Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (5): 907-919.doi: 10.3864/j.issn.0578-1752.2023.05.008

• SOIL & FERTILIZER · WATER-SAVING IRRIGATION · AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau

DONG Xiu(), ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing()   

  1. College of Pastoral Agriculture Science and Technology, Lanzhou University/State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems/National Field Scientific Observation and Research Station of Grassland Agro-ecosystems in Qingyang, Gansu, Lanzhou 730020
  • Received:2022-01-29 Accepted:2022-06-06 Online:2023-03-01 Published:2023-03-13

Abstract:

【Objective】The effects of long-term conservation tillage on soil carbon and carbon invertase activity in forage-crop rotation system of dry farmland in the Loess Plateau were explored to provide the scientific basis for soil carbon sequestration and sustainable and healthy development of agriculture in dry farmland. 【Method】In this study, we aimed to investigate the effects of long-term traditional tillage (T), no-tillage (NT), traditional tillage+straw mulch (TS), and no-tillage+straw mulch (NTS) on soil organic carbon (SOC), microbial biomass carbon content (MBC), β-glycosidase (βG), cellobiohydrolase (CBH) and β-xylosidase enzymes (βX) in forage-crop rotation system at the National Field Scientific Observation and Research Station of the Grassland Agricultural Ecosystem in Qingyang, Gansu Province. Soils were collected from 0-5, 5-10 and 10-20 cm depths at the harvest of maize (Zea mays L.). 【Result】(1) Conservation tillage significantly increased the contents of SOC and MBC in soil, especially in 0-5 cm soil layer. Compared with conventional tillage, straw mulching increased SOC and MBC by 19.1% and 39.9%, respectively, and no-tillage increased SOC and MBC by 15.1% and 34.3%, respectively. (2) Conservation tillage significantly increased soil carbon invertase activity, the three enzyme activities showed: βG>CBH>βX, the sensitivity of conservation tillage measures showed: CBH>βX>βG. Compared with traditional tillage, the activities of βG, CBH and βX in 0-5 cm soil layer under straw mulching increased by 20.3%, 37.6% and 41.1%, respectively, and those under no-tillage increased by 12.5%, 31.0% and 26.1%, respectively. Straw mulching in 5-20 cm soil layer increased βG, CBH and βX by -7.6%, 99.9% and 3.5%, respectively, and no-tillage increased them by -21.1%, 22.1% and -12.1%, respectively. In addition, the structural equation results showed that soil carbon invertase activity was mainly affected by soil total nitrogen content in forage-crop rotation system. (3) Straw mulching could directly affect the accumulation of soil carbon, mainly affecting the activity of soil carbon invertase by changing the soil total nitrogen content; no tillage had no significant impact on soil environment, resulting in no significant changes in soil carbon content and carbon invertase activity.【Conclusion】The accumulation of soil carbon was mainly affected by the direct effect of straw mulching measures, and the activity of carbon invertase was mainly changed by the indirect effect of soil total nitrogen in the forage-crop rotation system of dry farmland in the Loess Plateau. Among them, no tillage combined with straw mulching was the most effective measure to improve soil carbon content and enzyme activity, and β- Glucosidase is the main enzyme involved in soil carbon inversion.

Key words: straw mulching, no tillage, soil organic carbon, soil enzyme activity, microbial biomass carbon

Table 1

Three-factor variance analysis of influence of straw mulching, tillage method and soil depth on each factor"

变异来源
Variation
土壤有机碳
SOC
微生物量碳
MBC
β-葡萄糖苷酶
βG
纤维二糖水解酶
CBH
β-木糖苷酶
βX
F P F P F P F P F P
S 10.538 ** 2.798 NS 2.064 NS 9.740 ** 3.928 *
T 1.300 NS 0.045 NS 0.472 NS 0.063 NS 0.009 NS
D 53.478 *** 47.735 *** 95.011 *** 71.226 *** 119.535 ***
S×T 0.936 NS 0.965 NS 0.104 NS 0.000 NS 2.228 NS
S×D 1.134 NS 2.202 NS 4.261 * 0.671 NS 6.754 **
T×D 0.394 NS 5.454 ** 4.339 * 7.371 *** 4.631 *
S×T×D 1.539 NS 1.386 NS 1.036 NS 0.483 NS 0.925 NS

Fig. 1

Changes of soil organic carbon and microbial biomass carbon contents after long-term conservation tillage Different capital letters mean significant difference between different tillage methods in the same soil layer (P<0.05), and different lowercase letters mean significant difference between different soil depths under the same treatment (P<0.05). SOC represents soil organic carbon content, MBC represents soil microbial biomass carbon content, T, TS, NT and NTS represent traditional tillage, traditional tillage + straw mulch, no-tillage and no-tillage + straw mulch, respectively. The same below"

