Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2461-2473.doi: 10.3864/j.issn.0578-1752.2023.13.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Study on Adaptability of Spring Wheat Yield to Water and Nitrogen Reduction Under Wide-Width Uniform Sowing and Conventional Strip Sowing in Oasis Irrigated Regions

CHEN GuiPing(), CHENG Hui, FAN Hong, FAN ZhiLong, HU FaLong, YIN Wen()   

  1. College of Agronomy, Gansu Agricultural University/State Key Laboratory of Arid Land Crop Science, Lanzhou 730070
  • Received:2022-10-31 Accepted:2023-01-08 Online:2023-07-01 Published:2023-07-06

Abstract:

【Objective】Water shortage and high fertilizer input have become the dominant factors restraining spring wheat production in arid oasis irrigated areas. It is urgent to study the technology of the effects of water and nitrogen reduction in different planting modes on dry matter accumulation and yield formation of spring wheat, so as to provide a theoretical and practical basis for efficient production of spring wheat with water and fertilizer saving. 【Method】A field experiment with split-split plot was conducted at arid oasis irrigated areas from 2020 to 2021. Two planting modes, including wide-width uniform sowing (W) and conventional strip sowing (C), were designed, with two irrigation levels on local conventional irrigation (I2, 2 400 m3·hm-2) and local conventional irrigation reduced by 20% (I1, 1 920 m3·hm-2), and three levels of nitrogen fertilizer at a local conventional nitrogen (N3, 225 kg·hm-2), local conventional nitrogen reduced by 20% (N2, 180 kg·hm-2), and local conventional nitrogen reduced by 40% (N1, 135 kg·hm-2). The adaptability of spring wheat yield to water and nitrogen reduction under wide-width uniform sowing and conventional strip sowing was studied. 【Result】Compared wtih conventional strip sowing, the wide-width uniform sowing increased the maximum dry matter growth rate (Vmax), average dry matter growth rate (Vmean), and dry matter accumulation rate after booting stage of spring wheat, and delayed the time of emergence of the highest dry matter growth rate (Tm). Compared with conventional strip sowing with conventional irrigation and nitrogen levels, the Vmax and Vmean values of spring wheat under the wide-width uniform sowing were increased by 13.0%-23.4% and 11.0%-16.9%, respectively, and Tm was delayed by 3.3-3.7 days with the treatment on the reduction of 20% for water and nitrogen, so the growth and development dynamics of spring wheat could be effectively regulated by wide-width uniform sowing. The wide-width uniform sowing had greater grain and biomass yields by 11.0%-17.3% and 4.3%-9.6%, respectively, and the greater harvest index by 6.3%-6.9%, than conventional strip sowing. Furthermore, the grain and biomass yields were 16.0%-22.5% and 5.6%-13.2%, and harvest index was 8.2%-10.9% greater under wide-width uniform sowing with the reduction of 20% in water and nitrogen than those under the conventional strip sowing with conventional irrigation and nitrogen levels. There was no significant difference in grain and biomass yields, and harvest index of spring wheat was found between the reduction 20% of water and nitrogen, and the reduction of 20% irrigation and conventional nitrogen application under wide-width uniform sowing. The increase of spring wheat yield was mainly attributed to the synergistic of grains per ear and 1000-grain weight, which were increased by 3.9%-7.1% and 18.4%-22.7%, respectively, compared with conventional strip sowing with conventional irrigation and nitrogen application, and the 1000-grain weight increased by a greater extent. Path analysis showed that the reduction 20% of water and nitrogen in wide-width uniform sowing enhanced grain yield mainly through increasing harvest index and 1000-grain weight. 【Conclusion】 The wide-width uniform sowing could realize the simultaneous reduction 20% of water and nitrogen in spring wheat production, which was a feasible measure to save water and nitrogen for stable and high yield of spring wheat in oasis irrigation areas.

