Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (24): 4826-4841.doi: 10.3864/j.issn.0578-1752.2023.24.003


Response and Drip Irrigation Re-Watering Compensation Effect of Spring Wheat Roots to Drought Stress with Different Drought Tolerance Varieties

WANG RongRong(), CHEN TianPeng, YIN HaoJie, JIANG GuiYing()   

  1. College of Agronomy, Shihezi University, Shihezi 832000, Xinjiang
  • Received:2023-04-12 Accepted:2023-05-21 Online:2023-12-16 Published:2023-12-21
  • Contact: JIANG GuiYing


【Objective】The objective of this study is to investigate the differences in morphological and physiological responses of root growth of drip irrigated spring wheat with different drought sensitivity to stage drought stress, to further elaborate the physiological mechanisms of drought resistance and water conservation in drip irrigated spring wheat in Xinjiang, and to provide a theoretical basis for further water-saving and high-yield in Xinjiang wheat region. 【Method】 From 2021-2022, the strong drought resistance variety Xinchun 6 and the weak drought resistance variety Xinchun 22 were used as the test materials by using the soil column cultivation method. Mild (T1 and T3, 60%-65% FC, FC is the field capacity) and moderate (T2 and T4, 45%-50% FC) drought stress treatments were conducted during the tillering and jointing stages, with conventional irrigation as the control (CK, 75%-80% FC), the effects of pre-reproductive drought stress on root morphological characteristics (root length density (RLD), root volume density (RVD)), antioxidant system (malondialdehyde (MDA), superoxide dismutase (SOD), peroxidase (POD)), osmoregulation substance (proline (Pro), soluble sugars (SS)) and spatial and temporal characteristics of root activity were studied. The compensatory effect of drip irrigated spring wheat root growth on drought-rehydration was analyzed.【Result】RLD and RVD showed a trend of increasing and then decreasing with increasing drought stress, and under mild drought (T1 and T3) conditions, RLD and RVD in the 20-60 cm soil layer were significantly increased. The MDA content in the root of each soil layer showed an upward trend with the intensification of stress, while SOD, POD, Pro, and SS all increased first and then decreased with the intensification of drought, and gradually increased with the deepening of the soil layer. After rehydration of T1 treatment, root morphological characteristics, antioxidant enzyme activity, osmotic substances and root activity all reached the maximum value, which in turn increased the yield by 2.77% to 19.58% compared to the rest of the treatments. Stepwise regression analysis showed that RVD and SS were important determinants of yield, RLD, SOD and SS were the most significant indicators of Xinchun 6 drought resistance; RLD, MDA and POD were the most significant indicators of Xinchun 22 drought resistance.【Conclusion】Spring wheat maintains 60%-65% FC during the tillering and jointing stages, after drip irrigation and rehydration, it increases the distribution proportion of roots in the 20-60 cm soil layer, enhances the root system’s ability to remove reactive oxygen species and osmotic adjustment, delays root senescence and improves root physiological characteristics, thus increasing yield.

Key words: spring wheat, drought stress, tillering and jointing stages, root growth, compensation effect

Table 1

Physical and chemical properties of 0-60 cm soil in the experimental site"

Total N (g·kg-1)
Available N (mg·kg-1)
Available P (mg·kg-1)
Available K (mg·kg-1)
Organic (g·kg-1)
2021 1.37 58.71 16.96 139.02 17.84 7.6
2022 1.35 61.30 16.07 143.66 18.31 7.7

Fig. 1

Daily average temperature and rainfall during wheat growth period"

Table 2

Water treatment at different growth stages"

Tillering stage
Jointing stage
T1 60%—65% FC 75%—80% FC
T2 45%—50% FC 75%—80% FC
T3 75%—80% FC 60%—65% FC
T4 75%—80% FC 45%—50% FC
CK 75%—80% FC 75%—80% FC

Fig. 2

Schematic diagram of field planting"

Table 3

Effect of drought stress on root morphological characteristics of spring wheat varieties with different drought resistance"

