study was to investigate the effects of dextran modified phosphate fertilizer prepared by the reaction between dextran and phosphate fertilizer with different polymerization degrees on the growth and soil phosphorus effectiveness of wheat, so as to provide the scientific support and theoretical basis for the application of dextran in phosphate fertilizer. 【Method】By using the reaction method, glucose (monomer), maltose (2-polymer), oligomaltose (≈5-polymer) and polydextrose (≈20-polymer) were added to a mixture of phosphoric acid and potassium hydroxide at 1% addition to prepare glucose-modified phosphate fertilizer (GP), maltose-modified phosphate fertilizer (MP), oligomaltose-modified phosphate fertilizer (OP) and polydextrose-modified phosphate fertilizer (PP), and the normal phosphate fertilizer (P) was prepared without the addition of dextran. The structural characteristics of the reaction between dextran and phosphate fertilizer were investigated by Fourier infrared transform spectroscopy (FTIR) and 31P nuclear magnetic resonance spectroscopy (31P NMR). Five treatments, including P, GP, MP, OP, and PP, were set up according to the principle of equal phosphorus amount, and the control (CK) was applied with only nitrogen and potassium fertilizers. The effect of different polymeric dextran modified phosphate fertilizers on wheat yield and fertilizer utilization was investigated by soil column cultivation. 【Result】(1) Compared with P, the FTIR spectra of dextran modified phosphate fertilizer showed a new vibration peak at 975 cm-1, and the 31P NMR spectra showed a new displacement peak at 3.09-4.51 ppm, which might be due to the reaction between the hydroxyl group of dextran and phosphoric acid to form orthophosphate monoester. (2) Wheat yields were increased by 5.1%, 9.3%, 11.2% and 1.4% for the treatments with different polymerization degrees of dextran modified phosphate fertilizers (GP, MP, OP and PP) compared with P, respectively, mainly through the number of spikes, followed by the number of grains. (3) Compared with P, the total phosphorus uptake of wheat was significantly higher by 8.2%-21.4% under different polymerization degrees of dextran modified phosphate fertilizer treatments, among which, OP treatment was significantly higher than the other treatments. (4) The apparent phosphate fertilizer utilization rate of dextran modified phosphate fertilizer treatment was increased by 4.4-11.5 percentage points compared with P. The phosphate fertilizer bias productivity and phosphorus fertilizer agronomic efficiency were increased by 1.4%-11.2% and 1.6%-13.1%, respectively. The phosphate fertilizer utilization rate of both MP and OP treatments were significantly higher than P. (5) Compared with P, the soil fast-acting phosphorus content of dextran modified phosphate fertilizer treatment was significantly higher 10.2%-29.9%, and the OP treatment was significantly higher than the other dextran modified phosphorus fertilizer treatments. 【Conclusion】 Compared with common phosphate fertilizer, all dextran modified phosphate fertilizers with different polymerization degrees could improve wheat yield, promote the uptake and utilization of phosphorus in wheat, increase soil fast-acting phosphorus content, and reduce phosphorus fertilizer fixation. With the increase of dextran polymerization degree, wheat yield and apparent phosphorus fertilizer utilization increased first and then decreased. The best effect of dextran polymerization on the modification and efficiency of phosphate fertilizer was achieved when the polymerization degree of dextran was 4-6.

Key words: dextran, dextran polymerization degree, phosphate fertilizer, wheat yield, fertilizer utilization rate

Table 1

Basic properties of the tested fertilizers"

肥料
Fertilizer
代号
Code
葡聚糖聚合度
Polymerization degree of dextran
P2O5含量
P2O5 content (%)
普通磷肥Common phosphate fertilizer P 36.08
葡萄糖改性磷肥Glucose modified phosphate fertilizer GP 1 35.11
麦芽糖改性磷肥Maltose modified phosphate fertilizer MP 2 35.97
低聚麦芽糖改性磷肥Oligomeric maltose modified phosphate fertilizer OP ≈5 35.45
聚葡萄糖改性磷肥Polyglucose modified phosphate fertilizer PP ≈20 35.48