Key words: spring wheat, water and nitrogen reduction, wide-width uniform sowing, aboveground dry matter, yield components

Table 1

Treatment design and code in field experiment"

种植方式
Sowing way
灌水水平
Irrigation level
生育时期灌水制度
Irrigation amount at growth stage (m3·hm-2)
施氮水平
Nitrogen level (kg·hm-2)
处理代码Treatment code
苗期Seedling 孕穗期Booting 灌浆期Filling 总量
Total
传统条播Conventional drilling sowing (C) 传统灌水水平
Conventional irrigation (I2)
750 900 750 2400 传统施氮 Conventional nitrogen amount (N3, 225) CI2N3
传统施氮减量20% Reduction 20% in N3 (N2, 180) CI2N2
传统施氮减量40% Reduction 40% in N3 (N1, 135) CI2N1
传统灌水减量20%
Reduction 20% in I2 (I1)
600 720 600 1920 传统施氮 Conventional nitrogen amount (N3, 225) CI1N3
传统施氮减量20% Reduction 20% in N3(N2, 180) CI1N2
传统施氮减量40% Reduction 40% in N3(N1, 135) CI1N1
宽幅匀播
Wide uniform sowing (W)
传统灌水水平
Conventional irrigation (I2)
750 900 750 2400 传统施氮 Conventional nitrogen amount(N3, 225) WI2N3
传统施氮减量20% Reduction 20% in N3(N2, 180) WI2N2
传统施氮减量40% Reduction 40% in N3(N1, 135) WI2N1
传统灌水减量20%
Reduction 20% in I2 (I1)
600 720 600 1920 传统施氮 Conventional nitrogen amount(N3, 225) WI1N3
传统施氮减量20% Reduction 20% in N3(N2, 180) WI1N2
传统施氮减量40% Reduction 40% in N3(N1, 135) WI1N1

Fig. 1

Aboveground dry matter accumulation dynamics of spring wheat under different planting methods and water and nitrogen levels The error bars at the top of the graph indicates the LSD value. The same as below"

Fig. 2

Dynamics of aboveground dry matter accumulation rate of spring wheat under different planting modes and water and nitrogen levels"

Table 2

Logistic equation analysis for aboveground dry matter accumulation in spring wheat under different planting modes and water and nitrogen levels"

年份
Year
种植方式
Planting mode
灌水水平
Irrigation level
施氮水平
Nitrogen level
回归方程
Regression equation
R2 最大增长速率
出现天数
The days of Vmax (Tm)(d)
最大增长速率
Maximum increase rate (Vmax)
(kg·hm-2·d-1)
平均增长速率
Mean increase rate (Vmean)
(kg·hm-2·d-1)
2016 C I1 N1 Y=15127/(1+e5.892-0.087×t) 0.995 67.72cd 329.02c 155.07d
N2 Y=15921/(1+e5.819-0.087×t) 0.994 66.89cd 346.27ab 164.79c
N3 Y=15723/(1+e5.344-0.082×t) 0.996 65.17d 322.32cd 160.77cd
I2 N1 Y=15716/(1+e5.513-0.081×t) 0.997 68.06c 318.24cde 158.58cd
N2 Y=15873/(1+e5.353-0.079×t) 0.996 67.76cd 313.50de 161.01cd
N3 Y=15874/(1+e4.863-0.075×t) 0.998 64.84d 297.65f 158.34cd
W I1 N1 Y=16400/(1+e5.642-0.082×t) 0.996 68.80c 336.21bc 164.68c
N2 Y=17794/(1+e5.382-0.079×t) 0.997 68.13c 351.42ab 185.13a
N3 Y=17298/(1+e5.493-0.080×t) 0.997 68.66c 345.96abc 183.22ab
I2 N1 Y=16069/(1+e5.816-0.089×t) 0.996 65.35d 357.53a 172.91b
N2 Y=17906/(1+e5.621-0.076×t) 0.999 73.96b 340.22bc 182.92ab
N3 Y=17706/(1+e4.840-0.072×t) 0.995 81.11a 318.70de 174.50b
2017 C I1 N1 Y=15594/(1+e5.319-0.085×t) 0.995 62.58c 331.37e 157.62e
N2 Y=16331/(1+e5.267-0.082×t) 0.996 64.23bc 334.79de 181.36c
N3 Y=17245/(1+e5.004-0.077×t) 0.999 64.99bc 328.12e 168.78d
I2 N1 Y=16668/(1+e5.186-0.081×t) 0.997 64.02bc 337.52de 161.15de
N2 Y=16540/(1+e5.584-0.087×t) 0.997 64.18bc 359.75bc 180.90c
N3 Y=16446/(1+e5.379-0.085×t) 0.996 63.28c 349.48cd 174.07cd
W I1 N1 Y=16373/(1+e5.993-0.089×t) 0.996 67.34ab 364.30bc 164.96de
N2 Y=17355/(1+e6.099-0.091×t) 0.995 67.02ab 394.82a 194.30b
N3 Y=17185/(1+e5.777-0.086×t) 0.995 67.17ab 369.48b 193.35b
I2 N1 Y=16713/(1+e5.405-0.078×t) 0.998 69.29a 325.90e 167.38d
N2 Y=17126/(1+e5.640-0.081×t) 0.998 69.63a 346.81cd 207.75a
N3 Y=17002/(1+e5.578-0.084×t) 0.994 66.40b 357.04bc 198.89ab
2018 C I1 N1 Y=15332/(1+e5.539-0.089×t) 0.995 62.24e 341.13d 149.94e
N2 Y=16241/(1+e6.247-0.084×t) 0.995 74.37ab 341.07d 170.33bc
N3 Y=16731/(1+e5.817-0.082×t) 0.995 70.94bc 342.98d 171.86bc
I2 N1 Y=16135/(1+e5.621-0.089×t) 0.994 63.16de 359.00c 153.25de
N2 Y=16291/(1+e5.732-0.084×t) 0.995 68.24c 342.12d 180.95ab
N3 Y=16541/(1+e5.453-0.086×t) 0.995 63.41de 355.64cd 172.85bc
W I1 N1 Y=15012/(1+e6.745-0.097×t) 0.996 69.54c 364.05c 157.96de
N2 Y=17216/(1+e6.813-0.102×t) 0.994 66.79cd 439.01a 191.84a
N3 Y=17353/(1+e6.281-0.092×t) 0.996 68.27c 399.12b 178.09b
I2 N1 Y=16428/(1+e6.752-0.100×t) 0.994 67.52d 410.71b 164.39d
N2 Y=16932/(1+e6.591-0.085×t) 0.997 77.54a 359.81c 191.44a
N3 Y=17087/(1+e6.084-0.085×t) 0.994 71.58b 363.10c 184.06ab
年份
Year
种植方式
Planting mode
灌水水平
Irrigation level
施氮水平
Nitrogen level
回归方程
Regression equation
R2 最大增长速率
出现天数
The days of Vmax (Tm)(d)
最大增长速率
Maximum increase rate (Vmax)
(kg·hm-2·d-1)
平均增长速率
Mean increase rate (Vmean)
(kg·hm-2·d-1)
显著性值P
年份 Year * * *
种植方式 Planting mode (P) ** ** **
灌水水平 Irrigation level (I) NS NS NS
施氮量 Nitrogen level (N) * * **
种植方式×灌水水平 P×I * * *
种植方式×施氮量 P×N * * **
灌水水平×施氮量 I×N NS NS *
种植方式×灌水水平×施氮量 P×I×N NS NS NS

