Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2526-2537.doi: 10.3864/j.issn.0578-1752.2022.13.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Polyaspartic Acid with Different Molecular Weights on Root Growth and Nutrient Uptake of Wheat

LIU Yuan(),YUAN Liang,ZHANG ShuiQin,ZHAO BingQiang,LI YanTing()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2021-10-14 Accepted:2021-12-14 Online:2022-07-01 Published:2022-07-08
  • Contact: YanTing LI E-mail:liuyuan5859@163.com;liyanting2008@163.com

Abstract:

【Objective】 Polyaspartic acid (PASP) is a polymer of aspartic acid (ASP) with molecular weight ranging from 1000 to hundreds of thousands. Owing to its function in promoting crop growth and nutrient uptake, PASP has been widely used in agriculture, while its structure and application effect varied when its molecular weight changed. Therefore, in this study, the structural characteristics of PASP with different molecular weights were analyzed by using infrared spectroscopy, and the effects of it on wheat root growth and nutrient uptake in hydroponic experiments were investigated to clarify the characteristics and efficiency-enhanced mechanism of PASP with different molecular weights, so as to provide a theoretical basis for the scientific application for PASP in the development of new efficiency-enhanced fertilizer and agricultural production.【Method】A hydroponic experiment was carried out by using Hoagland nutrition solution and wheat (Jimai 22). Four kinds of test materials, including aspartic acid (ASP), PASP with low molecular weight (<1 kDa, PAL), PASP with medium molecular weight (3-5 kDa, PAM), and PASP with high molecular weight (>10 kDa, PAH), were separately added into the cultural solution in ratio of 10 mg·L-1, 25 mg·L-1 and 50 mg·L-1, and the treatment only with Hoagland nutrient solution was set as the control group (CK). Thus, there were a total of 13 treatments, and each treatment was repeated four times. After 20-day growth, the wheat seedlings were harvested to determine shoot dry matter weight, root dry matter weight, nitrogen, phosphorus and potassium content as well as root morphology, root absorption area, root activity.Result】(1) The structure of polyaspartic acid with different molecular weights was different. With the increase of molecular weight of polyaspartic acid, the content of peptide bond increased gradually, and the content of carboxyl group increased first and then decreased, among which, PAH had the highest peptide bond content, and PAM had the highest carboxyl group content. (2) The addition of PASP with different molecular weights could significantly improve the dry matter weight of wheat. The total dry matter weight of wheat was shown in the descending order: PAM>PAH>PAL≈ASP. Compared with CK, PASP increased the dry weight of wheat root by 11.90%-19.06%. Compared with CK, at the additive amount of 10 mg·L-1, 25 mg·L-1 and 50 mg·L-1, the total dry weight of wheat treated by PAM increased by 9.13%, 23.36% and 20.54%, respectively. (3) Polyaspartic acid with different molecular weights could optimize wheat root morphology and increase total absorption area, active absorption area and root activity. PAM had a better performance than other PASP treatment. (4) The addition of PASP with different molecular weights could promote the uptake of nitrogen, phosphorus and potassium, and the greatest promotion was obtained with PAM addition, followed by PAH addition. As for the treatments with the same material, the total uptake of nutrients was the highest at 50 mg·L-1 of PASP addition. When 50 mg·L-1 of PAM addition, the total uptake of nitrogen, phosphorus and potassium significantly increased by 16.88%, 25.97% and 21.61% than that of CK, respectively, and that 50 mg·L-1 of PAH addition significantly increased by 16.28%, 23.36% and 18.16% than CK, respectively. (5) Correlation analysis showed that the contents of peptide bond and carboxyl group of polyaspartic acid with different molecular weights were significantly positively correlated with total dry matter weight, total uptake of nitrogen, phosphorus and potassium as well as total root length and total root absorption area. The dry matter weight and nutrient uptake of wheat were significantly or extremely significantly positively correlated with root surface area, total absorption area, active absorption area, and root activity.【Conclusion】Polyaspartic acid with different molecular weights could promote wheat growth, optimize root morphology, increase root absorption area and root activity, further promote nutrient uptake. The structure of polyaspartic acid with different molecular weights was different. With the increase of molecular weight of polyaspartic acid, the content of peptide bond increased gradually, and the content of carboxyl group increased first and then decreased. The content of peptide bond and carboxyl group of polyaspartic acid was positively correlated with wheat growth and nitrogen, phosphorus and potassium uptake. Under the conditions of this experiment, PASP with molecular weight of 3-5 kDa had the best performance on wheat root growth and nutrient uptake, followed by polyaspartic acid with molecular weight greater than 10 kDa. As for different additive amounts, PASP with high dosage (50 mg·L-1) showed a more significant promoting effect on wheat growth and total nutrient uptake, while that with medium dosage (25 mg·L-1) had the best performance on wheat root growth and root nutrient uptake.