Fig. 1

FTIR spectra of dextran modified phosphate fertilizer"

Table 2

FTIR peak distribution of dextran-modified phosphate fertilizers and their main functional groups"

峰值 Wave (cm-1) 基团 Group
3500-2921 PO-H[25-26]
1664-1630 HPO42-[25-27]
1605 H2PO4-[27-28]
1140-910 P-OH、P=O或P-O-C[25-26,29]
975 P-O-C[29]
852 P-(OH)3或P-O-R[28-29]
546 PO4[25,29]

Fig. 2

Solid-state 31P NMR spectra"

Table 3

Phosphate and its relative content in test phosphate fertilizer (%)"

处理
Treatment
K3PO4 K2HPO4 正磷酸单酯
Orthophosphate monoester
P 100.00
GP 29.88 58.72 11.40
MP 36.19 52.38 11.13
OP 31.37 58.82 9.81
PP 78.43 13.73 7.84

Fig. 3

Aboveground dry biomass under different treatments"

Table 4

Yield components of wheat grain yield under different treatments"

处理
Treatment
穗数
Spike number (No./pot)
穗粒数
Grains per ear
千粒重
1000-grain weight
(g)
CK 14.00c 17.49b 44.44b
P 38.00b 40.74a 47.53a
GP 39.25ab 40.82a 48.19a
MP 40.75ab 40.54a 48.58a
OP 41.25a 41.55a 47.67a
PP 39.75ab 38.11a 49.30a

Table 5

Path coefficient between yield and its components"

产量构成要素
Yield component
决策系数
Decision coefficient
直接通径系数
Direct path coefficient
间接通径系数Indirect path coefficient
→穗数
Spike number
→穗粒数
Grains per ear
→千粒重
1000-grain weight
穗数 Spike number 0.242 0.515 0.448 0.022
穗粒数 Grains per ear 0.240 0.477 0.484 0.020
千粒重 1000-grain weight 0.021 0.035 0.325 0.278

Fig. 4

Phosphorus uptake of aboveground parts of wheat under different treatments"

Table 6

Phosphorus utilization efficiency of wheat with different treatments"

处理
Treatment
表观利用率
P recovery efficiency (%)
偏生产力
P partial productivity (kg·kg-1)
农学效率
P agronomic efficiency (kg·kg-1)
P 42.32c 48.96b 41.78b
GP 48.04b 51.45ab 44.27ab
MP 48.35b 53.49a 46.31a
OP 53.85a 54.45a 47.27a
PP 46.7bc 49.63b 42.45b

Table 7

Soil available P content under different treatments"

处理
Treatment
速效磷含量Soil available <BOLD>P</BOLD> content (mg·kg-1) 总计
Total (mg·kg-1)
0-30 cm 30-60 cm 60-90 cm
CK 4.39c 5.21d 4.64b 14.25d
P 14.06b 9.59c 5.13ab 28.78c
GP 13.81b 12.05b 5.86a 31.72b
MP 14.51b 13.56a 6.07a 34.14b
OP 21.18a 10.49c 5.71ab 37.38a
PP 15.72b 12.42ab 5.51ab 33.64b

Fig. 5

Regression analysis of phosphate monoester relative content with wheat yield and P recovery efficiency (a) and nonlinear fitting with the polymerization degree of dextran (b)"