Table 4

Relationship between spring wheat grain yield and yield components under different planting methods and water and nitrogen combination patterns"

指标
Index
与籽粒产量的
相关系数
Correlation coefficient with grain yield
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient 决定系数Determination coefficient
有效穗数
The productive ear numbers
穗粒数Grains per ear 千粒重Thousand-grain weight 收获指数Harvest index
有效穗数The productive ear numbers -0.151 0.095 -0.047 -0.179 -0.021 -0.038
穗粒数Grains per ear 0.926** 0.167* -0.026 0.567 0.218 0.282
千粒重Thousand-grain weight 0.970** 0.619** -0.027 0.153 0.226 0.818**
收获指数Harvest index 0.949** 0.249* -0.008 0.147 0.562 0.410*
[1]
宋明丹, 李正鹏, 冯浩. 不同水氮水平冬春春小麦干物质累积特征及产量效应. 农业工程学报, 2016, 32(2): 119-126.
SONG M D, LI Z P, FENG H. Effects of irrigation and nitrogen regimes on dry matter dynamic accumulation and yield of winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 119-126. (in Chinese)
[2]
LI H, XUE J F, GAO Z Q, XUE N W, YANG Z P. Response of yield increase for dryland winter wheat to tillage practice during summer fallow and sowing method in the Loess Plateau of China. Journal of Integrative Agriculture, 2018, 17(4): 817-825.

doi: 10.1016/S2095-3119(17)61806-9
[3]
郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46(3): 423-431.

doi: 10.3724/SP.J.1006.2020.91046
ZHENG F N, CHU J P, ZHANG X, FEI L W, DAI X L, HE M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agronomica Sinica, 2020, 46(3): 423-431. (in Chinese)
[4]
李朝苏, 汤永禄, 吴春, 黄钢. 播种方式对稻茬春小麦生长发育及产量建成的影响. 农业工程学报, 2012, 28(18): 36-43.
LI C S, TANG Y L, WU C, HUANG G. Effect of sowing patterns on growth, development, and yield formation of wheat in rice stubble land. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(18): 36-43. (in Chinese)
[5]
赵庆玲, 孙敏, 林文, 任爱霞, 王志鑫, 张蓉蓉, 李蕾, 高志强. 播种方式对旱地小麦土壤水分变化和籽粒蛋白质形成的影响. 应用生态学报, 2021, 32(11): 3977-3987.