Fig. 2

Changes of soil carbon invertase activity after long-term conservation tillage"

Table 2

Sensitivity of soil enzyme activity to conservation tillage"

耕作比较
Tillage comparison
βG
(%)
CBH
(%)
βX
(%)
TS vs T 11.25 35.94 32.90
NT vs T -10.62 -11.39 2.23
NTS vs T -1.92 63.05 8.21

Table 3

Changes of soil environmental factors under different conservation tillage methods"

土层
Soil depth (cm)
C/N 土壤全氮
Soil total nitrogen (g·kg-1)
土壤含水量
Soil water content (%)
pH
T TS NT NTS T TS NT NTS T TS NT NTS T TS NT NTS
0-5 6.95 8.9 9.68 9.86 1.20 1.27 1.23 1.21 20.72 24.94 22.52 23.02 8.45 8.22 8.52 8.58
5-10 6.79 8.22 8.36 7.79 0.89 1.17 0.84 0.93 20.71 21.08 20.37 21.00 8.63 8.4 8.46 8.77
10-20 7.92 6.81 6.46 7.26 0.76 0.83 0.79 0.76 19.97 19.45 19.16 19.80 8.67 8.65 8.62 8.92

Fig. 3

Path analysis of soil SOC and MBC changes The number near the arrow indicates the standardized path coefficient (*P<0.05, **P<0.01, ***P<0.001). The thickness of the line indicates the size of the path coefficient. The thicker the line, the larger the path coefficient. The same below"

Fig. 4

Path analysis of soil carbon invertase changes βG: χ2=0.939, GFI=0.972, RMSEA<0.001, P=0.519; CBH: χ2=0.996, GFI=0.973, RMSEA<0.001, P=0.454; βX: χ2 =1.486, GFI=0.956, RMSEA=0.064, P=0.095"

Fig. 5

Relationship between soil βG, CBH, βX activities and MBC content"

[1]
CHEN L D, HUANG Z L, GONG J, FU B J, HUANG Y L. The effect of land cover/vegetation on soil water dynamic in the hilly area of the Loess Plateau, China. Catena, 2007, 70(2): 200-208. doi:10.1016/j.catena.2006.08.007.

doi: 10.1016/j.catena.2006.08.007
[2]
FU B J, CHEN L D, MA K M, ZHOU H F, WANG J. The relationships between land use and soil conditions in the hilly area of the Loess Plateau in northern Shaanxi, China. Catena, 2000, 39(1): 69-78. doi:10.1016/S0341-8162(99)00084-3.

doi: 10.1016/S0341-8162(99)00084-3
[3]
袁晓波, 尚振艳, 牛得草, 傅华. 黄土高原生态退化与恢复. 草业科学, 2015, 32(3): 363-371. doi:10.11829/j.issn.1001-0629.2014-0156.

doi: 10.11829/j.issn.1001-0629.2014-0156
YUAN X B, SHANG Z Y, NIU D C, FU H. Advances in ecological degeneration and restoration of Loess Plateau. Pratacultural Science, 2015, 32(3): 363-371. doi:10.11829/j.issn.1001-0629.2014-0156.(in Chinese)

doi: 10.11829/j.issn.1001-0629.2014-0156
[4]
王长生, 王遵义, 苏成贵, 李行, 王晶, 吴光华. 保护性耕作技术的发展现状. 农业机械学报, 2004, 35(1): 167-169. doi:10.3969/j.issn.1000-1298.2004.01.043.

doi: 10.3969/j.issn.1000-1298.2004.01.043
WANG C S, WANG Z Y, SU C G, LI H, WANG J, WU G H. Development and application of protective farming technique. Transactions of the Chinese Society of Agricultural Machinery, 2004, 35(1): 167-169. doi:10.3969/j.issn.1000-1298.2004.01.043.(in Chinese)

doi: 10.3969/j.issn.1000-1298.2004.01.043
[5]
魏欢欢, 王仕稳, 杨文稼, 孙海妮, 殷俐娜, 邓西平. 免耕及深松耕对黄土高原地区春玉米和冬小麦产量及水分利用效率影响的整合分析. 中国农业科学, 2017, 50(3):461-477.