Key words: polyaspartic acid, molecular weight, wheat, root, nutrient uptake

Table 1

Molecular weight, elemental contents and mole ratios of the tested polyaspartic acid"

处理
Treatment
分子量
Molecular weight
元素含量Elemental content (%) 元素摩尔比Elemental mole ratio
C H N O C/N H/C O/C
ASP 133.10 35.80 5.01 10.62 48.57 3.37 0.14 1.36
PAL <1 kDa 25.92 5.72 7.68 60.68 3.38 0.22 2.34
PAM 3-5 kDa 27.19 5.45 8.00 59.36 3.40 0.20 2.18
PAH >10 kDa 26.91 5.30 8.11 59.68 3.32 0.20 2.22

Table 2

Experimental treatments in this study"

处理
Treatment
添加量 Additive amount (mg·L-1)
ASP PAL PAM PAH
CK 0 0 0 0
ASP10 10 0 0 0
ASP25 25 0 0 0
ASP50 50 0 0 0
PAL10 0 10 0 0
PAL25 0 25 0 0
PAL50 0 50 0 0
PAM10 0 0 10 0
PAM25 0 0 25 0
PAM50 0 0 50 0
PAH10 0 0 0 10
PAH25 0 0 0 25
PAH50 0 0 0 50

Fig. 1

FTIR spectra and second derivative diagrams of PASP with different molecular weights"

Table 3

Effects of PASP with different molecular weights on wheat dry matter weight (g/pot)"

处理
Treatment
根系干重
Root dry weight
平均
Mean
地上部干重
Ground dry weight
平均
Mean
总干重
Total dry weight
平均
Mean
10 mg·L-1 25 mg·L-1 50 mg·L-1 10 mg·L-1 25 mg·L-1 50 mg·L-1 10 mg·L-1 25 mg·L-1 50 mg·L-1
CK 0.42b 0.42b 0.42b 0.42 1.67ab 1.67b 1.67c 1.67 2.09b 2.09c 2.09b 2.09
ASP 0.49a 0.51a 0.49a 0.50 1.65b 1.87ab 1.8bc 1.77 2.14b 2.38ab 2.29ab 2.27
PAL 0.46ab 0.50a 0.45ab 0.47 1.66ab 1.74b 1.98ab 1.79 2.12b 2.24bc 2.43a 2.26
PAM 0.50a 0.53a 0.46ab 0.50 1.78a 2.04a 2.06a 1.96 2.28a 2.58a 2.52a 2.46
PAH 0.44ab 0.51a 0.47ab 0.47 1.75ab 1.85ab 1.98ab 1.86 2.18ab 2.36ab 2.45a 2.33

Fig. 2

Effects of PASP with different molecular weights on morphology of wheat root system Different letters at the top of the column mean significantly different between treatments (P<0.05). The same as below"

Fig. 3

Effects of PASP with different molecular weights on root absorption area and root activity of wheat"

Table 4

Effects of PASP with different molecular weights on nitrogen uptake in wheat seedlings (mg/pot)"