doi: 10.13287/j.1001-9332.202111.030
ZHAO Q L, SUN M, LIN W, REN A X, WANG Z X, ZHANG R R, LI L, GAO Z Q. Effects of sowing modes on soil water dynamics and grain protein formation in dryland wheat. Chinese Journal of Applied Ecology, 2021, 32(11): 3977-3987. (in Chinese)
[6]
刘小丽, 王凯, 杨珍平, 薛建福, 杜天庆, 宗毓铮, 郝兴宇, 孙敏, 高志强. 播期与播种方式的不同配套对一年两作区旱地冬小麦农艺性状及产量的影响. 华北农学报, 2018, 33(2): 232-238.

doi: 10.7668/hbnxb.2018.02.032
LIU X L, WANG K, YANG Z P, XUE J F, DU T Q, ZONG Y Z, HAO X Y, SUN M, GAO Z Q. Effect of different sowing dates and sowing methods on agronomic characters and yield of dry land winter wheat in two-cropping areas. Acta Agriculturae Boreali-Sinica, 2018, 33(2): 232-238. (in Chinese)

doi: 10.7668/hbnxb.2018.02.032
[7]
初金鹏, 朱文美, 尹立俊, 石玉华, 邓淑珍, 张良, 贺明荣, 代兴龙. 宽幅播种对冬小麦‘泰农18’产量和氮素利用率的影响. 应用生态学报, 2018, 29(8): 2517-2524.

doi: 10.13287/j.1001-9332.201808.027
CHU J P, ZHU W M, YIN L J, SHI Y H, DENG S Z, ZHANG L, HE M R, DAI X L. Effects of wide-range planting on the yield and nitrogen use efficiency of winter wheat cultivar Tainong 18. Chinese Journal of Applied Ecology, 2018, 29(8): 2517-2524. (in Chinese)
[8]
李世莹, 冯伟, 王永华, 王晨阳, 郭天财. 宽幅播种带间距对冬小麦冠层特征及产量的影响. 植物生态学报, 2013, 37(8): 758-767.

doi: 10.3724/SP.J.1258.2013.00079
LI S Y, FENG W, WANG Y H, WANG C Y, GUO T C. Effects of spacing interval of wide bed planting on canopy characteristics and yield in winter wheat. Chinese Journal of Plant Ecology, 2013, 37(8): 758-767. (in Chinese)

doi: 10.3724/SP.J.1258.2013.00079
[9]
LIU W X, WANG J R, WANG C Y, MA G, WEI Q R, LU H F, XIE Y X, MA D Y, KANG G Z. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in North China plain. Frontiers in Plant Science, 2018, 9: 1798.

doi: 10.3389/fpls.2018.01798 pmid: 30568670
[10]
TANG Y H, CUI Z Y, PENG D L, YIN Y P, LI Y, WANG Z L. Ammonia emissions from soil water of wheat field as affected by different nitrogen and irrigation strategies. Desalination and Water Treatment, 2018, 125: 258-264.

doi: 10.5004/dwt
[11]
SHEN Y F, LI S Q, SHAO M G. Effects of spatial coupling of water and fertilizer applications on root growth characteristics and water use of winter wheat. Journal of Plant Nutrition. 2013, 36(4): 515-528.

doi: 10.1080/01904167.2012.717160
[12]
YIN W, YU A Z, GUO Y, FAN H, HU F L, FAN Z L, ZHAO C, CHAI Q A, COULTER J A. Growth trajectories of wheat-maize intercropping with straw and plastic management in arid conditions. Agronomy Journal, 2020, 112(4): 2777-2790.

doi: 10.1002/agj2.v112.4
[13]
殷文, 陈桂平, 郭瑶, 樊志龙, 胡发龙, 范虹, 于爱忠, 赵财, 柴强. 春小麦秸秆还田对后茬玉米干物质积累及产量形成的调控效应. 中国生态农业学报(中英文), 2020, 28(8): 1210-1218.
YIN W, CHEN G P, GUO Y, FAN Z L, HU F L, FAN H, YU A Z, ZHAO C, CHAI Q. Responses of dry matter accumulation and yield in a following maize crop to spring wheat straw returning. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1210-1218. (in Chinese)
[14]
吕丽华, 董志强, 张经廷, 张丽华, 梁双波, 贾秀领, 姚海坡. 水氮对冬小麦-夏玉米产量及氮利用效应研究. 中国农业科学, 2014, 47(19): 3839-3849.