doi: 10.3864/j.issn.0578-1752.2017.03.005
WEI H H, WANG S W, YANG W J, SUN H N, YIN L N, DENG X P. Meta analysis on impact of no-tillage and subsoiling tillage on spring maize and winter wheat yield and water use efficiency on the Loess Plateau. Scientia Agricultura Sinica, 2017, 50(3): 461-477.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.03.005
[6]
孔维萍, 成自勇, 张芮, 何钊全, 何正乾, 张晓霞, 刘静霞, 高阳. 保护性耕作在黄土高原的应用和发展. 干旱区研究, 2015, 32(2): 240-250. doi:10.13866/j.azr.2015.02.05.

doi: 10.13866/j.azr.2015.02.05
KONG W P, CHENG Z Y, ZHANG R, HE Z Q, HE Z Q, ZHANG X X, LIU J X, GAO Y. Application and development of conservation tillage techniques in the Loess Plateau. Arid Zone Research, 2015, 32(2): 240-250. doi:10.13866/j.azr.2015.02.05.(in Chinese)

doi: 10.13866/j.azr.2015.02.05
[7]
刘红梅, 李睿颖, 高晶晶, 朱平, 路杨, 高洪军, 张贵龙, 张秀芝, 彭畅, 杨殿林. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展. 生态环境学报, 2020, 29(6): 1277-1284.
LIU H M, LI R Y, GAO J J, ZHU P, LU Y, GAO H J, ZHANG G L, ZHANG X Z, PENG C, YANG D L. Research progress on the effects of conservation tillage on soil aggregates and microbiological characteristics. Ecology and Environmental Sciences, 2020, 29(6): 1277-1284.(in Chinese)
[8]
LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627. doi:10.1126/science.1097396.

doi: 10.1126/science.1097396 pmid: 15192216
[9]
苑广源, MUNYAMPIRWA Tito, 毛丽萍, 张燕, 杨宪龙, 沈禹颖. 16年保护性耕作措施对粮草轮作系统土壤碳库及稳定性的影响. 水土保持学报, 2021, 35(3): 252-258, 267.
YUAN G Y, TITO M, MAO L P, ZHANG Y, YANG X L, SHEN Y Y. Effects of conservational tillage measures on soil carbon pool and stability in a winter forage-crop rotation system on the Loess Plateau of China. Journal of Soil and Water Conservation, 2021, 35(3): 252-258, 267.(in Chinese)
[10]
李景, 吴会军, 武雪萍, 蔡典雄, 王碧胜, 梁国鹏, 姚宇卿, 吕军杰. 15年保护性耕作对黄土坡耕地区土壤及团聚体固碳效应的影响. 中国农业科学, 2015, 48(23): 4690-4697. doi:10.3864/j.issn.0578-1752.2015.23.010.

doi: 10.3864/j.issn.0578-1752.2015.23.010
LI J, WU H J, WU X P, CAI D X, WANG B S, LIANG G P, YAO Y Q, J J. Effects of 15-year conservation tillage on soil and aggregate organic carbon sequestration in the loess hilly region of China. Scientia Agricultura Sinica, 2015, 48(23): 4690-4697. doi:10.3864/j.issn.0578-1752.2015.23.010.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2015.23.010
[11]
CRYSTAL-ORNELAS R, THAPA R, TULLY K L. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agriculture, Ecosystems & Environment, 2021, 312: 107356. doi:10.1016/j.agee.2021.107356.

doi: 10.1016/j.agee.2021.107356
[12]
张彬, 白震, 解宏图, 张旭东, 张晓平, 时秀焕. 保护性耕作对黑土微生物群落的影响. 中国生态农业学报(中英文), 2010, 18(1): 83-88. doi:10.3724/SP.J.1011.2010.00083.

doi: 10.3724/SP.J.1011.2010.00083
ZHANG B, BAI Z, XIE H T, ZHANG X D, ZHANG X P, SHI X H. Effect of conservation tillage on microbial community in Chinese Mollisol. Chinese Journal of Eco-Agriculture, 2010, 18(1): 83-88. doi:10.3724/SP.J.1011.2010.00083.(in Chinese)

doi: 10.3724/SP.J.1011.2010.00083
[13]
MELERO S, LÓPEZ-BELLIDO R J, LÓPEZ-BELLIDO L, MUÑOZ- ROMERO V, MORENO F, MURILLO J M, FRANZLUEBBERS A J. Stratification ratios in a rainfed Mediterranean Vertisol in wheat under different tillage, rotation and N fertilisation rates. Soil and Tillage Research, 2012, 119: 7-12. doi:10.1016/j.still.2011.11.012.

