Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (8): 1606-1616.doi: 10.3864/j.issn.0578-1752.2020.08.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Soil Nutrient Status of Oilseed Rape Cultivated Soil in Typical Winter Oilseed Rape Production Regions in China

REN Tao,GUO LiXuan,ZHANG LiMei,YANG XuKun,LIAO ShiPeng,ZHANG YangYang,LI XiaoKun,CONG RiHuan,LU JianWei()   

  1. Microelement Research Center, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070
  • Received:2019-06-26 Accepted:2019-08-21 Online:2020-04-16 Published:2020-04-29
  • Contact: JianWei LU E-mail:lunm@mail.hzau.edu.cn

Abstract:

【Objective】 The objective of the study was to investigate the current soil nutrient status of oilseed rape-cultivated soil in typical winter oilseed rape production region in China, especially for soil micronutrients status. It would provide critical reference for optimizing fertilizer strategy of winter oilseed rape. 【Method】 430 soil samples distributed in the typical winter oilseed rape production regions in 14 provinces around the Yangtze River Basin were sampled from April to May, 2018. Soil chemical properties, including soil organic matter, total nitrogen (N), soil available phosphorus (P) and potassium (K), pH, soil available calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and boron (B), were determined. Referring to the second national soil survey and the classification index of soil available P, K and B in rapeseed-cultivated soil, soil nutrient status of rapeseed-cultivated soil was clarified, and the soil nutrient characteristics under different regions (upper, middle and lower Yangtze River Basin), planting systems (paddy-oilseed rape and upland-oilseed rape rotation) and seed yield levels (<2 000 kg·hm -2, 2 000-3 000 kg·hm -2 and >3 000 kg·hm -2) were also analyzed. 【Result】 Results showed that the average soil organic matter, total N, soil available P and K, pH, soil available Ca, Mg, S, Fe, Mn, Cu, Zn and B content in the typical winter oilseed rape production region around the Yangtze River Basin were 25.9 g·kg -1, 1.47 g·kg -1, 27.5 mg·kg -1, 131.1 mg·kg -1, 6.04, 2 436.1 mg·kg -1, 225.7 mg·kg -1, 22.6 mg·kg -1, 212.3 mg·kg -1, 89.7 mg·kg -1, 3.84 mg·kg -1, 4.03 mg·kg -1and 0.45 mg·kg -1, respectively. More than two-thirds of soil organic matter and total N content belonged to the medium class or above. For soil available P content, the proportion of the rich, medium and deficient class accounted for one-third, respectively. While 63.8% of soil available K content was deficient. For soil available Fe, Mn and Cu, all soils belonged to the medium class or above. Only about 8.4% and 12.2% of soils were soil deficient Ca and Zn soil, respectively. The proportions of deficient Mg, S and B soils accounted for 24.2%, 36.0% and 83.5%, respectively. Soil nutrient contents in the upper, middle and lower Yangtze River Basin were different, however, the distributions of soil nutrient status in different regions were similar. There were significant differences on soil nutrient content between paddy and upland soils. The rapeseed-planting soils in paddy-oilseed rape rotation showed significant higher soil organic matter, total N, soil available S, Fe and Zn content. Soil nutrient characteristics under different seed yield levels were slight different. Soils with high rapeseed yield (>3 000 kg·hm -2) revealed higher soil available K, Ca, Mg and B content compared with the soils with low rapeseed yield (<2 000 kg·hm -2). 【Conclusion】 Soil nutrients content in the typical winter oilseed rape planting area around the Yangtze River Basin was increasing, nevertheless, the percentages of deficient K and B soils were still huge, and soil available Mg and S were gradually becoming the potential limiting factors of winter oilseed rape. Therefore, in the current production of winter oilseed rape in the Yangtze River Basin, we should pay more attention to the rational application of chemical fertilizers, applying N fertilizer continuously and reasonably, increasing K and B fertilize application, reducing P fertilization rate in western Yunnan, northern Guangxi and southern Hunan depending on soil available P content, and focusing on the application of S and Mg fertilizer in northern Guangxi, southern Hunan, and northern Jiangxi.