doi: 10.3864/j.issn.0578-1752.2014.19.012
L H, DONG Z Q, ZHANG J T, ZHANG L H, LIANG S B, JIA X L, YAO H P. Effect of water and nitrogen on yield and nitrogen utilization of winter wheat and summer maize. Scientia Agricultura Sinica, 2014, 47(19): 3839-3849. (in Chinese)
[15]
秦乐, 王红光, 李东晓, 崔帅, 李瑞奇, 李雁鸣. 不同密度下超窄行距对冬小麦群体质量和产量的影响. 麦类作物学报, 2016, 36(5): 659-667.
QIN L, WANG H G, LI D X, CUI S, LI R Q, LI Y M. Effect of super-narrow row space on population quality and grain yield of winter wheat in different planting densities. Journal of Triticeae Crops, 2016, 36(5): 659-667. (in Chinese)
[16]
冯伟, 李世莹, 王永华, 康国章, 段剑钊, 郭天财. 宽幅播种下带间距对冬小麦衰老进程及产量的影响. 生态学报, 2015, 35(8): 2686-2694.
FENG W, LI S Y, WANG Y H, KANG G Z, DUAN J Z, GUO T C. Effects of spacing intervals on the ageing process and grain yield in winter wheat under wide bed planting methods. Acta Ecologica Sinica, 2015, 35(8): 2686-2694. (in Chinese)
[17]
温健, 郭振斌, 张常文, 李城德, 刘广才, 王国宇. 小麦宽幅匀播技术氮、磷、钾施肥效果及推荐施肥量研究. 中国农学通报, 2016, 32(18): 17-22.

doi: 10.11924/j.issn.1000-6850.casb15110156
WEN J, GUO Z B, ZHANG C W, LI C D, LIU G C, WANG G Y. N, P, K fertilizer in wide uniform planting of wheat. Chinese Agricultural Science Bulletin, 2016, 32(18): 17-22. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb15110156
[18]
马东辉, 王月福, 周华, 孙虎. 氮肥和花后土壤含水量对小麦干物质积累、运转及产量的影响. 麦类作物学报, 2007, 27(5): 847-851.
MA D H, WANG Y F, ZHOU H, SUN H. Effect of postanthesis soil water status and nitrogen on grain yield and canopy biomass accumulation and transportation of winter wheat. Journal of Triticeae Crops, 2007, 27(5): 847-851. (in Chinese)
[19]
GUO Y, YIN W, HU F L, FAN Z L, FAN H, ZHAO C, YU A Z, CHAI Q, COULTER J A. Reduced irrigation and nitrogen coupled with no-tillage and plastic mulching increase wheat yield in maize-wheat rotation in an arid region. Field Crops Research, 2019, 243: 107615.

doi: 10.1016/j.fcr.2019.107615
[20]
郭瑶, 陈桂平, 王巧梅, 殷文, 樊志龙, 胡发龙, 范虹, 赵财, 于爱忠, 柴强. 玉米免耕留膜可减少后茬轮作春小麦水氮用量. 植物营养与肥料学报, 2019, 25(10): 1679-1689.
GUO Y, CHEN G P, WANG Q M, YIN W, FAN Z L, HU F L, FAN H, ZHAO C, YU A Z, CHAI Q. Reuse of plastic film by spring wheat after no-tillage maize can reduce water and nitrogen input. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1679-1689. (in Chinese)
[21]
殷文, 柴强, 于爱忠, 赵财, 樊志龙, 胡发龙, 范虹, 郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响. 中国农业科学, 2020, 53(23): 4764-4776.

doi: 10.3864/j.issn.0578-1752.2020.23.004
YIN W, CHAI Q, YU A Z, ZHAO C, FAN Z L, HU F L, FAN H, GUO Y. Effects of intercropped wheat straw retention on canopy temperature and photosynthetic physiological characteristics of intercropped maize mulched with plastic during grain filling stage. Scientia Agricultura Sinica, 2020, 53(23): 4764-4776. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.23.004
[22]
FASAKHODI A A, NOURI S H, AMINI M. Water resources sustainability and optimal cropping pattern in farming systems; A multi-objective fractional goal programming approach. Water Resources Management, 2010, 24(15): 4639-4657.