doi: 10.1016/j.still.2011.11.012
[14]
张四海, 曹志平, 张国, 胡婵娟. 保护性耕作对农田土壤有机碳库的影响. 生态环境学报, 2012, 21(2): 199-205. doi:10.16258/j.cnki.1674-5906.2012.02.015.

doi: 10.16258/j.cnki.1674-5906.2012.02.015
ZHANG S H, CAO Z P, ZHANG G, HU C J. Effects of conversation tillage on soil organic carbon pool. Ecology and Environmental Sciences, 2012, 21(2): 199-205. doi:10.16258/j.cnki.1674-5906.2012.02.015.(in Chinese)

doi: 10.16258/j.cnki.1674-5906.2012.02.015
[15]
田慎重, 张玉凤, 边文范, 董亮, Jiafa Luo, 郭洪海. 深松和秸秆还田对旋耕农田土壤有机碳活性组分的影响. 农业工程学报, 2020, 36(2): 185-192. doi:10.11975/j.issn.1002-6819.2020.02.022.

doi: 10.11975/j.issn.1002-6819.2020.02.022
TIAN S Z, ZHANG Y F, BIAN W F, DONG L, LUO J F, GUO H H. Effects of subsoiling and straw return on soil labile organic carbon fractions in continuous rotary tillage cropland. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 185-192. doi:10.11975/j.issn.1002-6819.2020.02.022.(in Chinese)

doi: 10.11975/j.issn.1002-6819.2020.02.022
[16]
HE J, LI H W, RASAILY R G, WANG Q J, CAI G H, SU Y B, QIAO X D, LIU L J. Soil properties and crop yields after 11 years of no tillage farming in wheat-maize cropping system in North China Plain. Soil and Tillage Research, 2011, 113(1): 48-54. doi:10.1016/j.still.2011.01.005.

doi: 10.1016/j.still.2011.01.005
[17]
张英英, 蔡立群, 武均, 齐鹏, 罗珠珠, 张仁陟. 不同耕作措施下陇中黄土高原旱作农田土壤活性有机碳组分及其与酶活性间的关系. 干旱地区农业研究, 2017, 35(1): 1-7. doi:10.7606/j.issn.1000-7601.2017.01.01.

doi: 10.7606/j.issn.1000-7601.2017.01.01
ZHANG Y Y, CAI L Q, WU J, QI P, LUO Z Z, ZHANG R Z. The relationship between soil labile organic carbon fractions and the enzyme activities under different tillage measures in the Loess Plateau of central Gansu Province. Agricultural Research in the Arid Areas, 2017, 35(1): 1-7. doi:10.7606/j.issn.1000-7601.2017.01.01.(in Chinese)

doi: 10.7606/j.issn.1000-7601.2017.01.01
[18]
BANDICK A K, DICK R P. Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 1999, 31(11): 1471-1479. doi:10.1016/S0038-0717(99)00051-6.

doi: 10.1016/S0038-0717(99)00051-6
[19]
BURNS R G, DEFOREST J L, MARXSEN J, SINSABAUGH R L, STROMBERGER M E, WALLENSTEIN M D, WEINTRAUB M N, ZOPPINI A. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry, 2013, 58: 216-234. doi:10.1016/j.soilbio.2012.11.009.

doi: 10.1016/j.soilbio.2012.11.009
[20]
马立晓, 李婧, 邹智超, 蔡岸冬, 张爱平, 李贵春, 杜章留. 免耕和秸秆还田对我国土壤碳循环酶活性影响的荟萃分析. 中国农业科学, 2021, 54(9): 1913-1925. doi:10.3864/j.issn.0578-1752.2021.09.009.

doi: 10.3864/j.issn.0578-1752.2021.09.009
MA L X, LI J, ZOU Z C, CAI A D, ZHANG A P, LI G C, DU Z L. Effects of no-tillage and straw returning on soil C-cycling enzyme activities in China: Meta-analysis. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925. doi:10.3864/j.issn.0578-1752.2021.09.009.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.09.009
[21]
AKHTAR K, WANG W Y, REN G X, KHAN A, FENG Y Z, YANG G H. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil and Tillage Research, 2018, 182: 94-102. doi:10.1016/j.still.2018.05.007.

doi: 10.1016/j.still.2018.05.007
[22]
CHEN H Q, LIANG Q, GONG Y S, KUZYAKOV Y, FAN M S, PLANTE A F. Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil and Tillage Research, 2019, 194: 104296. doi:10.1016/j.still.2019.104296.