Soil depth (cm)
Root length density (RLD) (cm·cm-3)
Root volume density (RVD) (cm3·cm-3)
Tillering stage
Jointing stage
Flowering stage
Tillering stage
Jointing stage
Flowering stage
Xinchun 6
CK 0-20 0.67±0.01a 1.96±0.06a 2.80±0.01a 0.26±0.05a 0.38±0.01a 0.65±0.01a
20-40 0.21±0.02c 1.09±0.08e 1.86±0.04e 0.14±0.04c 0.23±0.01d 0.47±0.01c
40-60 - 0.58±0.07e 1.42±0.05e - 0.12±0.02e 0.30±0.01c
T1 0-20 0.61±0.02b 1.82±0.06b 2.65±0.09b 0.24±0.03b 0.33±0.04b 0.61±0.01b
20-40 0.28±0.08a 1.70±0.03a 2.47±0.08a 0.17±0.01a 0.30±0.02a 0.54±0.02a
40-60 - 1.14±0.07a 1.80±0.01a - 0.19±0.02a 0.34±0.01a
T2 0-20 0.52±0.03c 1.60±0.02d 2.39±0.03d 0.21±0.01c 0.29±0.01d 0.56±0.01c
20-40 0.26±0.05b 1.43±0.04c 2.22±0.06c 0.15±0.05b 0.29±0.01d 0.52±0.02ab
40-60 - 0.82±0.04c 1.58±0.04c - 0.27±0.01b 0.33±0.02ab
T3 0-20 - 1.64±0.04c 2.55±0.05c - 0.31±0.01c 0.59±0.01b
20-40 - 1.57±0.05b 2.34±0.05b - 0.28±0.04b 0.53±0.01a
40-60 - 1.04±0.10b 1.71±0.02b - 0.17±0.03b 0.33±0.02ab
T4 0-20 - 1.53±0.07e 2.27±0.02e - 0.28±0.04e 0.54±0.01c
20-40 - 1.33±0.04d 2.03±0.01d - 0.25±0.01c 0.50±0.01b
40-60 - 0.60±0.05d 1.52±0.01d - 0.14±0.04d 0.31±0.02bc
Xinchun 22
CK 0-20 0.55±0.01a 1.65±0.09a 2.50±0.08a 0.24±0.02a 0.32±0.01a 0.57±0.01a
20-40 0.17±0.03c 1.03±0.01e 1.71±0.06e 0.11±0.01c 0.21±0.01c 0.42±0.01b
40-60 - 0.52±0.06e 1.11±0.02e - 0.12±0.01d 0.27±0.01b
T1 0-20 0.49±0.01b 1.46±0.07b 2.42±0.07b 0.21±0.01b 0.30±0.01b 0.56±0.02ab
20-40 0.22±0.05a 1.43±0.04a 2.29±0.05a 0.14±0.01a 0.28±0.01a 0.47±0.02a
40-60 - 1.09±0.03a 1.35±0.02a - 0.17±0.01a 0.32±0.01a
T2 0-20 0.45±0.05c 1.22±0.07d 2.13±0.08d 0.18±0.01c 0.26±0.05cd 0.51±0.01c
20-40 0.20±0.03b 1.15±0.08c 1.92±0.06c 0.13±0.02b 0.22±0.03b 0.42±0.01b
40-60 - 0.75±0.03c 1.21±0.03c - 0.15±0.03b 0.31±0.01a
T3 0-20 - 1.35±0.02c 2.29±0.08c - 0.26±0.01c 0.54±0.01b
20-40 - 1.32±0.10b 2.04±0.09b - 0.23±0.01b 0.47±0.01a
40-60 - 0.94±0.09b 1.26±0.06b - 0.15±0.04b 0.31±0.01a
T4 0-20 - 1.17±0.05e 1.98±0.08e - 0.25±0.01d 0.49±0.01d
20-40 - 1.13±0.07d 1.74±0.04d - 0.21±0.03c 0.43±0.01b
40-60 - 0.54±0.03d 1.14±0.04d - 0.13±0.01c 0.29±0.01b
品种Variety (V) ** ** ** ** ** **
处理Treatment (T) ** ** ** ** ** **
V×T ** ** ** ** ns ns

Fig. 3

Effect of drought stress on malondialdehyde content in roots of spring wheat varieties with different drought resistance"

Table 4

Effect of drought stress on superoxide dismutase activity in roots of spring wheat varieties with different drought resistance (μmol·g-1 protein·min-1)"