Key words: winter oilseed rape, soil nutrients, soil nutrients status, soil nutrients classification, soil medium-micro nutrients

Table 1

Soil nutrient grading index"

养分
Nutrient
1级 Grade 1
很丰富
Very rich
2级 Grade 2
丰富
Rich
3级 Grade 3
中等
Medium
4级 Grade 4
潜在缺乏
Potential deficiency
5级 Grade 5
缺乏
Deficiency
6级 Grade 6
极缺乏
Extreme deficiency
有机质 Organic matter >40 30-40 20-30 10-20 6-10 <6
全氮Total N >2 1.5-2.0 1.0-1.5 0.75-1.0 0.5-0.75 <0.5
速效磷 Available P - >30 25-30 12-25 6-12 <6
速效钾 Available K - >180 135-180 60-135 <60 -
有效钙Available Ca - >1000 700-100 500-700 300-500 <300
有效镁Available Mg - >300 200-300 100-200 50-100 <50
有效硫Available S - >35 25-35 15-25 10-15 <10
有效铁Available Fe >20 10-20 4.5-10 2.5-4.5 <2.5 -
有效锰Available Mn >30 15-30 5-15 1-5 <1 -
有效铜Available Cu >1.8 1-1.8 0.2-1 0.1-0.2 <0.1 -
有效锌Available Zn >3 1-3 0.5-1 0.3-0.5 <0.3 -
有效硼Available B - >1.0 0.6-1.0 0.2-0.6 <0.2 -

Table 2

Distribution of soil nutrients content in typical winter oilseed rape production regions in the Yangtze River Basin"

区域
Region
指标
Parameters
有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
速效磷
Available-P (mg·kg-1)
速效钾
Available-K (mg·kg-1)
pH
长江上游
Upper Yangtze River Basin(UYRB)
范围 Range 4.1-71.7 0.31-3.54 2.4-181.3 16.0-504.0 4.31-8.19
均值 Mean 28.8a 1.59a 30.5a 140.1a 6.26a
变异系数 CV (%) 50.9 44.9 112.4 67.7 18.8
长江中游
Middle Yangtze River Basin (MYRB)
范围 Range 3.3-57.1 0.16-3.25 1.2-158.1 36.0-562.0 4.26-8.13
均值 Mean 25.0b 1.41b 25.3a 127.7a 5.90b
变异系数 CV (%) 40.7 43.5 98.9 57.6 19.3
长江下游
Lower Yangtze River Basin(LYRB)
范围 Range 7.3-49.2 0.49-3.51 1.8-108.9 42.0-373.5 4.38-8.26
均值 Mean 23.9b 1.45ab 28.4a 129.1a 6.09ab
变异系数 CV (%) 44.7 47.3 99.8 54.6 19.8
区域整体
Yangtze River Basin (YRB)
范围 Range 3.3-71.7 0.16-3.54 1.2-181.3 16.0-504.0 4.26-8.26
均值 Mean 25.9 1.47 27.5 131.1 6.04
变异系数 CV (%) 45.9 45.2 104.4 59.1 19.3

Table 3

Soil nutrients deficiency status in typical winter oilseed rape production regions in the Yangtze River Basin"