doi: 10.1016/j.still.2019.104296
[23]
ZUBER S M, VILLAMIL M B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology and Biochemistry, 2016, 97: 176-187. doi:10.1016/j.soilbio.2016.03.011.

doi: 10.1016/j.soilbio.2016.03.011
[24]
张常仁, 杨雅丽, 程全国, 刘亚军, 张春雨, 何红波, 鲍雪莲, 解宏图. 不同耕作模式对东北黑土微生物群落结构和酶活性的影响. 土壤与作物, 2020, 9(4): 335-347. doi:10.11689/j.issn.2095-2961.2020.04.002.

doi: 10.11689/j.issn.2095-2961.2020.04.002
ZHANG C R, YANG Y L, CHENG Q G, LIU Y J, ZHANG C Y, HE H B, BAO X L, XIE H T. Effects of different tillages on soil microbial community structure and enzyme activity in Mollisols of China. Soil and Crop, 2020, 9(4): 335-347. doi:10.11689/j.issn.2095-2961.2020.04.002.(in Chinese)

doi: 10.11689/j.issn.2095-2961.2020.04.002
[25]
陈娟, 马忠明, 刘莉莉, 吕晓东. 不同耕作方式对土壤有机碳、微生物量及酶活性的影响. 植物营养与肥料学报, 2016, 22(3): 667-675. doi:10.11674/zwyf.15246.

doi: 10.11674/zwyf.15246
CHEN J, MA Z M, LIU L L, X D. Effect of tillage system on soil organic carbon, microbial biomass and enzyme activities. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 667-675. doi:10.11674/zwyf.15246.(in Chinese)

doi: 10.11674/zwyf.15246
[26]
张鹏鹏, 濮晓珍, 张旺锋. 干旱区绿洲农田不同种植模式和秸秆管理下土壤质量评价. 应用生态学报, 2018, 29(3): 839-849. doi:10.13287/j.1001-9332.201803.030.

doi: 10.13287/j.1001-9332.201803.030
ZHANG P P, PU X Z, ZHANG W F. Soil quality assessment under different cropping system and straw management in farmland of arid oasis region. Chinese Journal of Applied Ecology, 2018, 29(3): 839-849. doi:10.13287/j.1001-9332.201803.030.(in Chinese)

doi: 10.13287/j.1001-9332.201803.030
[27]
ZHANG Y, DONG X, YANG X L, MUNYAMPIRWA T, SHEN Y Y. The lagging movement of soil nitrate in comparison to that of soil water in the 500-cm soil profile. Agriculture, Ecosystems & Environment, 2022, 326: 107811. doi:10.1016/j.agee.2021.107811.

doi: 10.1016/j.agee.2021.107811
[28]
BROOKES P C, KRAGT J F, POWLSON D S, JENKINSON D S. Chloroform fumigation and the release of soil nitrogen: The effects of fumigation time and temperature. Soil Biology and Biochemistry, 1985, 17(6): 831-835. doi:10.1016/0038-0717(85)90143-9.

doi: 10.1016/0038-0717(85)90143-9
[29]
范淼珍, 尹昌, 范分良, 宋阿琳, 王伯仁, 李冬初, 梁永超. 长期不同施肥对红壤碳、氮、磷循环相关酶活性的影响. 应用生态学报, 2015, 26(3): 833-838. doi:10.13287/j.1001-9332.20150130.001.

doi: 10.13287/j.1001-9332.20150130.001
FAN M Z, YIN C, FAN F L, SONG A L, WANG B R, LI D C, LIANG Y C. Effects of different long-term fertilization on the activities of enzymes related to carbon, nitrogen, and phosphorus cycles in a red soil. Chinese Journal of Applied Ecology, 2015, 26(3): 833-838. doi:10.13287/j.1001-9332.20150130.001.(in Chinese)

doi: 10.13287/j.1001-9332.20150130.001
[30]
张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020, 53(2): 317-331. doi:10.3864/j.issn.0578-1752.2020.02.007.

doi: 10.3864/j.issn.0578-1752.2020.02.007
ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms. Scientia Agricultura Sinica, 2020, 53(2): 317-331. doi:10.3864/j.issn.0578-1752.2020.02.007.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.02.007
[31]
LI Y, LI Z, CUI S, LIANG G P, ZHANG Q P. Microbial-derived carbon components are critical for enhancing soil organic carbon in no-tillage croplands: A global perspective. Soil and Tillage Research, 2021, 205: 104758. doi:10.1016/j.still.2020.104758.