Soil depth (cm)
分蘖期Tillering stage 拔节期Jointing stage 开花期Flowering stage
Xinchun 6 Xinchun 22 Xinchun 6 Xinchun 22 Xinchun 6 Xinchun 22
CK 0-20 13.85±1.06b 12.06±1.06b 19.44±1.02c 19.11±1.01bc 30.88±1.76b 28.47±1.92bc
20-40 18.14±0.83b 16.10±0.49b 23.56±1.23c 23.77±1.53b 34.47±0.49c 30.58±2.22bc
40-60 - - 26.91±1.20c 26.75±1.19b 38.92±0.68c 32.75±0.82c
T1 0-20 17.37±0.93a 15.43±1.24a 22.62±0.99b 21.77±1.14ab 35.96±1.46a 36.00±2.91a
20-40 21.65±0.97a 21.01±0.30a 27.09±1.26ab 27.85±1.87a 39.41±2.80a 37.55±2.60a
40-60 - - 30.36±1.13ab 30.58±2.20a 43.78±0.76a 40.64±2.59a
T2 0-20 15.21±1.16b 10.07±1.13b 20.57±1.01c 17.38±1.81c 33.81±1.58ab 27.59±2.45bc
20-40 19.18±1.12b 13.81±2.28b 24.74±1.32c 21.18±0.49c 36.79±1.09abc 29.65±2.56bc
40-60 - - 28.07±1.13bc 23.25±1.42c 41.50±1.42b 32.30±1.75c
T3 0-20 - - 24.60±1.12a 22.75±1.40a 35.46±1.80a 32.07±2.47ab
20-40 - - 28.87±0.56a 28.42±0.47a 38.77±0.71ab 33.72±2.49ab
40-60 - - 32.31±1.40a 31.57±2.19a 43.45±1.05a 36.88±2.10b
T4 0-20 - - 21.31±1.07bc 18.58±1.84c 32.79±1.68ab 26.38±2.34c
20-40 - - 25.76±1.45bc 22.36±0.44bc 36.32±0.92bc 28.55±2.41c
40-60 - - 29.03±1.45bc 26.24±1.61bc 40.86±1.07b 31.28±2.17c
品种Variety (V) ** * **
处理Treatment (T) ** ** **
V×T ** * *

Table 5

Effect of drought stress on peroxidase activity in roots of spring wheat varieties with different drought resistance (μmol·g-1 protein·min-1)"

Soil depth (cm)
分蘖期Tillering stage 拔节期Jointing stage 开花期Flowering stage
Xinchun 6 Xinchun 22 Xinchun 6 Xinchun 22 Xinchun 6 Xinchun 22
CK 0-20 39.52±2.41c 35.53±0.96b 72.88±3.55e 69.28±3.79c 186.59±7.62d 181.34±5.25bc
20-40 47.83±2.47b 44.59±1.55b 81.56±4.31d 78.38±3.20c 216.54±12.35c 193.76±6.43b
40-60 - - 86.83±3.67d 85.67±3.37c 225.25±8.86c 213.73±7.18b
T1 0-20 74.23±2.45a 57.20±1.22a 107.71±4.72b 87.36±4.75b 243.97±9.46a 219.32±10.56a
20-40 78.21±3.42a 61.51±1.56a 111.37±4.73b 91.17±3.23b 263.93±8.83a 227.55±9.98a
40-60 - - 119.05±5.81b 98.70±5.56b 270.08±8.49a 246.92±10.01a
T2 0-20 47.41±1.90b 31.94±0.51c 82.83±4.24d 60.65±3.61d 207.63±7.77c 176.99±6.19bc
20-40 51.99±1.99b 40.63±1.87c 85.64±4.35d 65.07±2.77d 231.64±8.32bc 190.59±6.30bc
40-60 - - 90.49±4.63d 70.15±2.58d 238.32±9.26c 210.14±7.77b
T3 0-20 - - 121.16±4.82a 100.64±4.81a 225.87±8.13b 191.86±10.43b
20-40 - - 129.17±6.29a 108.82±5.19a 246.01±9.58b 202.61±9.89b
40-60 - - 135.90±5.43a 113.75±3.83a 252.99±6.76b 224.20±10.04b
T4 0-20 - - 94.60±4.52c 62.56±2.84cd 196.06±7.09cd 167.18±7.10c
20-40 - - 99.65±3.77c 71.22±3.59d 222.49±8.60c 177.99±6.34c
40-60 - - 104.86±5.27c 76.35±2.99d 228.76±6.42c 193.87±2.32c
品种Variety (V) ** ** **
处理Treatment (T) ** ** **
V×T ** ** ns

Table 6

Effect of drought stress on proline content in roots of spring wheat varieties with different drought resistance (μg·g-1)"