参数
Parameters
分级
Grading
分布频率 Frequency (%)
长江上游 Upper YRB 长江中游 Middle YRB 长江下游 Lower YRB 区域 YRB
有机质
Organic matter
(g·kg-1)
>40 1级 Grade 1 23.1 9.0 13.2 14.0
30-40 2级 Grade 2 13.1 24.8 11.8 18.9
20-30 3级 Grade 3 30.8 26.1 31.6 28.5
10-20 4级 Grade 4 31.5 36.5 38.2 35.3
6-10 5级 Grade 5 0.8 2.7 5.3 2.6
<6 6级 Grade 6 0.8 0.9 0.0 0.7
全氮
Total N
(g·kg-1)
>2.0 1级 Grade 1 23.1 18.0 14.5 18.9
1.5-2.0 2级 Grade 2 21.5 21.6 25.0 22.2
1.0-1.5 3级 Grade 3 34.6 32.0 34.2 33.2
0.75-1.0 4级 Grade 4 16.2 15.3 19.7 16.4
0.5-0.75 5级 Grade 5 2.3 7.7 5.3 5.6
<0.5 6级 Grade 6 2.3 5.4 1.3 3.7
速效磷
Available-P
(mg·kg-1)
>30 1级 Grade 1 30.8 28.1 32.9 29.8
25-30 2级 Grade 2 4.6 4.0 7.9 4.9
12-25 3级 Grade 3 34.6 34.8 15.8 31.4
6-12 4级 Grade 4 20.8 17.4 25.0 19.8
<6 5级 Grade 5 9.2 15.6 18.4 14.2
速效钾
Available-K
(mg·kg-1)
>180 1级 Grade 1 26.2 20.5 19.7 22.1
135-180 2级 Grade 2 15.4 11.2 21.1 14.2
60-135 3级 Grade 3 43.8 57.1 46.1 51.2
<60 4级 Grade 4 14.6 11.2 13.2 12.6
pH >7.5 1级 Grade 1 24.6 17.0 22.4 20.2
6.5-7.5 2级 Grade 2 16.2 13.4 10.5 13.7
5.5-6.5 3级 Grade 3 24.6 21.9 26.3 23.5
<5.5 4级 Grade 4 34.6 47.8 40.8 42.6

Table 4

Distribution of soil micro-nutrient content in typical winter oilseed rape production regions in the Yangtze River Basin"

区域
Region
指标
Parameter
有效钙
Available-Ca
(mg·kg-1)
有效镁
Available-Mg
(mg·kg-1)
有效硫
Available-S
(mg·kg-1)
有效铁
Available-Fe
(mg·kg-1)
有效锰
Available-Mn
(mg·kg-1)
有效铜
Available-Cu
(mg·kg-1)
有效锌
Available-Zn
(mg·kg-1)
有效硼
Available-B
(mg·kg-1)
长江上游
Upper YRB
范围 Range 91.6-7032.0 13.9-636.0 3.2-115.3 5.0-832.6 7.1-324.2 0.45-9.68 0.36-13.35 0.09-3.39
均值 Mean 2871.4a 217.0b 23.5a 156.2c 69.7b 3.16b 3.63b 0.50a
变异系数 CV (%) 67.9 62.6 75.2 110.6 87.1 60.6 70.5 89.5
长江中游
Middle YRB
范围 Range 145.4-6410.4 25.9-822.0 4.5-86.3 9.3-812.7 10.1-424.7 0.21-8.62 0.17-13.30 0.05-2.52
均值 Mean 2160.5b 208.2b 22.5a 222.9b 98.1a 4.00a 4.08ab 0.41b
变异系数 CV (%) 77.9 74.2 66.8 78.1 82.7 45.4 59.9 54.9
长江下游
Lower YRB
范围 Range 224.9-6360.0 26.1-759.0 4.7-145.2 16.1-880.7 11.2-281.0 0.31-12.57 0.12-12.53 0.14-1.43
均值 Mean 2508.4ab 295.5a 21.3a 270.3a 98.3a 4.36a 4.54a 0.48ab
变异系数 CV (%) 60.1 55.2 92.1 76.9 78.3 49.7 62.4 58.5
区域整体
YRB
范围 Range 91.6-7032.0 13.9-822.0 3.2-145.2 5.0-880.7 7.1-424.7 0.21-12.57 0.12-13.35 0.05-3.39
均值 Mean 2436.1 225.7 22.6 212.3 89.7 3.84 4.03 0.45
变异系数 CV (%) 72.4 68.2 74.0 87.0 84.4 51.5 63.7 71.3

Fig. 1

Grading of soil middle-micro nutrient content in typical winter oilseed rape production regions in the Yangtze River Basin"