doi: 10.1016/j.still.2020.104758
[32]
王明明, 李峻成, 沈禹颖. 保护性耕作下黄土高原作物轮作系统土壤健康评价. 草业科学, 2011, 28(6): 882-886. doi:10.3969/j.issn.1001-0629.2011.06.002.

doi: 10.3969/j.issn.1001-0629.2011.06.002
WANG M M, LI J C, SHEN Y Y. The evaluation of soil properties under conservation tillage in a maize-wheat-soybean rotation on the Loess Plateau. Pratacultural Science, 2011, 28(6): 882-886. doi:10.3969/j.issn.1001-0629.2011.06.002.(in Chinese)

doi: 10.3969/j.issn.1001-0629.2011.06.002
[33]
DONG Q G, YANG Y C, YU K, FENG H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agricultural Water Management, 2018, 201: 133-143. doi:10.1016/j.agwat.2018.01.021.

doi: 10.1016/j.agwat.2018.01.021
[34]
LI Z, ZHANG Q, YANG Q, YANG X, LI J, CUI S, SHEN Y. Yield, water productivity and economic return of dryland wheat in the Loess Plateau in response to conservation tillage practices. The Journal of Agricultural Science, 2017, 155(8): 1272-1286. doi:10.1017/s0021859617000338.

doi: 10.1017/s0021859617000338
[35]
YEBOAH S, ZHANG R, CAI L, LI L, XIE J, LUO Z, LIU J, WU J. Tillage effect on soil organic carbon, microbial biomass carbon and crop yield in spring wheat-field pea rotation. Plant, Soil and Environment, 2016, 62(6): 279-285. doi:10.17221/66/2016-pse.

doi: 10.17221/66/2016-pse
[36]
庞绪, 何文清, 严昌荣, 刘恩科, 刘爽, 殷涛. 耕作措施对土壤水热特性和微生物生物量碳的影响. 生态学报, 2013, 33(4): 1308-1316. doi:10.5846/stxb201206220885.

doi: 10.5846/stxb201206220885
PANG X, HE W Q, YAN C R, LIU E K, LIU S, YIN T. Effect of tillage and residue management on dynamic of soil microbial biomass carbon. Acta Ecologica Sinica, 2013, 33(4): 1308-1316. doi:10.5846/stxb201206220885.(in Chinese)

doi: 10.5846/stxb201206220885
[37]
毛红玲, 李军, 贾志宽, 王蕾. 旱作麦田保护性耕作蓄水保墒和增产增收效应. 农业工程学报, 2010, 26(8): 44-51. doi:10.3969/j.issn.1002-6819.2010.08.007.

doi: 10.3969/j.issn.1002-6819.2010.08.007
MAO H L, LI J, JIA Z K, WANG L. Soil water conservation effect, yield and income increments of conservation tillage measures on dryland wheat field. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 44-51. doi:10.3969/j.issn.1002-6819.2010.08.007.(in Chinese)

doi: 10.3969/j.issn.1002-6819.2010.08.007
[38]
李晓莎, 武宁, 刘玲, 冯宇鹏, 徐旭, 韩惠芳, 宁堂原, 李增嘉. 不同秸秆还田和耕作方式对夏玉米农田土壤呼吸及微生物活性的影响. 应用生态学报, 2015, 26(6): 1765-1771. doi:10.13287/j.1001-9332.20150413.004.

doi: 10.13287/j.1001-9332.20150413.004
LI X S, WU N, LIU L, FENG Y P, XU X, HAN H F, NING T Y, LI Z J. Effects of different straw recycling and tillage methods on soil respiration and microbial activity. Chinese Journal of Applied Ecology, 2015, 26(6): 1765-1771. doi:10.13287/j.1001-9332.20150413.004.(in Chinese)

doi: 10.13287/j.1001-9332.20150413.004
[39]
ZHAO X, VIRK A L, MA S T, KAN Z R, QI J Y, PU C, YANG X G, ZHANG H L. Dynamics in soil organic carbon of wheat-maize dominant cropping system in the North China Plain under tillage and residue management. Journal of Environmental Management, 2020, 265: 110549. doi:10.1016/j.jenvman.2020.110549.

doi: 10.1016/j.jenvman.2020.110549
[40]
孙建, 刘苗, 李立军, 刘景辉, 张星杰. 免耕与留茬对土壤微生物量C、N及酶活性的影响. 生态学报, 2009, 29(10): 5508-5515.
SUN J, LIU M, LI L J, LIU J H, ZHANG X J. Influence of non-tillage and stubble on soil microbial biomass and enzyme activities in rain-fed field of Inner Mongolia. Acta Ecologica Sinica, 2009, 29(10): 5508-5515.(in Chinese)
[41]
彭子洋, 刘卫星, 田瑞, 杨森, 王静, 黄俊胜, 杨雅舒, 刘玲莉. 海拔和坡向对唐古拉山土壤胞外酶活性的影响. 生态学报, 2021, 41(19): 7659-7668. doi:10.5846/stxb201909231984.