Soil depth (cm)
分蘖期Tillering stage 拔节期Jointing stage 开花期Flowering stage
Xinchun 6 Xinchun 22 Xinchun 6 Xinchun 22 Xinchun 6 Xinchun 22
CK 0-20 45.22±1.65c 43.28±2.13b 104.98±1.06e 96.51±0.22c 188.77±3.32d 184.07±5.43c
20-40 46.70±2.32c 44.44±1.62b 110.19±3.37e 98.82±1.84c 194.66±5.03d 187.82±5.10b
40-60 - - 114.53±1.10d 102.43±1.82c 198.94±6.44d 190.09±5.87b
T1 0-20 73.24±1.91a 61.88±1.71a 161.98±2.31b 148.29±1.00b 253.04±2.98a 232.88±3.49a
20-40 76.20±1.46a 64.90±1.62a 168.65±1.73b 153.18±3.79b 258.01±12.53a 235.90±6.01a
40-60 - - 174.53±1.13a 153.85±1.29b 262.84±4.73a 236.84±1.50a
T2 0-20 65.48±1.01b 41.06±0.86b 133.31±0.78d 88.96±3.19d 231.09±9.32b 171.03±1.31d
20-40 68.50±1.54b 43.41±2.30b 135.69±2.66d 89.70±2.42d 235.69±8.49b 175.99±4.68c
40-60 - - 138.99±2.10c 92.58±3.28d 238.68±7.78b 178.87±5.14c
T3 0-20 - - 173.37±2.13a 157.17±1.08a 246.34±3.19a 226.36±1.89b
20-40 - - 176.62±3.63a 159.17±2.73a 252.69±5.95a 230.88±3.02a
40-60 - - 177.74±2.57a 162.44±1.38a 257.28±7.36a 235.68±5.31a
T4 0-20 - - 149.60±1.86c 90.50±1.15d 205.79±2.89c 169.18±2.47d
20-40 - - 151.19±4.34c 91.66±1.07d 212.51±2.66c 173.80±3.83c
40-60 - - 154.26±3.32b 95.72±2.19d 216.18±1.62c 176.35±5.20c
品种Variety (V) ** ** **
处理Treatment (T) ** ** **
V×T ** ** **

Table 7

Effect of drought stress on soluble sugar content in roots of spring wheat varieties with different drought resistance (mg·g-1)"

Soil depth (cm)
分蘖期Tillering stage 拔节期Jointing stage 开花期Flowering stage
Xinchun 6 Xinchun 22 Xinchun 6 Xinchun 22 Xinchun 6 Xinchun 22
CK 0-20 1.70±0.10c 1.62±0.05b 2.44±0.09c 2.38±0.09bc 3.54±0.14d 3.49±0.18b
20-40 1.82±0.02b 1.70±0.03b 2.52±0.16c 2.47±0.18bc 3.76±0.21d 3.54±0.15b
40-60 - - 2.67±0.10c 2.64±0.22bc 4.06±0.21d 3.66±0.12b
T1 0-20 2.10±0.08a 1.81±0.13a 2.82±0.06b 2.59±0.18b 4.55±0.20a 4.15±0.18a
20-40 2.25±0.15a 2.05±0.15a 2.95±0.12ab 2.66±0.14b 5.00±0.18a 4.29±0.22a
40-60 - - 3.11±0.10b 2.73±0.11b 5.30±0.14a 4.53±0.21a
T2 0-20 1.93±0.05b 1.48±0.02b 2.47±0.09c 1.96±0.16d 3.99±0.21bc 3.14±0.09c
20-40 2.07±0.16a 1.56±0.14b 2.66±0.08bc 2.04±0.14d 4.30±0.17c 3.33±0.20bc
40-60 - - 2.75±0.10c 2.10±0.15d 4.38±0.12c 3.46±0.15bc
T3 0-20 - - 2.98±0.10a 2.85±0.11a 4.19±0.20b 4.02±0.10a
20-40 - - 3.13±0.26a 2.99±0.13a 4.63±0.17b 4.27±0.23a
40-60 - - 3.39±0.17a 3.18±0.14a 4.74±0.11b 4.43±0.15a
T4 0-20 - - 2.67±0.06b 2.24±0.05c 3.70±0.16cd 3.05±0.06c
20-40 - - 2.73±0.14bc 2.30±0.09c 3.89±0.15d 3.14±0.14c
40-60 - - 2.81±0.09c 2.38±0.12c 4.20±0.10cd 3.25±0.16c
品种Variety (V) ** ** **
处理Treatment (T) ** ** **
V×T ** ** **

Fig. 4

Effect of drought stress on root activity of spring wheat varieties with different drought resistance"

Table 8

Effect of drought stress on yield of spring wheat varieties with different drought resistance"

产量Yield (g/plot)
CK T1 T2 T3 T4
2021 新春6号 Xinchun 6 33.47±0.64c 38.80±0.79a 35.86±0.95b 37.87±0.83a 33.85±1.35c
新春22号 Xinchun 22 32.09±1.02b 35.76±0.48a 31.07±0.96bc 34.39±0.93a 29.85±0.60c
2022 新春6号 Xinchun 6 32.61±0.52c 38.03±0.84a 34.81±1.27b 36.89±0.43a 33.01±1.13c
新春22号 Xinchun 22 30.73±1.53b 34.34±0.73a 29.40±0.87bc 32.99±0.56a 28.77±0.78c
F value 品种Variety (V): ** 处理Treatment (T): ** V×T: **

Table 9

The stepwise regression analysis on the root morphological and physiological indexes of different drought-resistant spring wheat varieties and different degrees of stress"

