Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 96-110.doi: 10.3864/j.issn.0578-1752.2022.01.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies

LI ShuaiShuai1(),GUO JunJie1,LIU WenBo1,HAN ChunLong2,JIA HaiFei2,LING Ning1,GUO ShiWei1()   

  1. 1College of Resources and Environmental Sciences, Nanjing Agricultural University/Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing 210095
    2Rugao Institute of Agricultural Sciences, Rugao 226575, Jiangsu
  • Received:2020-12-26 Accepted:2021-04-02 Online:2022-01-01 Published:2022-01-07
  • Contact: ShiWei GUO E-mail:2018103102@njau.edu.cn;sguo@njau.edu.cn

Abstract:

【Objective】 In order to provide a scientific basis for the efficient utilization of phosphorus in farmland, the effects of different rotation systems on the availability of soil phosphorus were explored to evaluate the potential of soil phosphorus activation in different crop rotation systems. 【Method】 The experiment was conducted at Rugao Institute of Agricultural Sciences, Jiangsu Province from 2018 to 2020. Four paddy-upland rotation systems in the experiment included rice-wheat (R-W), rice-oilseed rape (R-O), rice-cabbage (R-C), and rice-fallow (R-F) rotation. Three fertilization treatments under each rotation system were applied, including no fertilization treatment (CK), no phosphate treatment (NK), and NPK fertilization treatment (NPK). The variation patterns and main influencing factors of soil phosphorus balance and availability under different paddy and upland rotation systems were clarified by analyzing the phosphorus uptake by aboveground crops, soil phosphorus fraction contents, soil microbial biomass and soil alkaline phosphatase activity under different phosphorus application conditions in dry season and rice season maturity. 【Result】 The severe imbalance of soil phosphorus under NK treatment resulted in differences in the supplement of soil available phosphorus in different rotation systems. Under NK treatment, R-O rotation could maintain a higher phosphorus output and promote the replenishment of soil available phosphorus. Specifically, the relative content of soil labile phosphorus in R-O rotation in dry season under NK treatment was 5.7%-7.3% lower than that in other rotations, and the relative content of soil moderately labile phosphorus and stable phosphorus were 4.2%-6.4% and 0.9%-1.9% higher than that in other rotations, respectively. However, the relative content of soil moderately labile phosphorus in R-O rotations under NK treatment in rice season was 0.5%-3.0% higher than that under other rotations, and the soil labile phosphorus and stable phosphorus were 0-1.5% and 0.2%-2.3% lower than that under other rotations, respectively. Under NK treatment, the soil microbial biomass C/P ratios of R-O rotation was relatively small in both dry season and rice season, and it was significantly lower than that under R-W rotation in rice season. The soil microbial biomass N/P ratios also had a similar trend. But the soil alkaline phosphatase activity of R-O rotation maintained a high level in both dry season and rice season. The path analysis model showed that the phosphorus accumulation (-0.53) and the soil alkaline phosphatase (-0.51) had the most contribution to the soil available phosphorus in dry season and rice season, respectively. 【Conclusion】 When the soil phosphorus was relatively imbalance, the rice-oilseed rape rotation released more alkaline phosphatase in dry season and regulated the soil microbial biomass C/P ratio in rice season, which was conducive to promoting the activation of the non-labile phosphorus by microorganisms to supplement the labile phosphorus, so as to ensure the relative stable of soil available phosphorus content without affecting phosphorus output.