Table 5

Soil nutrient content under different seed yields and cultivations in typical winter oilseed rape production regions in the Yangtze River Basin"

土壤养分
Soil nutrient
种植制度 Cultivation P
P value
产量水平 Seed yield (kg·hm-2) P
P value
水旱油菜
Paddy-Oilseed rape
旱地油菜
Upland-Oilseed rape
<2000 2000-3000 >3000
有机质SOM (g·kg-1) 28.9±0.8 22.1±0.8 <0.001*** 28.6±1.2 25.9±0.9 25.4±2.0 0.159ns
全氮TN (g·kg-1) 1.63±0.04 1.27±0.04 <0.001*** 1.62±0.06a 1.43±0.05b 1.56±0.10ab 0.035*
速效磷Available P (mg·kg-1) 24.7±1.8 30.8±2.2 0.030* 30.7±3.0 29.0±2.8 28.5±5.6 0.919ns
速效钾Available K (mg·kg-1) 116.7±4.0 164.6±9.7 <0.001*** 126.3±7.3 b 138.4±7.0b 182.7±24.6a 0.015*
pH 5.91±0.07 6.23±0.09 0.005** 5.73±0.10c 6.13±0.08b 6.62±0.21a <0.001***
有效钙Available Ca (mg·kg-1) 2187.6±104.0 2761.9±138.7 0.001** 2022.3±158.9b 2628.7±115.2a 3177.6±308.9a <0.001***
有效镁Available Mg (mg·kg-1) 222.1±10.1 232.3±10.9 0.497ns 192.0±15.0b 241.9±9.8a 247.7±22.9a 0.011*
有效硫Available S (mg·kg-1) 25.2±1.1 19.0±1.1 <0.001*** 23.8±1.6 20.8±1.1 25.0±2.8 0.172ns
有效铁Available Fe (mg·kg-1) 273.3±12.5 128.3±9.5 <0.001*** 204.3±15.7 221.7±12.6 147.5±28.4 0.067ns
有效锰Available Mn (mg·kg-1) 91.5±5.1 86.1±5.2 0.467ns 91.3±7.2 83.7±4.4 68.2±11.0 0.205ns
有效铜Available Cu (mg·kg-1) 4.46±0.12 2.92±0.11 <0.001*** 3.67±0.16ab 3.99±0.14a 3.10±0.24b 0.021*
有效锌Available Zn (mg·kg-1) 4.25±0.16 3.74±0.19 0.043* 4.10±0.23 4.19±0.17 3.20±0.43 0.082ns
有效硼Available B (mg·kg-1) 0.46±0.02 0.43±0.03 0.613ns 0.41±0.03b 0.45±0.02b 0.62±0.07a 0.002**

Fig. 2

Soil nutrient characteristics of oilseed rape-cultivation under different yield levels Based on the average soil nutrient content of low yield (<2 000 kg·hm-2), the values of the middle-class (2 000-3 000 kg·hm-2) and high yield (>3 000 kg·hm-2) were calculated, and then mapped"