胁迫程度The degree of stress 品种Variety 最优线性回归方程The best multiple linear regression equation (Y’=)
Mild drought stress
新春6号Xinchun 6 13.755-1.048X5+0.428X7 (R2=0.823, F=20.921**)
新春22号Xinchun 22 42.261-1.867X1-1.195X6 +0.193X8 (R2=0.993, F=381.527**)
Moderate drought stress
新春6号Xinchun 6 17.483-0.614X1-0.397X4 (R2=0.881, F=33.161**)
新春22号Xinchun 22 51.975-2.022X1-1.445X6 (R2=0.866, F=29.172**)

Table 10

Compensation index changes of physiological indexes of spring wheat varieties with different drought resistance under drought stress"

年份Year 品种Variety 处理Treatment RA Pro SS SOD POD
2021 新春6号
Xinchun 6
T1 0.08 0.66 0.16 0.14 0.42
T2 0.02 0.33 0.04 0.05 0.09
T3 0.13 0.32 0.19 0.12 0.16
T4 0.07 0.09 0.04 0.05 0.03
Xinchun 22
T1 0.01 0.54 0.06 0.15 0.18
T2 -0.10 -0.08 -0.08 -0.07 -0.18
T3 0.08 0.17 0.19 0.11 0.02
T4 -0.05 -0.07 -0.11 -0.06 -0.14
2022 新春6号
Xinchun 6
T1 0.05 0.67 0.17 0.15 0.42
T2 0.03 0.37 0.03 0.05 0.09
T3 0.13 0.28 0.20 0.14 0.16
T4 0.03 0.09 0.04 0.06 0.03
Xinchun 22
T1 0.02 0.52 0.07 0.18 0.18
T2 -0.08 -0.09 -0.30 -0.11 -0.18
T3 0.02 0.30 0.19 0.12 0.02
T4 -0.08 -0.08 -0.12 -0.07 -0.14
丛建鸥, 李宁, 许映军, 顾卫, 乐章燕, 黄树青, 席宾, 雷飏. 干旱胁迫下冬小麦产量结构与生长、生理、光谱指标的关系. 中国生态农业学报, 2010, 18(1): 67-71.
CONG J O, LI N, XU Y J, GU W, LE Z Y, HUANG S Q, XI B, LEI Y. Relationship between indices of growth, physiology and reflectivity and yield of winter wheat under water stress. Chinese Journal of Eco-Agriculture, 2010, 18(1): 67-71. (in Chinese)

doi: 10.3724/SP.J.1011.2010.00067
王志强, 梁威威, 范雯雯, 林同保. 不同土壤肥力下冬小麦春季干旱的复水补偿效应. 中国农业科学, 2011, 44(8): 1628-1636. doi: 10.3864/j.issn.0578-1752.2011.08.011.
WANG Z Q, LIANG W W, FAN W W, LIN T B. Studies on compensation effects of rewatering on winter wheat suffering from droughts during spring under different soil fertility conditions. Scientia Agricultura Sinica, 2011, 44(8): 1628-1636. doi: 10.3864/j.issn.0578-1752.2011.08.011. (in Chinese)
祁嘉郁, 巴特尔·巴克. 基于水分亏缺指数的北疆春小麦不同生育阶段干旱时空特征. 干旱地区农业研究, 2021, 39(4): 171-178.
QI J Y, BAKE·B T E. Temporal and spatial characteristics of drought in different growth stages of spring wheat in northern Xinjiang based on crop water deficit index. Agricultural Research in the Arid Areas, 2021, 39(4): 171-178. (in Chinese)
FANG Y, DU Y L, WANG J, WU A J, QIAO S, XU B C, ZHANG S Q, SIDDIQUE K H M, CHEN Y L. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Frontiers in Plant Science, 2017, 8: 672.

doi: 10.3389/fpls.2017.00672 pmid: 28507555
XIE X B, QUINTANA M R, SANDHU N, SUBEDI S R, ZOU Y B, RUTKOSKI J E, HENRY A. Establishment method affects rice root plasticity in response to drought and its relationship with grain yield stability. Journal of Experimental Botany, 2021, 72(14): 5208-5220.