doi: 10.1007/s11269-010-9683-z
[23]
马静丽, 方保停, 乔亚伟, 李春喜, 王志敏, 蒿宝珍, 姜丽娜. 减氮对豫北限水灌溉冬小麦冠层结构和光合特性的影响. 麦类作物学报, 2019, 39(3): 346-355.
MA J L, FANG B T, QIAO Y W, LI C X, WANG Z M, HAO B Z, JIANG L N. Effect of lower nitrogen application on canopy structure and photosynthesis of winter wheat grown under limited irrigation in northern Henan Province. Journal of Triticeae Crops, 2019, 39(3): 346-355. (in Chinese)
[24]
赵明, 李建国, 张宾, 董志强, 王美云. 论作物高产挖潜的补偿机制. 作物学报, 2006, 32(10): 1566-1573.
ZHAO M, LI J G, ZHANG B, DONG Z Q, WANG M Y. The compensatory mechanism in exploring crop production potential. Acta Agronomica Sinica, 2006, 32(10): 1566-1573. (in Chinese)
[25]
赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响. 作物学报, 2018, 44(11): 1694-1703.

doi: 10.3724/SP.J.1006.2018.01694
ZHAO C, WANG Q M, GUO Y, YIN W, FAN Z L, HU F L, YU A Z, CHAI Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under No-tillage with previous plastic mulched maize. Acta Agronomica Sinica, 2018, 44(11): 1694-1703. (in Chinese)

doi: 10.3724/SP.J.1006.2018.01694
[1] CAO YongGang, XU LongLong, CHAI Qiang, HU FaLong, YIN Wen, FAN ZhiLong, WANG QiMing, ZHAO Cai. Water Use Characteristics of Wheat Rotated After No Tillage Plastic Film Mulching Maize with Reduced Water and Nitrogen [J]. Scientia Agricultura Sinica, 2023, 56(14): 2660-2672.
[2] CUI WeiNan, NIE ZhiGang, LI Guang, WANG Jun. Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm [J]. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287.
[3] LÜ LiHua, HAN JiangWei, ZHANG JingTing, DONG ZhiQiang, MENG Jian, JIA XiuLing. Analysis of Common Characteristics of Widely Adaptation Wheat Cultivars [J]. Scientia Agricultura Sinica, 2023, 56(11): 2064-2077.
[4] XIONG ShuPing, GAO Ming, ZHANG ZhiYong, QIN BuTan, XU SaiJun, FU XinLu, WANG XiaoChun, MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[5] BiJiao MA, ZhiWen GOU, Wen YIN, AiZhong YU, ZhiLong FAN, FaLong HU, Cai ZHAO, Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[6] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[7] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[8] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[9] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[10] JIAN TianCai,WU HongLiang,KANG JianHong,LI Xin,LIU GenHong,CHEN Zhuo,GAO Di. Fluorescence Characteristics Study of Nitrogen in Alleviating Premature Senescence of Spring Wheat at High Temperature After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(15): 3355-3368.
[11] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[12] WANG XiNa,YU JinMing,TAN JunLi,ZHANG JiaQun,WEI ZhaoQing,WANG ZhaoHui. Requirement of Nitrogen, Phosphorus and Potassium and Potential of Reducing Fertilizer Application of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2020, 53(23): 4891-4903.
[13] JIA LiGuo,SHI XiaoHua,SUYALA Qiqige,QIN YongLin,YU Jing,CHEN Yang,FAN MingShou. Potential Analysis of Organic Fertilizer Substitution for Chemical Fertilizer in Spring Wheat Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4855-4865.
[14] XIANG JiShan,LIU PengPeng,SANG Wei,CUI FengJuan,HAN XinNian,NIE YingBin,KONG DeZhen,ZOU Bo,XU HongJun,MU PeiYuan. Allelic Variations of Pins Genes in Xinjiang Spring Wheat Varieties and Their Influence on Processing Quality of Xinjiang Hand-Stretched Noodles [J]. Scientia Agricultura Sinica, 2020, 53(19): 3857-3866.
[15] JIAO YaPeng,QI Peng,WANG XiaoJiao,WU Jun,YAO YiMing,CAI LiQun,ZHANG RenZhi. Effects of Different Nitrogen Application Rates on Soil Organic Nitrogen Components and Enzyme Activities in Farmland [J]. Scientia Agricultura Sinica, 2020, 53(12): 2423-2434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!