[1]
向万胜, 黄敏, 李学垣. 土壤磷素的化学组分及其植物有效性. 植物营养与肥料学报, 2004, 10(6): 663-670.
XIANG W S, HUANG M, LI X Y. Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil. Plant Nutrition and Fertilizer Science, 2004, 10(6): 663-670. (in Chinese)
[2]
王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素. 应用生态学报, 2013, 24(1): 260-268.
WANG Y Z, CHEN X, SHI Y. Phosphorus availability in cropland soils of China and related affecting factors. Chinese Journal of Applied Ecology, 2013, 24(1): 260-268. (in Chinese)
[3]
余劲聪. 海藻寡糖在农业领域的应用研究进展. 南方农业学报, 2016, 47(6): 921-927.
YU J C. Research progress in application of seaweed oligosaccharides in agriculture. Journal of Southern Agriculture, 2016, 47(6): 921-927. (in Chinese)
[4]
张运红, 杨占平, 黄绍敏, 郭斗斗, 杜君, 和爱玲, 杨焕焕. 聚磷酸铵添加生物源增效剂对小麦产量及磷素利用效率的影响. 河南农业科学, 2021, 50(2): 8-18.
ZHANG Y H, YANG Z P, HUANG S M, GUO D D, DU J, HE A L, YANG H H. Effects of ammonium polyphosphate added with biological synergists on the yield and phosphate utilization efficiency of wheat. Journal of Henan Agricultural Sciences, 2021, 50(2): 8-18. (in Chinese)
[5]
张朝霞, 许加超, 盛泰, 刘晓琳, 杨海征, 李建林, 郭亮, 高昕, 付晓婷. 海藻寡糖增效肥料(NPK)对玉米生长的影响. 农产品加工(学刊), 2013(21): 63-66.
ZHANG Z X, XU J C, SHENG T, LIU X L, YANG H Z, LI J L, GUO L, GAO X, FU X T. Effect of alginate- derived oligosaccharide synergistic fertilizer (NPK) on the growth of corn. Academic Periodical of Farm Products Processing, 2013(21): 63-66. (in Chinese)
[6]
王彬. 含葡萄糖氮、磷肥在石灰性潮土中的转化特征及其肥效研究[D]. 北京: 中国农业科学院, 2020.
WANG B. Transformation and efficiency of nitrogen/phosphorus fertilizer containing glucose in calcareous fluvo-aquic soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[7]
杜康瑞. 乙酰化葡萄糖对盐碱土土壤性状及玉米生长发育的影响研究[D]. 太谷: 山西农业大学, 2019.
DU K R. Study on the effects of acetyl glucose on soil properties and growth and development of maize in saline alkali soil[D]. Taigu: Shanxi Agricultural University, 2019. (in Chinese)
[8]
SPOHN M, KUZYAKOV Y. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology and Biochemistry, 2013, 61: 69-75.

doi: 10.1016/j.soilbio.2013.02.013
[9]
韩兴国. 柠檬酸、葡萄糖和有机质对植物磷素吸收和土壤磷素形态的影响. 植物生态学报, 1996, 20(2): 97-112.
HAN X G. Effect of citric acid, glucose and organic matter on plant P uptake and soil P fractionations in a highly weathered ultisol. Acta Phytoecologica Sinica, 1996, 20(2): 97-112. (in Chinese)
[10]
贾志航. 苹果园土壤无机磷库特征及葡萄糖对土壤磷组分和磷素利用的影响[D]. 泰安: 山东农业大学, 2020.
JIA Z H. Characteristics of inorganic phosphorus pool in apple orchard soil and effects of glucose addition on phosphorus fractions[D]. Taian: Shandong Agricultural University, 2020. (in Chinese)
[11]
QI X H, LI Q Q, SHEN J T, QIAN C L, XU X W, XU Q, CHEN X H. Sugar enhances waterlogging-induced adventitious root formation in cucumber by promoting auxin transport and signalling. Plant, Cell & Environment, 2020, 43(6): 1545-1557.
[12]
BAENA-GONZÁLEZ E, SHEEN J. Convergent energy and stress signaling. Trends in Plant Science, 2008, 13(9): 474-482.

doi: 10.1016/j.tplants.2008.06.006
[13]
KEUNEN E, PESHEV D, VANGRONSVELD J, VAN DEN ENDE W, CUYPERS A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. Plant, Cell & Environment, 2013, 36(7): 1242-1255.
[14]
LI W C, ZHANG J, YU C W, LI Q, DONG F, WANG G, GU G D, GUO Z Y. Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke. Carbohydrate Polymers, 2015, 121: 315-319.