doi: 10.1093/jxb/erab214
PENG C R, XIE J S, QIU C F, QIAN Y F, GUAN X J, PAN X H. Study and application of three high and one ensuring cultivation mode of double cropping rice. Agricultural Science & Technology, 2012, 13(7): 1425-1430.
李彦彬, 朱亚南, 李道西, 高阳. 阶段干旱及复水对小麦生长发育、光合和产量的影响. 灌溉排水学报, 2018, 37(8): 76-82.
LI Y B, ZHU Y N, LI D X, GAO Y. Effects of alternating drought and watering on growth, photosynthesis and yield of wither wheat. Journal of Irrigation and Drainage, 2018, 37(8): 76-82. (in Chinese)
KHODAEIAMINJAN M, KNOCH D, NDELLA THIAW M R, MARCHETTI C F, KOŘÍNKOVÁ N, TECHER A, NGUYEN T D, CHU J T, BERTHOLOMEY V, DORIDANT I, GANTET P, GRANER A, NEUMANN K, BERGOUGNOUX V. Genome-wide association study in two-row spring barley landraces identifies QTL associated with plantlets root system architecture traits in well- watered and osmotic stress conditions. Frontiers in Plant Science, 2023, 14: 1125672.

doi: 10.3389/fpls.2023.1125672
FARSHAD N, SOODABEH J, MEHDI G, ALI E. Studying the physiological and yield responses of sunflower inbred lines to full and limited irrigation. Journal of Integrative Agriculture, 2018, 17(7): 1605-1611.

doi: 10.1016/S2095-3119(17)61823-9
ALAGUERO-CORDOVILLA A, GRAN-GÓMEZ F, TORMOS- MOLTÓ S, PÉREZ-PÉREZ J. Morphological characterization of root system architecture in diverse tomato genotypes during early growth. International Journal of Molecular Sciences, 2018, 19(12): 3888.

doi: 10.3390/ijms19123888
张志勇, 秦步坛, 熊淑萍, 王浩哲, 徐赛俊, 田文仲, 王小纯, 马新明. 小麦开花期灌水对土壤养分及根系分布的影响. 应用生态学报, 2022, 33(12): 3328-3336.

doi: 10.13287/j.1001-9332.202212.018
ZHANG Z Y, QIN B T, XIONG S P, WANG H Z, XU S J, TIAN W Z, WANG X C, MA X M. Effects of irrigation at flowering stage on soil nutrient and root distribution in wheat field. Chinese Journal of Applied Ecology, 2022, 33(12): 3328-3336. (in Chinese)
张翠梅, 师尚礼, 刘珍, 杨帆, 张振科. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89.

doi: 10.11686/cyxb2018314
ZHANG C M, SHI S L, LIU Z, YANG F, ZHANG Z K. Effects of drought stress on the root morphology and anatomical structure of alfalfa (Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89. (in Chinese)
张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51(5): 868-882. doi: 10.3864/j.issn.0578-1752.2018.05.006.
ZHANG C M, SHI S L, WU F. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties. Scientia Agricultura Sinica, 2018, 51(5): 868-882. doi: 10.3864/j.issn. 0578-1752.2018.05.006. (in Chinese)
魏清江, 冯芳芳, 马张正, 苏受婷, 宁少君, 辜青青. 干旱复水对柑橘幼苗叶片光合、叶绿素荧光和根系构型的影响. 应用生态学报, 2018, 29(8): 2485-2492.

doi: 10.13287/j.1001-9332.201808.028
WEI Q J, FENG F F, MA Z Z, SU S T, NING S J, GU Q Q. Effects of drought and rewatering on leaf photosynthesis, chlorophyll fluorescence, and root architecture of citrus seedlings. Chinese Journal of Applied Ecology, 2018, 29(8): 2485-2492. (in Chinese)
XIE H, BAI G, LU P, LI H, FEI M, XIAO B G, CHEN X J, TONG Z J, WANG Z Y, YANG D H. Exogenous citric acid enhances drought tolerance in tobacco (Nicotiana tabacum). Plant Biology, 2022, 24(2): 333-343.

doi: 10.1111/plb.v24.2
厉广辉, 万勇善, 刘风珍, 张昆. 不同抗旱性花生品种根系形态及生理特性. 作物学报, 2014, 40(3): 531-541.
LI G H, WAN Y S, LIU F Z, ZHANG K. Morphological and physiological traits of root in different drought resistant peanut cultivars. Acta Agronomica Sinica, 2014, 40(3): 531-541. (in Chinese)
王笑, 蔡剑, 周琴, 戴廷波, 姜东. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展. 中国农业科学, 2021, 54(11): 2287-2301. doi: 10.3864/j.issn.0578-1752.2021.11.004.
WANG X, CAI J, ZHOU Q, DAI T B, JIANG D. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: A review. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301. doi: 10.3864/j.issn.0578-1752.2021.11.004. (in Chinese)
MU Q, CAI H J, SUN S K, WEN S S, XU J T, DONG M Q, SADDIQUE Q. The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes. Agricultural Water Management, 2021, 243: 106475.