处理
Treatment
根系吸氮量
Nitrogen uptake of root
平均
Mean
地上部吸氮量
Nitrogen uptake of ground
平均
Mean
总吸氮量
Nitrogen uptake of total plant
平均
Mean
10 mg·L-1 25 mg·L-1 50 mg·L-1 10 mg·L-1 25 mg·L-1 50 mg·L-1 10 mg·L-1 25 mg·L-1 50 mg·L-1
CK 22.13b 22.13d 22.13b 22.13 141.13a 141.13c 141.13c 141.13 163.27a 163.27c 163.27c 163.27
ASP 22.05b 24.59c 25.51a 24.05 144.63a 144.85bc 143.29bc 144.26 166.68a 169.44c 168.79bc 168.30
PAL 22.71b 27.12b 24.16a 24.66 142.19a 141.97c 149.58b 144.58 164.90a 169.09c 173.74b 169.24
PAM 24.77a 29.40a 25.23a 26.47 142.69a 168.20a 165.59a 158.83 167.46a 197.61a 190.83a 185.30
PAH 21.75b 25.96bc 25.54a 24.42 142.80a 152.51b 164.30 a 153.20 164.56a 178.47b 189.84a 177.62

Table 5

Effects of PASP with different molecular weights on phosphorus uptake in wheat seedlings (mg/pot)"

处理
Treatment
根系吸磷量
Phosphorus uptake of root
平均
Mean
地上部吸磷量
Phosphorus uptake of ground
平均
Mean
总吸磷量
Phosphorus uptake of total plant
平均
Mean
10 mg·L-1 25 mg·L-1 50 mg·L-1 10 mg·L-1 25 mg·L-1 50 mg·L-1 10 mg·L-1 25 mg·L-1 50 mg·L-1
CK 4.27a 4.27c 4.27c 4.27 17.22 a 17.22b 17.22c 17.22 21.49a 21.49c 21.49d 21.49
ASP 4.28a 4.65bc 5.21a 4.71 17.36a 17.36b 19.59b 18.10 21.63a 22.01bc 24.80b 22.81
PAL 4.46a 4.94b 4.31c 4.57 17.30a 17.49b 19.07b 17.95 21.76a 22.43bc 23.38c 22.52
PAM 4.44a 5.58 a 4.78b 4.93 18.46a 19.43a 22.29a 20.06 22.90a 25.00a 27.07a 24.99
PAH 4.33a 5.06 b 5.27a 4.88 17.95a 18.10ab 21.24a 19.10 22.28a 23.16b 26.51a 23.98

Table 6

Effects of PASP with different molecular weights on potassium uptake in wheat seedlings (mg/pot)"

处理
Treatment
根系吸钾量
Potassium uptake of root
平均
Mean
地上部吸钾量
Potassium uptake of ground
平均
Mean
总吸钾量
Potassium uptake of total plant
平均
Mean
10 mg·L-1 25 mg·L-1 50 mg·L-1 10 mg·L-1 25 mg·L-1 50 mg·L-1 10 mg·L-1 25 mg·L-1 50 mg·L-1
CK 16.03a 16.03b 16.03b 16.03 141.00a 141.00b 141.00c 141.00 157.03a 157.03c 157.03c 157.03
ASP 16.06a 16.85b 16.14b 16.35 140.18a 147.8b 144.36c 141.11 156.23a 164.65bc 160.50bc 160.46
PAL 15.92a 18.09b 16.03b 16.68 144.11a 145.68b 155.98b 148.59 160.03a 163.78bc 172.01b 165.27
PAM 16.12a 23.68a 17.65ab 19.15 150.06a 163.46a 173.31a 162.28 166.18a 187.14 a 190.96a 181.42
PAH 16.08a 22.40a 19.83a 19.43 150.92a 154.30ab 165.73ab 156.98 167.00a 176.70ab 185.55a 176.42

Table 7

Correlation analysis of peptide bond, carboxyl group content and wheat growth index (n=13)"

指标 Index R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
C1 0.709** 0.795** 0.806** 0.892** -0.335 0.376 0.720** 0.574* 0.802** 0.685** 0.558*
C2 0.750** 0.804** 0.822** 0.900** -0.279 0.409 0.694** 0.568* 0.799** 0.680* 0.649*