doi: 10.1016/j.carbpol.2014.12.055
[15]
扈学文, 许秋瑾, 金相灿, 刘景辉, 李立军, 郭俊秀, 欧阳坤. 不同分子量壳寡糖对黑麦草种子萌发和幼苗抗病酶活性影响的研究. 中国农学通报, 2007, 23(2): 221-225.
HU X W, XU Q J, JIN X C, LIU J H, LI L J, GUO J X, OUYANG K. Influence of the different concentration of chitosan oligosaccharide on ryegrass seeds germination and the disease-resistant enzyme activity of the seedling. Chinese Agricultural Science Bulletin, 2007, 23(2): 221-225. (in Chinese)
[16]
李佳琪, 汤洁, 李明月, 严国富, 郑禾, 陶增蛟, 郭仰东. 不同分子量的褐藻寡糖对黄瓜幼苗光合作用及生长的影响. 中国农业大学学报, 2018, 23(9): 53-59.
LI J Q, TANG J, LI M Y, YAN G F, ZHENG H, TAO Z J, GUO Y D. Effects of different molecular weight alginate-derived oligosaccharide on photosynthetic characters and the growth of cucumber seedlings. Journal of China Agricultural University, 2018, 23(9): 53-59. (in Chinese)
[17]
ZHANG X Q, LI K C, LIU S, XING R E, YU H H, CHEN X L, LI P C. Size effects of chitooligomers on the growth and photosynthetic characteristics of wheat seedlings. Carbohydrate Polymers, 2016, 138: 27-33.

doi: 10.1016/j.carbpol.2015.11.050 pmid: 26794734
[18]
隋雪燕, 周泽琳, 张文清, 夏玮, 王氢, 金鑫荣, 李明, 李守义. 壳聚糖包衣对油菜种子萌发和幼苗生长以及几个生理生化指标的影响. 植物生理学通讯, 2002, 38(3): 225-227.
SUI X Y, ZHOU Z L, ZHANG W Q, XIA W, WANG Q, JIN X R, LI M, LI S Y. Effect of chitosan as seed coatings on seed germination and seedling growth and several physiological and biochemical indexes in rapeseeds. Plant Physiology Communications, 2002, 38(3): 225-227. (in Chinese)
[19]
于正国. 腐植酸添加方式对肥料中氮、磷有效性的调控[D]. 北京: 中国农业科学院, 2021.
YU Z G. Regulation of the availability of nitrogen and phosphorus in fertilizers by adding humic acid[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[20]
刘瑾, 杨建军, Yongfeng Hu, 李菊梅, 张秀, 马义兵. 一种高效有机结合态磷肥的多谱学分子形态表征. 光谱学与光谱分析, 2018, 38(3): 958-962.
LIU J, YANG J J, HU Y F, LI J M, ZHANG X, MA Y B. Molecular speciation of phosphorus in an organically bound phosphorus fertilizer with high phytoavailability characterized by multiple spectroscopy. Spectroscopy and Spectral Analysis, 2018, 38(3): 958-962. (in Chinese)
[21]
陈玥彤, 张闪闪, 李文意, 于文浩, 赵晓芳, 刘婷婷. 黑木耳多糖的磷酸化修饰、结构表征及体外降糖活性. 食品科学, 2022, 43(8): 29-35.
CHEN Y T, ZHANG S S, LI W Y, YU W H, ZHAO X F, LIU T T. Structural characterization and hypoglycemic effect in vitro of phosphorylated Auricularia auriculata polysaccharide. Food Science, 2022, 43(8): 29-35. (in Chinese)
[22]
黄雷, 毛小云, 王君, 邓冰露, 王冠豪, 廖宗文. 促释磷肥的结构特征及其有效性机理研究. 中国农业科学, 2013, 46(4): 769-779. doi: 10.3864/j.issn.0578-1752.2013.04.011.