doi: 10.1016/j.agwat.2020.106475
崔亚坤. 分蘖和拔节期土壤干旱对小麦产量形成的影响及其生理机理[D]. 南京: 南京农业大学, 2015.
CUI Y K. Effect of water deficit during tillering and jointing stages on grain yield in winter wheat and its physiological mechanisms[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
KANG Y, HAN Y, TORRES-JEREZ I, WANG M, TANG Y, MONTEROS M, UDVARDI M. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. The Plant Journal, 2011, 68(5): 871-889.

doi: 10.1111/j.1365-313X.2011.04738.x pmid: 21838776
徐红军, 于芳祥, 韩新年, 穆培源, 邹波, 王亮. 春小麦新品种新春22号. 中国种业, 2006(9): 53.
XU H J, YU F X, HAN X N, MU P Y, ZOU B, WANG L. A new spring wheat variety Xinchun 22. China Seed Industry, 2006(9): 53. (in Chinese)
段理慧. 春小麦新春6号选育报告. 农业工程, 2013, 3(2): 81-82.
DUAN L H. Breeding report of new spring wheat Xinchun 6. Agricultural Engineering, 2013, 3(2): 81-82. (in Chinese)
李剑峰, 樊哲儒, 张跃强, 王重, 张宏芝, 赵奇, 赵永川. 新疆春小麦品种(系)耐旱性和水敏感性研究. 新疆农业科学, 2016, 53(12): 2232-2241.
LI J F, FAN Z R, ZHANG Y Q, WANG Z, ZHANG H Z, ZHAO Q, ZHAO Y C. Studies on drought tolerance and water sensitivity of spring wheat varieties (lines) in Xinjiang. Xinjiang Agricultural Sciences, 2016, 53(12): 2232-2241. (in Chinese)
马忠明, 陈娟, 刘婷婷, 吕晓东. 水氮耦合对固定道垄作栽培春小麦根长密度和产量的影响. 作物学报, 2017, 43(11): 1705-1714.
MA Z M, CHEN J, LIU T T, X D. Effects of water and nitrogen coupling on root length density and yield of spring wheat in permanent raised-bed cropping system. Acta Agronomica Sinica, 2017, 43(11): 1705-1714. (in Chinese)

doi: 10.3724/SP.J.1006.2017.01705
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S. Principles and Techniques of Plant Physiology and Biochemistry Experiments. Beijing: Higher Education Press, 2000. (in Chinese)
王丁, 杨雪, 韩鸿鹏, 张丽琴, 薛建辉. 干旱胁迫及复水对刺槐苗水分运输过程的影响. 南京林业大学学报(自然科学版), 2015, 39(1): 67-72.
WANG D, YANG X, HAN H P, ZHANG L Q, XUE J H. The impact of drought and rewatering on water transportation process of Robinia pseudoacacia L. seedlings. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(1): 67-72. (in Chinese)
丁红, 张智猛, 戴良香, 宋文武, 康涛, 慈敦伟. 不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应. 生态学报, 2013, 33(17): 5169-5176.
DING H, ZHANG Z M, DAI L X, SONG W W, KANG T, CI D W. Responses of root morphology of peanut varieties differing in drought tolerance to water-deficient stress. Acta Ecologica Sinica, 2013, 33(17): 5169-5176. (in Chinese)

doi: 10.5846/stxb
PLACIDO D F, SANDHU J, SATO S J, NERSESIAN N, QUACH T, CLEMENTE T E, STASWICK P E, WALIA H. The lateral root density gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 2020, 18(9): 1955-1968.

doi: 10.1111/pbi.13355 pmid: 32031318
WANG J T, DU G F, TIAN J S, JIANG C D, ZHANG Y L, ZHANG W F. Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity. Agricultural Water Management, 2021, 255: 106992.

doi: 10.1016/j.agwat.2021.106992
GEBRE M G, EARL H J. Soil water deficit and fertilizer placement effects on root biomass distribution, soil water extraction, water use, yield, and yield components of soybean [Glycine max (L.) Merr.] grown in 1-m rooting columns. Frontiers in Plant Science, 2021, 12: 581127.

doi: 10.3389/fpls.2021.581127
张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004.
ZHANG X Y, WANG Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, ZHANG X Y, CHEN L D, GAO Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Scientia Agricultura Sinica, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004. (in Chinese)
CHEN X, ZHU Y, DING Y, PAN R, SHEN W, YU X, XIONG F. The relationship between characteristics of root morphology and grain filling in wheat under drought stress. PeerJ, 2021, 9: e12015.

doi: 10.7717/peerj.12015
KOU X, HAN W, KANG J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers in Plant Science, 2022, 13: 1085409.