Table 8

Correlation analysis of root index with dry matter weight and nutrient uptake (n=52)"

干物质重与养分吸收指标
Dry matter weight and nutrient uptake index
根系指标 Root index
R5 R6 R7 R8 R9 R10 R11
R1 0.174 0.802** 0.415 0.778** 0.778** 0.838** 0.870**
R2 -0.146 0.588** 0.648* 0.841** 0.751** 0.889** 0.728**
R3 0.015 0.549 0.498 0.621* 0.632* 0.669* 0.683*
R4 -0.202 0.559** 0.721** 0.823** 0.865** 0.873** 0.706**
[1] 方莉, 谭天伟. 聚天门冬氨酸的合成及其应用. 化工进展, 2001, 20(3): 24-28.
FANG L, TAN T W. Chemical syntheses and application of polyaspartates. Chemical Industry and Engineering Progress, 2001, 20(3): 24-28. (in Chinese)
[2] 唐会会, 许艳丽, 王庆燕, 马正波, 李光彦, 董会, 董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制. 作物学报, 2019, 45(3): 431-442.
doi: 10.3724/SP.J.1006.2019.83056
TANG H H, XU Y L, WANG Q Y, MA Z B, LI G Y, DONG H, DONG Z Q. Increasing spring maize yield by basic application of PASP chelating nitrogen fertilizer in northeast China. Acta Agronomica Sinica, 2019, 45(3): 431-442. (in Chinese)
doi: 10.3724/SP.J.1006.2019.83056
[3] 曹丹, 王世震, 韩梅. 绿色环保肥料增效剂聚天冬氨酸对杨树幼苗生长的影响. 植物研究, 2021, 41(5): 712-720.
CAO D, WANG S Z, HAN M. Effect of the environment-friendly nutrient synergist polyaspartic acid on the growth of poplar seedlings. Bulletin of Botanical Research, 2021, 41(5): 712-720. (in Chinese)
[4] 陈倩, 李洪娜, 门永阁, 魏绍冲, 姜远茂. 不同聚天冬氨酸水平对盆栽平邑甜茶幼苗生长及15N-尿素利用与损失的影响. 水土保持学报, 2013, 27(1): 126-129.
CHEN Q, LI H N, MEN Y G, WEI S C, JIANG Y M. Effects on the growth of potted Malus hupehensis Rehd. seedings, utilization and loss of 15N-urea under different supply levels of polyaspartic acid. Journal of Soil and Water Conservation, 2013, 27(1): 126-129. (in Chinese)
[5] 徐虹, 冯小海, 徐得磊, 邱益彬. 聚氨基酸功能高分子的发展状况与应用前景. 生物产业技术, 2017(6): 92-99.
XU H, FENG X H, XU D L, QIU Y B. Recent developments and potential applications of poly(amino acid)-based functional polymers. Biotechnology & Business, 2017(6): 92-99. (in Chinese)
[6] 杨晋辉, 刘泰, 陈艳雪, 王满, 王洪媛, 刘宏斌. 聚天门冬氨酸/盐的合成、改性及应用研究进展. 材料导报, 2018, 32(11): 1852-1862.
YANG J H, LIU T, CHEN Y X, WANG M, WANG H Y, LIU H B. Synthesis, modification and application of polyaspartic acid/salt: The state-of-art technological advances. Materials Reports, 2018, 32(11): 1852-1862. (in Chinese)
[7] NAGAO Y, IMAI Y, MATSUI J, OGAWA T, MIYASHITA T. Proton transport properties of poly(aspartic acid) with different average molecular weights. The Journal of Chemical Thermodynamics, 2011, 43(4): 613-616.
doi: 10.1016/j.jct.2010.11.016
[8] 许飞云, 张茂星, 曾后清, 朱毅勇. 水稻根系细胞膜质子泵在氮磷钾养分吸收中的作用. 中国水稻科学, 2016, 30(1): 106-110.
XU F Y, ZHANG M X, ZENG H Q, ZHU Y Y. Involvement of plasma membrane H+-ATPase in uptake of nitrogen, phosphorus and potassium by rice root. Chinese Journal of Rice Science, 2016, 30(1): 106-110. (in Chinese)