doi: 10.5846/stxb201909231984
PENG Z Y, LIU W X, TIAN R, YANG S, WANG J, HUANG J S, YANG Y S, LIU L L. Effects of altitude and aspect on soil extracellular enzyme activities in Tanggula Mountain. Acta Ecologica Sinica, 2021, 41(19): 7659-7668. doi:10.5846/stxb201909231984.(in Chinese)

doi: 10.5846/stxb201909231984
[42]
王静, 王磊, 刘耀斌, 章欢, 张辉, 汪吉东, 吴建燕, 张永春. 长期施氮肥对黄棕壤微生物生物性状的影响及其调控因素. 中国生态农业学报(中英文), 2021, 29(5): 833-843.
WANG J, WANG L, LIU Y B, ZHANG H, ZHANG H, WANG J D, WU J Y, ZHANG Y C. Effects and associated regulatory factors of the microbial characteristics of yellow-brown soils following long-term nitrogen fertilization. Chinese Journal of Eco-Agriculture, 2021, 29(5): 833-843.(in Chinese)
[43]
LU X F, HOU E Q, GUO J Y, GILLIAM F S, LI J L, TANG S B, KUANG Y W. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Global Change Biology, 2021, 27(12): 2780-2792. doi:10.1111/gcb.15604.

doi: 10.1111/gcb.15604 pmid: 33742519
[44]
丛萍, 王婧, 董建新, 李玉义, 刘娜, 逄焕成. 秸秆还田对黑土亚表层微生物群落结构的影响特征及原因分析. 农业工程学报, 2020, 36(1): 109-118. doi:10.11975/j.issn.1002-6819.2020.01.013.

doi: 10.11975/j.issn.1002-6819.2020.01.013
CONG P, WANG J, DONG J X, LI Y Y, LIU N, PANG H C. Effects and analysis of straw returning on subsoil microbial community structure in black soil. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 109-118. doi:10.11975/j.issn.1002-6819.2020.01.013.(in Chinese)

doi: 10.11975/j.issn.1002-6819.2020.01.013
[45]
程曼, 解文艳, 杨振兴, 周怀平. 黄土旱塬长期秸秆还田对土壤养分、酶活性及玉米产量的影响. 中国生态农业学报(中英文), 2019, 27(10): 1528-1536.
CHENG M, XIE W Y, YANG Z X, ZHOU H P. Effects of long-term straw return on corn yield, soil nutrient contents and enzyme activities in dryland of the Loess Plateau, China. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1528-1536.(in Chinese)
[46]
张成君, 康文娟, 张翠梅, 薛雨彤, 周彤, 刘畅, 肖海龙, 师尚礼. 基于主成分-聚类分析评价不同轮作模式对土壤肥力的影响. 水土保持学报, 2020, 34(1): 292-300.
ZHANG C J, KANG W J, ZHANG C M, XUE Y T, ZHOU T, LIU C, XIAO H L, SHI S L. Evaluation of the effects of different rotation patterns on soil fertility based on principal component-cluster analysis. Journal of Soil and Water Conservation, 2020, 34(1): 292-300.(in Chinese)
[47]
CHEN Q Y, LIU Z J, ZHOU J B, XU X P, ZHU Y J. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize-wheat rotation on China’s Loess Plateau. Science of the Total Environment, 2021, 775: 145930. doi:10.1016/j.scitotenv.2021.145930.

doi: 10.1016/j.scitotenv.2021.145930
[48]
张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019, 52(10): 1746-1760. doi:10.3864/j.issn.0578-1752.2019.10.008.

doi: 10.3864/j.issn.0578-1752.2019.10.008
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019, 52(10): 1746-1760. doi:10.3864/j.issn.0578-1752.2019.10.008.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.10.008
[49]
陈珊, 丁咸庆, 祝贞科, 王娟, 彭佩钦, 葛体达, 吴金水. 秸秆还田对外源氮在土壤中转化及其微生物响应的影响. 环境科学, 2017, 38(4): 1613-1621. doi:10.13227/j.hjkx.201609219.