doi: 10.3389/fpls.2022.1085409
PIPER F I, FAJARDO A. Carbon stress causes earlier budbreak in shade-tolerant species and delays it in shade-intolerant species. American Journal of Botany, 2023, 110(3): 16129.
孙建, 颜小文, 乐美旺, 饶月亮, 颜廷献, 叶艳英, 周红英. 芝麻不同抗旱基因型对花期干旱胁迫的生理响应机理. 中国农业科学, 2019, 52(7): 1215-1226. doi: 10.3864/j.issn.0578-1752.2019.07.009.
SUN J, YAN X W, LE M W, RAO Y L, YAN T X, YE Y Y, ZHOU H Y. Physiological response mechanism of drought stress in different drought-tolerance genotypes of sesame during flowering period. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226. doi: 10.3864/j.issn.0578-1752.2019.07.009. (in Chinese)
莫言玲, 郑俊鶱, 杨瑞平, 刘长命, 顾秀荣, 张显, 魏春华. 不同西瓜基因型对干旱胁迫的生理响应及其抗旱性评价. 应用生态学报, 2016, 27(6): 1942-1952.

doi: 10.13287/j.1001-9332.201606.034
MO Y L, ZHENG J X, YANG R P, LIU C M, GU X R, ZHANG X, WEI C H. Physiological responses and tolerance to drought stress of different watermelon genotypes. Chinese Journal of Applied Ecology, 2016, 27(6): 1942-1952. (in Chinese)
张海燕, 解备涛, 汪宝卿, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和抗氧化能力的影响. 中国农业科学, 2020, 53(6): 1126-1139. doi: 10.3864/j.issn.0578-1752.2020.06.005.
ZHANG H Y, XIE B T, WANG B Q, DONG S X, DUAN W X, ZHANG L M. Effects of drought treatments at different growth stages on growth and the activity of antioxidant enzymes in sweetpotato. Scientia Agricultura Sinica, 2020, 53(6): 1126-1139. doi: 10.3864/j.issn.0578-1752.2020.06.005. (in Chinese)
ZHOU Q, LI Y, WANG X, YAN C, MA C, LIU J, DONG S. Effects of different drought degrees on physiological characteristics and endogenous hormones of soybean. Plants, 2022, 11(17): 2282.

doi: 10.3390/plants11172282
张睿, 封晓辉, 吴玉洁, 孙琦, 李静, 李劲松, 刘小京. 长穗偃麦草(Thinopyrum ponticum)幼苗对盐旱胁迫的生理响应. 中国生态农业学报, 2022, 30(11): 1795-1806.
ZHANG R, FENG X H, WU Y J, SUN Q, LI J, LI J S, LIU X J. Interactive effects of drought and salt stresses on the growth and physiological characteristics of Thinopyrum ponticum. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1795-1806. (in Chinese)
WANG J T, DU G F, TIAN J S, ZHANG Y L, JIANG C D, ZHANG W F. Effect of irrigation methods on root growth, root-shoot ratio and yield components of cotton by regulating the growth redundancy of root and shoot. Agricultural Water Management, 2020, 234: 106120.

doi: 10.1016/j.agwat.2020.106120
裴艳武, 黄来明, 贾小旭, 邵明安, 张应龙. 干旱胁迫对黄土高原不同质地土壤长柄扁桃和沙柳幼苗生理生态特征的影响. 水土保持学报, 2018, 32(5): 234-239.
PEI Y W, HUANG L M, JIA X X, SHAO M A, ZHANG Y L. Effects of drought stress on the physiological and ecological characteristics of Amygdalus pedunculata pall and Salix psammophila seedlings in soils with different texture on the loess plateau. Journal of Soil and Water Conservation, 2018, 32(5): 234-239. (in Chinese)
[1] CHEN GuiPing, CHENG Hui, FAN Hong, FAN ZhiLong, HU FaLong, YIN Wen. Study on Adaptability of Spring Wheat Yield to Water and Nitrogen Reduction Under Wide-Width Uniform Sowing and Conventional Strip Sowing in Oasis Irrigated Regions [J]. Scientia Agricultura Sinica, 2023, 56(13): 2461-2473.
[2] CUI WeiNan, NIE ZhiGang, LI Guang, WANG Jun. Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm [J]. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287.
[3] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[4] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[5] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[6] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[7] LI Gang, BAI Yang, JIA ZiYing, MA ZhengYang, ZHANG XiangChi, LI ChunYan, LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[8] BiJiao MA, ZhiWen GOU, Wen YIN, AiZhong YU, ZhiLong FAN, FaLong HU, Cai ZHAO, Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[9] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[10] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[11] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[12] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[13] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[14] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[15] JIAN TianCai,WU HongLiang,KANG JianHong,LI Xin,LIU GenHong,CHEN Zhuo,GAO Di. Fluorescence Characteristics Study of Nitrogen in Alleviating Premature Senescence of Spring Wheat at High Temperature After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(15): 3355-3368.
Full text



No Suggested Reading articles found!