[9] SALAKHIEVA D V, GUMEROVA D R, AKHMADISHINA R A, KAMALOV M I, NIZAMOV I S, NEMETH C, SZILAGYI A, ABDULLIN T I. Anti-radical and cytotoxic activity of polysuccinimide and polyaspartic acid of different molecular weight. Bionanoscience, 2016, 6(4): 348-351.
doi: 10.1007/s12668-016-0230-0
[10] 柯德森, 杨礼香, 巫锦雄. 光强对玉米幼苗光合特性及环境羟基自由基水平的影响. 应用与环境生物学报, 2013, 19(3): 404-409.
doi: 10.3724/SP.J.1145.2013.00404
KE D S, YANG L X, WU J X. Effects of light intensity on the photosynthetic characteristics of maize seedlings and the content of atmosphere hydroxyl radical. Chinese Journal of Applied and Environmental Biology, 2013, 19(3): 404-409. (in Chinese)
doi: 10.3724/SP.J.1145.2013.00404
[11] 徐荣, 朱凌宇, 王守红, 张家宏, 王桂良, 寇祥明, 唐鹤军, 韩光明, 吴雷明, 毕建花. 牛粪好氧发酵添加聚天冬氨酸固持氮素的机理. 植物营养与肥料学报, 2020, 26(6): 1165-1178.
XU R, ZHU L Y, WANG S H, ZHANG J H, WANG G L, KOU X M, TANG H J, HAN G M, WU L M, BI J H. Mechanism of nitrogen retention by polyaspatric acid during cow manure composting. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1165-1178. (in Chinese)
[12] 徐嘉翼, 牛世伟, 隋世江, 张鑫, 叶鑫, 蔡广兴, 王娜. 聚天门冬氨酸/盐对水稻田面水氮素变化及养分利用的影响. 农业环境科学学报, 2019, 38(8): 1696-1703.
XU J Y, NIU S W, SUI S J, ZHANG X, YE X, CAI G X, WANG N. Effects of polyaspartic-acid/salt on nitrogen loss from paddy surface water and nutrients utilization. Journal of Agro-Environment Science, 2019, 38(8): 1696-1703. (in Chinese)
[13] 申建波. 植物营养研究方法. 北京: 中国农业大学出版社, 2011.
SHEN J B. Research Methods of Plant Nutrition. Beijing: China Agricultural University Press, 2011. (in Chinese)
[14] 赵世杰. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002.
ZHAO S J. Experimental Guide for Plant Physiology. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[15] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
BAO S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2000. (in Chinese)
[16] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44(1): 36-46.
YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Scientia Agricultura Sinica, 2011, 44(1): 36-46. (in Chinese)
[17] 刘涛, 向垒, 余忠雄, 莫测辉, 李彦文, 赵海明, 蔡全英, 李慧. 水稻幼苗对纳米氧化铜的吸收及根系形态生理特征响应. 中国环境科学, 2015, 35(5): 1480-1486.
LIU T, XIANG L, YU Z X, MO C H, LI Y W, ZHAO H M, CAI Q Y, LI H. Responses of morphological and physiological characteristics in rice (Oryza sativa L.) seedling roots to its uptake of CuO nanopaticles. China Environmental Science, 2015, 35(5): 1480-1486. (in Chinese)
[18] 曹本福, 陆引罡, 刘丽, 陈海念, 刘晓云, 祖庆学. 减施氮肥下聚天冬氨酸对烤烟生理特性及氮肥去向的影响. 水土保持学报, 2019, 33(5): 223-229.
CAO B F, LU Y G, LIU L, CHAN H N, LIU X Y, ZU Q X. Effects of polyaspartic acid on physiological characteristics and fate of nitrogen fertilizer in flue-cured tobacco with nitrogen fertilizer reduction. Journal of Soil and Water Conservation, 2019, 33(5): 223-229. (in Chinese)