doi: 10.3864/j.issn.0578-1752.2013.04.011
HUANG L, MAO X Y, WANG J, DENG B L, WANG G H, LIAO Z W. Research on the structural characteristics of promoted-release phosphate rocks and its phosphorus bioavailability mechanism. Scientia Agricultura Sinica, 2013, 46(4): 769-779. doi: 10.3864/j.issn.0578-1752.2013.04.011. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2013.04.011
[23]
李伟, 袁亮, 张水勤, 林治安, 李燕婷, 赵秉强. 中低分子量腐殖酸提高冬小麦磷吸收和产量的机理. 植物营养与肥料学报, 2020, 26(11): 2043-2050.
LI W, YUAN L, ZHANG S Q, LIN Z A, LI Y T, ZHAO B Q. Mechanism of middle and low molecular weight humic acids in promoting phosphorus fertilizer uptake efficiency and yield of winter wheat. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2043-2050. (in Chinese)
[24]
SHEN Y W, LIN H T, GAO W S, LI M L. The effects of humic acid urea and polyaspartic acid urea on reducing nitrogen loss compared with urea. Journal of the Science of Food and Agriculture, 2020, 100(12): 4425-4432.

doi: 10.1002/jsfa.10482 pmid: 32388863
[25]
张英强, 张水勤, 袁亮, 李燕婷, 林治安, 王立艳, 赵秉强. 柠檬酸改性磷肥的结构分析及其对水溶性磷固定率的影响. 植物营养与肥料学报, 2021, 27(5): 878-885.
ZHANG Y Q, ZHANG S Q, YUAN L, LI Y T, LIN Z A, WANG L Y, ZHAO B Q. Structure analysis of citric acid-modified phosphate fertilizer and its effects on water-soluble phosphorus fixation. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 878-885. (in Chinese)
[26]
王桂林, 郝金库, 崔云平, 施敏轶, 傅翠蓉, 于必江. 单丁基磷酸酯的合成与表征. 离子交换与吸附, 1996(4): 357-361.
WANG G L, HAO J K, CUI Y P, SHI M Y, FU C R, YU B J. Synthesis and characterization of monobutylphosphate. Ion Exchange and Adsorption, 1996(4): 357-361. (in Chinese)
[27]
李亚娟, 杨翠红, 陈博, 邱慧珍. 改性磷矿粉在石灰性土壤上的生物有效性及其机理研究. 中国生态农业学报, 2012, 20(3): 303-309.
LI Y J, YANG C H, CHEN B, QIU H Z. Bioavailability and mechanism of modified rock phosphate in calcareous soil. Chinese Journal of Eco-Agriculture, 2012, 20(3): 303-309. (in Chinese)

doi: 10.3724/SP.J.1011.2012.00303
[28]
翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析. 3版. 北京: 化学工业出版社, 2016.
WENG S F, XU Y Z. Fourier Transform Infrared Spectroscopy. 3rd ed. Beijing: Chemical Industry Press, 2016. (in Chinese)
[29]
林丽菁, 童张法, 赵奕玲, 廖丹葵, 张友全. 木薯淀粉磷酸单酯的性质及结构. 应用化学, 2006, 23(3): 294-298.
LIN L J, TONG Z F, ZHAO Y L, LIAO D K, ZHANG Y Q. Properties and structures of cassava starch phosphate monoesters. Chinese Journal of Applied Chemistry, 2006, 23(3): 294-298. (in Chinese)
[30]
汪洪, 宋书会, 张金尧, 刘云霞. 土壤磷形态组分分级及31P-NMR技术应用研究进展. 植物营养与肥料学报, 2017, 23(2): 512-523.
WANG H, SONG S H, ZHANG J Y, LIU Y X. Research advance in soil phosphorus fractionations and their characterization by chemical sequential methods and 31P-NMR techniques. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 512-523. (in Chinese)
[31]
王斌. 土壤磷素累积、形态演变及阈值研究[D]. 北京: 中国农业科学院, 2014.
WANG B. Study on the accumulation, form change and threshold values of phosphorus in soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[32]
CADE-MENUN B J. Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma, 2015, 257/258: 102-114.