[1] 王汉中 . 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018,40(5):613-617.
WANG H Z . New-demand oriented oilseed rape industry developing strategy. Chinese Journal of Oil Crop Sciences, 2018,40(5):613-617. (in Chinese)
[2] 王汉中 . 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32(2):300-302.
WANG H Z . Review and future development of rapeseed industry in China. Chinese Journal of Oil Crop Sciences, 2010,32(2):300-302. (in Chinese)
[3] 王寅, 鲁剑巍 . 中国冬油菜栽培方式变迁与相应的养分管理策略. 中国农业科学, 2015,48(15):2952-2966.
WANG Y, LU J W . The transitional cultivation patterns of winter oilseed rape in China and the corresponding nutrient management strategies. Scientia Agricultura Sinica, 2015,48(15):2952-2966. (in Chinese)
[4] 中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2018.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2018. (in Chinese)
[5] 徐华丽, 鲁剑巍, 李小坤, 王寅, 苏伟 . 湖北省油菜施肥现状调查. 中国油料作物学报, 2010,32(3):418-423.
XU H L, LU J W, LI X K, WANG Y, SU W . Investigation of present fertilization on rapeseed in Hubei province. Chinese Journal of Oil Crop Sciences, 2010,32(3):418-423. (in Chinese)
[6] 李亮科, 张卫峰, 马骥, 张福锁 . 我国复合(混)肥产业发展状况. 磷肥与复肥, 2011,26(3):1-3.
LI L K, ZHANG W F, MA J, ZHANG F S . Review on development of compound fertilizer product in China. Phosphate & Compound Fertilizer, 2011,26(3):1-3. (in Chinese)
[7] 张丹, 张卫峰, 季玥秀, 肖艳, 陈新平, 张福锁 . 我国中微量元素肥料产业发展现状. 现代化工, 2012,32(5):1-5.
ZHANG D, ZHANG W F, JI Y X, XIAO Y, CHEN X P, ZHANG F S . Development of medium and trace element fertilizer industry in China. Modern Chemical Industry, 2012,32(5):1-5. (in Chinese)
[8] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998.
National Soil Survey Office. Chinese Soil. Beijing: China Agricultural Press, 1998. (in Chinese)
[9] 全国农业技术推广服务中心. 测土配方施肥土壤基础养分数据集(2005-2014). 北京: 中国农业出版社, 2015.
National Agricultural Technical Extension and Service Center. Soil Basic Nutrient Date of Soil Testing and Fertilizer Recommendation (2005-2014). Beijing: China Agricultural Press, 2015. (in Chinese)
[10] 刘崇群, 曹淑卿, 陈国安, 吴锡军 . 中国南方农业中的硫. 土壤学报, 1990,27(4):398-404.
LIU C Q, CAO S Q, CHEN G A, WU X J . Sulphur in the agriculture of China. Acta Pedologica Sinica, 1990,27(4):398-404. (in Chinese)
[11] 白由路, 金继运, 杨俐苹 . 我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究. 土壤肥料, 2004(2):3-5.
BAI Y L, JIN J Y, YANG L P . Study on the content and distribution of soil available magnesium and foreground of magnesium fertilizer in China. Soil and Fertilizer, 2004(2):3-5. (in Chinese)
[12] 刘铮, 朱其清, 唐丽华, 徐俊祥, 尹楚良 . 我国缺乏微量元素的土壤及其区域分布. 土壤学报, 1982,19(3):209-223.
LIU Z, ZHU Q Q, TANG L H, XU J X, YIN C L . Geographical distribution of trace elements-deficient soils in China. Acta Pedologica Sinica, 1982,19(3):209-223. (in Chinese)
[13] 张智, 任意, 鲁剑巍, 郑磊, 苗洁, 李小坤, 任涛, 丛日环 . 长江中游农田土壤微量元素养分空间分布特征. 土壤学报, 2016,53(6):1489-1496.
ZHANG Z, REN Y, LU J W, ZHENG L, MIAO J, LI X K, REN T, CONG R H . Spatial distribution of micronutrients in farmland soils in the mid-reaches of the Yangtze River. Acta Pedologica Sinica, 2016,53(6):1489-1496. (in Chinese)
[14] YANAI J, OKADA T, YAMADA H . Elemental composition of agricultural soils in Japan in relation to soil type, land use and region. Soil Science and Plant Nutrition, 2012,58:1-10.