doi: 10.13227/j.hjkx.201609219
CHEN S, DING X Q, ZHU Z K, WANG J, PENG P Q, GE T D, WU J S. Effect of straw application on the dynamics of exogenous nitrogen and microbial activity in paddy soil. Environmental Science, 2017, 38(4): 1613-1621. doi:10.13227/j.hjkx.201609219.(in Chinese)

doi: 10.13227/j.hjkx.201609219
[50]
王碧胜, 于维水, 武雪萍, 高丽丽, 李景, 宋霄君, 李生平, 卢晋晶, 郑凤君, 蔡典雄. 不同耕作措施下添加秸秆对土壤有机碳及其相关因素的影响. 中国农业科学, 2021, 54(6): 1176-1187. doi:10.3864/j.issn.0578-1752.2021.06.009.

doi: 10.3864/j.issn.0578-1752.2021.06.009
WANG B S, YU W S, WU X P, GAO L L, LI J, SONG X J, LI S P, LU J J, ZHENG F J, CAI D X. Effects of straw addition on soil organic carbon and related factors under different tillage practices. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187. doi:10.3864/j.issn.0578-1752.2021.06.009.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.06.009
[52]
肖烨, 黄志刚, 肖菡曦, 李友凤, 彭晚霞. 不同水位时期东洞庭湖湿地土壤微生物生物量碳氮和酶活性变化. 应用生态学报, 2021, 32(8): 2958-2966. doi:10.13287/j.1001-9332.202108.036.

doi: 10.13287/j.1001-9332.202108.036
XIAO Y, HUANG Z G, XIAO H X, LI Y F, PENG W X. Changes of soil microbial biomass carbon, nitrogen, and enzyme activities in East Dongting Lake wetlands at different water levels. Chinese Journal of Applied Ecology, 2021, 32(8): 2958-2966. doi:10.13287/j.1001-9332.202108.036.(in Chinese)

doi: 10.13287/j.1001-9332.202108.036
ROLDÁN A, SALINAS-GARCÍA J R, ALGUACIL M M, CARAVACA F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Applied Soil Ecology, 2005, 30(1): 11-20. doi:10.1016/j.apsoil.2005.01.004.

doi: 10.1016/j.apsoil.2005.01.004
[53]
闵凯凯, 何向阳, 吴倩怡, 张冠友, 胡锋, 李辉信, 焦加国. 参与碳氮磷转化的水解酶对不同施肥响应的差异. 土壤, 2020, 52(4): 718-727.
MIN K K, HE X Y, WU Q Y, ZHANG G Y, HU F, LI H X, JIAO J G. Different responses of soil hydrolases involved in transformation of carbon, nitrogen and phosphorus to different fertilizers. Soils, 2020, 52(4): 718-727.(in Chinese)
[54]
MOSCATELLI M C, LAGOMARSINO A, GARZILLO A M V, PIGNATARO A, GREGO S. Β-Glucosidase kinetic parameters as indicators of soil quality under conventional and organic cropping systems applying two analytical approaches. Ecological Indicators, 2012, 13(1): 322-327. doi:10.1016/j.ecolind.2011.06.031.

doi: 10.1016/j.ecolind.2011.06.031
[1] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[2] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[3] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[4] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[5] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[6] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[7] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[8] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[9] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[10] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[11] XIANG XiaoLing,CHEN SongHe,YANG HongKun,YANG YongHeng,FAN GaoQiong. Effects of Straw Mulching and Phosphorus Application on Wheat Yield, Phosphorus Absorption and Utilization in Hilly Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5194-5205.
[12] YIN Wen,GUO Yao,FAN Hong,FAN ZhiLong,HU FaLong,YU AiZhong,ZHAO Cai,CHAI Qiang. Effects of Different Plastic Film Mulching and Using Patterns on Soil Water Use of Maize in Arid Irrigated Area of Northwestern China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4750-4760.
[13] CAO HanBing,XIE JunYu,LIU Fei,GAO JianYong,WANG ChuHan,WANG RenJie,XIE YingHe,LI TingLiang. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching [J]. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622.
[14] REN HaiYing,ZHOU HuiMin,QI XingJiang,ZHENG XiLiang,YU ZhePing,ZHANG ShuWen,WANG ZhenShuo. Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry [J]. Scientia Agricultura Sinica, 2021, 54(17): 3752-3765.
[15] LI Na,SUN ZhanXiang,ZHANG YanQing,LIU EnKe,LI FengMing,LI ChunQian,LI Fei. Contribution of Carbon Sources in Sedimentary Soils Combining Carbon and Nitrogen Isotope with Stable Isotope Model [J]. Scientia Agricultura Sinica, 2021, 54(14): 3057-3064.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!