doi: 10.1016/j.geoderma.2014.12.016
[33]
齐红岩, 李天来, 陈元宏, 张洁. 叶面喷施磷酸二氢钾与葡萄糖对番茄光合速率和蔗糖代谢的影响. 农业工程学报, 2005, 21(S2): 137-142.
QI H Y, LI T L, CHEN Y H, ZHANG J. Effects of foliage applications of KH2PO4 and glucose on photosynthesis and sucrose metabolism of tomato. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(S2): 137-142. (in Chinese)
[34]
赵莹, 杨克军, 赵长江, 李佐同, 王玉凤, 付健, 郭亮, 李文胜. 外源糖调控玉米光合系统和活性氧代谢缓解盐胁迫. 中国农业科学, 2014, 47(20): 3962-3972. doi: 10.3864/j.issn.0578-1752.2014.20.004.

doi: 10.3864/j.issn.0578-1752.2014.20.004
ZHAO Y, YANG K J, ZHAO C J, LI Z T, WANG Y F, FU J, GUO L, LI W S. Alleviation of the adverse effects of salt stress by regulating photosynthetic system and active oxygen metabolism in maize seedlings. Scientia Agricultura Sinica, 2014, 47(20): 3962-3972. doi: 10.3864/j.issn.0578-1752.2014.20.004. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2014.20.004
[35]
李萍, 尚云秋, 林祥, 刘帅康, 王森, 胡鑫慧, 王东. 拔节期阶段性干旱对小麦茎蘖成穗与结实的影响. 中国农业科学, 2020, 53(20): 4137-4151. doi:10.3864/j.issn.0578-1752.2020.20.004.

doi: 10.3864/j.issn.0578-1752.2020.20.004
LI P, SHANG Y Q, LIN X, LIU S K, WANG S, HU X H, WANG D. Effects of drought stress during jointing stage on spike formation and seed setting of main stem and tillers of winter wheat. Scientia Agricultura Sinica, 2020, 53(20): 4137-4151. doi:10.3864/j.issn.0578-1752.2020.20.004. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.20.004
[36]
唐晓乐, 李兆君, 马岩, 梁永超. 低温条件下黄腐酸和有机肥活化黑土磷素机制. 植物营养与肥料学报, 2012, 18(4): 893-899.
TANG X L, LI Z J, MA Y, LIANG Y C. Mechanism of fulvic acid- and organic manure-mediated phosphorus mobilization in black soil at low temperature. Plant Nutrition and Fertilizer Science, 2012, 18(4): 893-899. (in Chinese)
[37]
曹惠翔, 李帅, 杨敏, 黄婷, 李媛, 甘泉峰, 谢军伟, 赵耕毛. 菊糖对蚯蚓粪肥性状的影响及调控过程. 土壤, 2022, 54(1): 55-63.
CAO H X, LI S, YANG M, HUANG T, LI Y, GAN Q F, XIE J W, ZHAO G M. Effect of inulin on characters of earthworm manure and its regulation process. Soils, 2022, 54(1): 55-63. (in Chinese)
[38]
ZHU Y H, HU J, WANG J L. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials, 2012, 221/222: 155-161.

doi: 10.1016/j.jhazmat.2012.04.026
[39]
XIONG Y, MCCORMACK M, LI L, HALL Q, XIANG C B, SHEEN J. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature, 2013, 496(7444): 181-186.

doi: 10.1038/nature12030
[40]
李慧敏, 梁永书, 南文斌, 张汉马. 糖调控植物根系生长发育的研究进展. 中国农学通报, 2015, 31(14): 108-113.

doi: 10.11924/j.issn.1000-6850.casb15010181
LI H M, LIANG Y S, NAN W B, ZHANG H M. Regulation of sugar on the growth and development of plant root system. Chinese Agricultural Science Bulletin, 2015, 31(14): 108-113. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb15010181
[41]
邱旭. 聚磷菌对矿物和黑土中不同形态磷素转化的作用研究[D]. 长春: 吉林农业大学, 2016.
QIU X. Study paos of different forms of phosphorus transformation in the role of minerals and black soil[D]. Changchun: Jilin Agricultural University, 2016. (in Chinese)
[42]
彭永臻, 薛桂松, 苗志加, 翁冬晨. 葡萄糖为碳源的EBPR长期运行效果及聚磷菌的富集培养. 东南大学学报(自然科学版), 2013, 43(1): 136-141.
PENG Y Z, XUE G S, MIAO Z J, WENG D C. Long term effect of glucose as sole carbon source on EBPR and PAOs enrichment. Journal of Southeast University (Natural Science Edition), 2013, 43(1): 136-141. (in Chinese)
[43]
IWASAKI K I, MATSUBARA Y. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Bioscience, Biotechnology, and Biochemistry, 2000, 64(5): 1067-1070.