[19] 王亮亮, 高志山, 宋涛. 聚天冬氨酸和生根剂复配对玉米根系及幼苗生长的影响. 江苏农业科学, 2017, 45(22): 67-69.
WANG L L, GAO Z S, SONG T. Effects of polyaspartic acid and rooting agent on maize root and seedling growth. Jiangsu Agricultural Sciences, 2017, 45(22): 67-69. (in Chinese)
[20] COLLA G, NARDI S, CARDARELLI M, ERTANI A, LUCINI L, CANAGUIER R, ROUPHAEL Y. Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 2015, 196: 28-38.
doi: 10.1016/j.scienta.2015.08.037
[21] 许丽, 穆巴拉克·艾则孜, 蔡海芸, 黄梦媛, 黄光团. PASP对香根草修复富营养化水体的影响. 中国给水排水, 2012, 28(23): 90-92.
XU L, MUBALAKE A, CAI H Y, HUANG M Y, HUANG G T. Effect of PASP on eutrophic water remediation with Vetiveria zizanioides. China Water&Wastewater, 2012, 28(23): 90-92. (in Chinese)
[22] IMAMURA A, HANAKI N, UMEDA H, NAKAMURA A, SUZUKI T, UEGUCHI C, MIZUNO T. Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(5): 2691-2696.
[23] 陈开, 唐瑭, 张冬平, 陈云, 吕冰. 生长素和细胞分裂素参与构建水稻根系的研究进展. 植物生理学报, 2020, 56(12): 2495-2509.
CHEN K, TANG T, ZHANG D P, CHEN Y, LÜ B. Recent advances in auxin-cytokinin interactions involved in shaping architecture of rice root system. Plant Physiology Journal, 2020, 56(12): 2495-2509. (in Chinese)
[24] 沈仁芳, 孙波, 施卫明, 赵学强. 地上-地下生物协同调控与养分高效利用. 中国科学院院刊, 2017, 32(6): 566-574.
SHEN R F, SUN B, SHI W M, ZHAO X Q. Interactions between above-and below-ground organisms for nutrient-efficient utilization. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 566-574. (in Chinese)
[25] 周丽平, 袁亮, 赵秉强, 李燕婷, 林治安. 不同分子量风化煤腐殖酸对玉米植株主要代谢物的影响. 植物营养与肥料学报, 2019, 25(1): 142-148.
ZHOU L P, YUAN L, ZHAO B Q, LI Y T, LIN Z A. Contents of the main metabolites in maize affected by humic acids with different molecular weight derived from weathered coal. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 142-148. (in Chinese)
[26] 陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展. 高分子学报, 2019, 50(10): 1068-1082.
CHEN X S, CHEN G Q, TAO Y H, WANG Y Z, LÜ X B, ZHANG L Q, ZHU J, ZHANG J, WANG X H. Research progress in eco- polymers. Acta Polymerica Sinica, 2019, 50(10): 1068-1082. (in Chinese)
[27] 周建朝, 范晶, 王孝纯, 王艳, 邓艳红, 奚红光, 於丽华. 磷胁迫下不同基因型甜菜的光合特征. 植物营养与肥料学报, 2009, 15(4): 910-916.
ZHOU J C, FAN J, WANG X C, WANG Y, DENG Y H, XI H G, YU L H. Photosynthetic properties of different sugar beet genotypes under phosphorus deficiency. Journal of Plant Nutrition and Fertilizers, 2009, 15(4): 910-916. (in Chinese)
[28] 段旭锦, 李灵芝, 张伟, 高清兰, 梁运香, 常领山, 张杰纯, 张国香, 李海平. 螯合剂HIDS对低配方营养液栽培西葫芦幼苗的影响. 中国农业气象, 2020, 41(11): 719-729.
DUAN X J, LI L Z, ZHANG W, GAO Q L, LIANG Y X, CHANG L S, ZHANG J C, ZHANG G X, LI H P. Effect of chelating agent HIDS on summer squash seedlings cultured in low formula nutrient solution. Chinese Journal of Agrometeorology, 2020, 41(11): 719-729. (in Chinese)