[15] TRIBERTI L, NASTRI A, BALDONI G . Long-term effects of crop rotation, manure and mineral fertilization on carbon sequestration and soil fertility. European Journal of Agronomy, 2016,74:47-55.
[16] 邹娟, 鲁剑巍, 陈防, 李银水 . 我国冬油菜区土壤肥力变化及施肥效果演变. 中国油料作物学报, 2011,33(3):275-279.
ZOU J, LU J W, CHEN F, LI Y S . Variation of soil fertility and evolution of fertilizer efficiency in winter rapeseed region of China. Chinese Journal of Oil Crop Sciences, 2011,33(3):275-279. (in Chinese)
[17] 丛日环, 张智, 郑磊, 苗洁, 任意, 任涛, 李小坤, 鲁剑巍 . 基于GIS的长江中游油菜种植区域土壤养分及pH状况. 土壤学报, 2016,53(5):1213-1224.
CONG R H, ZHANG Z, ZHENG L, MIAO J, REN Y, REN T, LI X K, LU J W . Soil nutrient and pH in rapeseed planting areas in the Middle Reaches of the Yangtze River Based on GIS. Acta Pedologica Sinica, 2016,53(5):1213-1224. (in Chinese)
[18] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000.
BAO S D . Soil Agrochemical Analysis. Beijing: China Agricultural Press, 2000. (in Chinese)
[19] 邹娟 . 冬油菜施肥效果及土壤养分丰缺指标研究[D]. 武汉: 华中农业大学, 2010.
ZOU J . Study on response of winter rapeseed to NPKB fertilization and abundance & deficiency indices of soil nutrients[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese)
[20] LI L, YANG Y, REDDEN R, HE W F, ZONG X X . Soil fertility map for food legumes production areas in China. Scientific Reports, 2016,6:26102.
[21] JORDAN-MEILLE L, RUBæK G H, EHLERT P A I, GENOT V, HOFMAN G, GOULDING K, RECKNAGEL J, PROVOLO G, BARRACLOUGH P . An overview of fertilizer P recommendations in Europe: Soil testing, calibration and fertilizer recommendations. Soil Use and Management, 2012,28(4):419-435.
[22] YAN Z J, LIU P P, LI Y H, MA L, ALVA A, DOU Z X, CHEN Q, ZHANG F S . Phosphorus in China’s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications. Journal of Environmental Quality, 2013,42(4):982-989.
[23] ZÖRB C, SENBAYRAM M, PEITER E . Potassium in agriculture- status and perspectives. Journal of Plant Physiology, 2014,171(9):656-669.
[24] WANG M, ZHENG Q S, SHEN Q R, GUO S W . The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 2013,14(4):7370-7390.
[25] 邹娟, 鲁剑巍, 廖志文, 巩细民, 汪航, 周远桂, 周宏 . 湖北省油菜施硼效果及土壤有效硼临界值研究. 中国农业科学, 2008,41(3):752-759.
ZOU J, LU J W, LIAO Z W, GONG X M, WANG H, ZHOU Y G, ZHOU H . Study on response of rapeseed to boron application and critical level of soil available B in Hubei Province. Scientia Agricultura Sinica, 2008,41(3):752-759. (in Chinese)
[26] WANG Y, LI J F, GAO X Z, LI X K, REN T, CONG R H, LU J W . Winter oilseed rape productivity and nutritional quality responses to zinc fertilization. Agronomy Journal, 2014,106(4):1349-1357.
[27] MALHI S S, GAN Y, RANEY J P . Yield, seed quality, and sulfur uptake of Brassica oilseed crops in response to sulfur fertilization. Agronomy Journal, 2007,99(2):570-577.
[28] ORLOVIUS K . Fertilizing for high yield and quality: Oilseed rape. IPI Bulletin No. 16, 2003.
[29] 李小芳, 李倩, 雷利琴, 田贵生, 鲁剑巍 . 高钾地力下不同镁肥用量对油菜产量和品质的影响. 湖南农业科学, 2018(8):48-50.
LI X F, LI Q, LEI L Q, TIAN G S, LU J W . Effects of magnesium application rates on yield and quality of rapeseed under high potassium soil fertility. Hunan Agricultural Sciences, 2018(8):48-50. (in Chinese)
[30] GHIMIRE R, LAMICHHANE S, ACHARYA B S, BISTA P, SAINJU U M . Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. Journal of Integrative Agriculture, 2017,16(1):1-15.