doi: 10.1271/bbb.64.1067 pmid: 10879484
[44]
LUAN L Q, NAGASAWA N, HA V T T, HIEN N Q, NAKANISHI T M. Enhancement of plant growth stimulation activity of irradiated alginate by fractionation. Radiation Physics and Chemistry, 2009, 78(9): 796-799.

doi: 10.1016/j.radphyschem.2009.05.001
[45]
刘海宽, 王海洋, 吴姗姗, 张岐, 杜金风, 顾海波. 窄分子量分布低聚壳聚糖与HSA相互作用的荧光光谱研究. 光谱学与光谱分析, 2009, 29(9): 2523-2526.
LIU H K, WANG H Y, WU S S, ZHANG Q, DU J F, GU H B. Fluorescence study on the interaction of narrow distribution low polymerization degree chitooligosaccharides and human serum albumin. Spectroscopy and Spectral Analysis, 2009, 29(9): 2523-2526. (in Chinese)
[46]
LIANG C, ZHU X F. The soil Microbial Carbon Pump as a new concept for terrestrial carbon sequestration. Science China (Earth Sciences), 2021, 64(4): 545-558.

doi: 10.1007/s11430-020-9705-9
[47]
赵秉强. 增值肥料概论. 北京: 中国农业科学技术出版社, 2020.
ZHAO B Q. Overview of Value-added Fertilizer. Beijing: China Agricultural Science and Technology Press, 2020. (in Chinese)
[1] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[2] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[3] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[4] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[5] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[6] XIONG ShuPing,GAO Ming,ZHANG ZhiYong,QIN BuTan,XU SaiJun,FU XinLu,WANG XiaoChun,MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[7] ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806.
[8] JING JianYuan,YUAN Liang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang. Effects and Mechanism of Humic Acid in Humic Acid Enhanced Phosphate Fertilizer on Fertilizer-Phosphorus Migration [J]. Scientia Agricultura Sinica, 2021, 54(23): 5032-5042.
[9] XU JiuKai,YUAN Liang,WEN YanChen,ZHANG ShuiQin,LIN ZhiAn,LI YanTing,LI HaiYan,ZHAO BingQiang. Phosphorus Fertilizer Replacement Value of Livestock Manure in Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(22): 4826-4839.
[10] JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594.
[11] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[12] HUANG QianNan,DANG HaiYan,HUANG TingMiao,HOU SaiBin,WANG ZhaoHui. Evaluation of Farmers’ Fertilizer Application and Fertilizer Reduction Potentials in Major Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4816-4834.
[13] BU RongYan,CHENG Yi,WANG Hui,HAN Shang,HU RongGen,YU Zhong,LI Min,CHENG WenLong,SUN YiXiang,WANG JiaBao,WU Ji. Investigation of Present Fertilization Status and Fertilizer Utilization Rate on Rapeseed in Anhui Province [J]. Scientia Agricultura Sinica, 2020, 53(10): 2034-2044.
[14] ZhiPing LIU,XuePing WU,RuoNan LI,FengJun ZHENG,MengNi ZHANG,ShengPing LI,XiaoJun SONG. Effect of Applying Chicken Manure and Phosphate Fertilizer on Soil Phosphorus Under Drip Irrigation in Greenhouse [J]. Scientia Agricultura Sinica, 2019, 52(20): 3637-3647.
[15] JIN XiuKuan, MA MaoTing, ZHAO TongKe, AN ZhiZhuang, JIANG LingLing. Effects of Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Winter Wheat Under Supplemental Irrigation Based on Measured Soil Moisture Content [J]. Scientia Agricultura Sinica, 2018, 51(7): 1334-1344.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!