[29] DENG F, WANG L, MEI X F, LI S X, PU S L, REN W J. Polyaspartate urea and nitrogen management affect nonstructural carbohydrates and yield of rice. Crop Science, 2016, 56(6): 3272-3285.
doi: 10.2135/cropsci2016.02.0130
[30] 侯晓娜. 黄腐酸和聚天冬氨酸对蔬菜氮素吸收及肥料氮转化的影响[D]. 北京: 中国农业科学院, 2013.
HOU X N. Effects of fulvic acid and polyaspartic acid on nitrogen uptake of vegetables and transformation of fertilizer nitrogen[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[31] 刘红卫. 聚天冬氨酸和多肽肥料应用展望. 黑龙江农业科学, 2010(7): 162-164.
LIU H W. Application forecasts of PASP and the multi-peptide fertilizer. Heilongjiang Agricultural Sciences, 2010(7): 162-164. (in Chinese)
[32] WANG Q Y, TANG H H, LI G Y, DONG H, DONG X R, XU Y L, DONG Z Q. Polyaspartic acid improves maize (Zea mays L.) seedling nitrogen assimilation mainly by enhancing nitrate reductase activity. Agronomy, 2018, 8(9): 1-16.
doi: 10.3390/agronomy8010001
[33] 王峻, 宋科, 潘剑君, 薛永, 孙丽娟, 蔡银美. 氮磷养分胁迫下小麦幼苗期生物学响应研究. 中国土壤与肥料, 2019(2): 152-158.
WANG J, SONG K, PAN J J, CAI Y, SUN L J, CAI Y M. Study of biologic response of wheat seedling to low nitrogen and phosphorus stress. Soil and Fertilizer Sciences in China, 2019(2): 152-158. (in Chinese)
[34] 胡志光, 王昕, 张玉玲, 李倩. 改性聚天冬氨酸研究最新进展. 应用化工, 2014, 43(2): 360-362.
HU Z G, WANG X, ZHANG Y L, LI Q. Latest research development of modified polyaspartic acid. Applied Chemical Industry, 2014, 43(2): 360-362.. (in Chinese)
[35] YANG J H, LIU T, LIU H B, ZHANG D, ZHAI L M, LIU J, WANG M, CHEN Y X, CHEN B Y, WANG H Y. Biodegradable PASP can effectively inhibit nitrification, moderate NH3 emission, and promote crop yield. Archives of Agronomy and Soil Science, 2019, 65(9): 1273-1286.
doi: 10.1080/03650340.2018.1562275
[36] 倪承凡, 张富林, 吴茂前, 夏颖, 张志毅, 刘冬碧, 范先鹏, 熊桂云, 马路, 高立. 聚天门冬氨酸尿素对稻田田面水氮素浓度及产量的影响. 中国土壤与肥料, 2020(6): 234-239.
NI C F, ZHANG F L, WU M Q, XIA Y, ZHANG Z Y, LIU D B, FAN X P, XIONG G Y, MA L, GAO L. Effects of polyaspartic-urea on nitrogen concentrations in surface water and yield of rice. Soil and Fertilizer Sciences in China, 2020(6): 234-239. (in Chinese)
[37] 王耀强, 朱文龙, 郑凯, 李国艺, 邓伟杰, 段帅红, 曹辉. 聚天冬氨酸对植物营养液增效的研究. 中国农学通报, 2017, 33(15): 62-70.
WANG Y Q, ZHU W L, ZHENG K, LI G Y, DENG W J, DUAN S H, CAO H. Synergy of polyaspartic acid in plant nutrient solution. Chinese Agricultural Science Bulletin, 2017, 33(15): 62-70. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[6] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[7] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[8] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[9] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[10] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[11] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[12] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[13] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!