[31] ZHOU W, LV T F, CHEN Y, WESTBY A P, REN W J . Soil physicochemical and biological properties of paddy-upland rotation: A review. The Scientific World Journal, DOI: 10.1155/2014/856352.
[1] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[2] ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
[3] WANG Li,WANG ZhaoHui,GUO ZiKang,TAO ZhenKui,ZHENG MingJun,HUANG Ning,GAO ZhiYuan,ZHANG XinXin,HUANG TingMiao. Differences of Main Nutrient Concentration in Wheat Grain Between Typical Locations of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(17): 3527-3540.
[4] LI Da,FANG HuaJun,WANG Di,XU LiJun,TANG XueJuan,XIN XiaoPing,NIE YingYing,Wuren qiqige. Coupling Mechanism of Herbage-Water-Nitrogen Fertilizer in Abandoned Farmland in Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2691-2702.
[5] YAN ZhiHao,HU ZhiHua,WANG ShiChao,HUAI ShengChang,WU HongLiang,WANG JinYu,XING TingTing,YU XiChu,LI DaMing,LU ChangAi. Effects of Lime Content on Soil Acidity, Soil Nutrients and Crop Growth in Rice-Rape Rotation System [J]. Scientia Agricultura Sinica, 2019, 52(23): 4285-4295.
[6] LIU QiuXia, REN Tao, ZHANG YaWei, LIAO ShiPeng, LI XiaoKun, CONG RiHuan, LU JianWei. Determination and Application of a Critical Nitrogen Dilution Curve for Direct-Sowing Winter Oilseed Rape in Central China [J]. Scientia Agricultura Sinica, 2019, 52(16): 2835-2844.
[7] LI Wei-tao, LI Zhong-pei, LIU Ming, JIANG Chun-yu, WU Meng, CHEN Xiao-fen. Enzyme Activities and Soil Nutrient Status Associated with Different Aggregate Fractions of Paddy Soils Fertilized with Returning Straw for 24 Years [J]. Scientia Agricultura Sinica, 2016, 49(20): 3886-3895.
[8] REN Tao, LU Jian-wei. Integrated Nitrogen Management Strategy for Winter Oilseed Rape (Brassica napus L.) in China [J]. Scientia Agricultura Sinica, 2016, 49(18): 3506-3521.
[9] LIU Tao, LU Jian-wei, REN Tao, WANG Wei, WANG Zhen, WANG Shao-hua. Characteristics of Photosynthetic Nitrogen Allocation in Leaves of Different Positions in Winter Oilseed Rape at Seedling Stage Under Suitable Nitrogen Level [J]. Scientia Agricultura Sinica, 2016, 49(18): 3532-3541.
[10] WANG Yin, LU Jian-wei. The Transitional Cultivation Patterns of Winter Oilseed Rape in China and the Corresponding Nutrient Management Strategies [J]. Scientia Agricultura Sinica, 2015, 48(15): 2952-2966.
[11] CHEN Dan-mei; DUAN Yu-qi; YANG Yu-hong; JIN Yan; HUANG Jian-guo; YUAN Ling. ffects of Long-Term Fertilization on Flue-Cured Tobacco Soil Nutrients and Microorganisms Community Structure [J]. Scientia Agricultura Sinica, 2014, 47(17): 3424-3433.
[12] HUO Ying, ZHANG Jie, WANG Mei-chao, YAO Yun-cong. Effects of Inter-Row Planting Grasses on Variations and Relationships of Soil Organic Matter and Soil Nutrients in Pear Orchard [J]. Scientia Agricultura Sinica, 2011, 44(7): 1415-1424.
[13] . Effects of Intercropping Aromatic Plants on Soil Microbial Quantity and Soil Nutrients in Pear Orchard
[J]. Scientia Agricultura Sinica, 2010, 43(1): 140-150 .
[14]

.

Effects of Chemical Fertilizer and Organic Manure on Rice Yield and Soil Fertility

[J]. Scientia Agricultura Sinica, 2009, 42(2): 543-551 .
[15] ,,. Micro-Scale Spatial Variance of Soil Nutients Under Different Plant Communites [J]. Scientia Agricultura Sinica, 2006, 39(8): 1581-1587 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!