Key words: rotation system, fertilization strategies, phosphorus availability, phosphorus fractions, microbial biomass, microbial biomass stoichiometric ratio

Fig. 1

Flow chart of the sequential phosphorus extraction[24]"

Table 1

Annual phosphorus surplus and P recovery efficiency under different rotation systems"

施肥处理
Fertilization
treatment
轮作体系
Rotation system
磷肥总投入量
Total P2O5 input (kg·hm-2)
2019年旱季磷携出量
P2O5 removal in dry season 2019 (kg·hm-2)
2019年稻季磷携出量
P2O5 removal in rice season 2019 (kg·hm-2)
磷携出总量
Total P2O5 removal (kg·hm-2)
土壤磷盈余
P2O5 surplus
(kg·hm-2)
磷肥回收率
Precovery
(%)
CK R-W 0 34.9±8.3a 66.1±16.7a 101.1±10.5a -101.1±10.5a
R-O 0 41.2±6.0a 52.4±10.2a 93.6±6.5ab -93.6±6.5ab
R-C 0 15.4±4.4b 65.1±3.2a 80.5±7.6b -80.5±7.6b
R-F 0 54.4±1.1a 54.4±1.1c -54.4±1.1c
NK R-W 0 69.5±3.8a 77.8±9.5bc 147.3±10.6a -147.3±10.6a
R-O 0 69.7±21.7a 73.5±6.4c 143.3±26.2ab -143.3±26.2ab
R-C 0 47.5±10.0a 99.9±10.9ab 147.3±9.9a -147.3±9.9a
R-F 0 109.7±19.8a 109.7±19.8b -109.7±19.8b
NPK R-W 120 72.5±1.8b 90.1±0.5b 162.6±1.7b -42.6±1.7b 12.8±7.5c
R-O 120 98.9±6.7a 83.5±10.5b 182.4±5.5a -62.4±5.5a 32.7±6.2a
R-C 150 71.2±13.8b 129.3±2.6a 200.5±11.2a -50.5±11.2ab 35.5±12.0a
R-F 60 122.4±31.1a 122.4±31.1c -62.4±31.1ab 21.2±4.9ab
轮作 Rotation 13.8*** 9.5*** 20.4*** 4.9***
施肥 Fertilization 55.6*** 38.4*** 100.8*** 96.2**
轮作×施肥
Rotation×Fertilization
1.5ns 2.7* 2.6* 3.4*

Table 2

Soil phosphorus contents and availability under different rotation systems"

施肥处理
Fertilization
treatment
轮作体系
Rotation
system
2019年旱季
Dry season in 2019
2019年稻季
Rice season in 2019
2020年旱季
Dry season in 2020
2020年稻季
Rice season in 2020
全磷
TP
(g·kg-1)
有效磷
AP
(mg·kg-1)
磷活化
系数
PAC(%)
全磷
TP
(g·kg-1)
有效磷
AP
(mg·kg-1)
磷活化
系数
PAC (%)
全磷
TP
(g·kg-1)
有效磷
AP
(mg·kg-1)
磷活化
系数
PAC (%)
全磷
TP
(g·kg-1)
有效磷
AP
(mg·kg-1)
磷活化
系数
PAC (%)
CK R-W 1.09±0.06a 51.7±4.6a 4.7±0.4ab 0.89±0.06a 39.8±3.3a 4.5±0.6a 0.87±0.02a 46.8±6.4a 5.4±0.6a 0.93±0.20ab 46.1±7.9a 5.0±0.4a
R-O 0.92±0.05b 37.0±3.7b 4.0±0.3b 0.91±0.04a 28.7±1.9b 3.2±0.1b 0.86±0.17a 38.7±4.6a 4.6±0.5a 0.85±0.09b 34.8±3.7a 4.1±0.8a
R-C 1.00±0.07ab 52.8±7.2a 5.3±0.6a 0.91±0.06a 35.8±5.0ab 4.0±0.8ab 0.92±0.03a 46.3±8.5a 5.1±1.1a 1.07±0.02a 44.2±8.8a 4.1±0.8a
R-F 1.08±0.07a 54.1±13.8a 5.0±0.8ab 0.93±0.12a 35.7±9.3ab 3.8±0.5ab 0.88±0.10a 42.4±8.3a 4.8±0.7a 0.97±0.10ab 44.7±8.4a 4.6±0.5a
NK R-W 1.02±0.07a 56.6±3.6a 5.6±0.4a 0.93±0.11a 43.3±0.8a 4.7±0.6a 0.74±0.13a 41.1±5.1a 5.6±0.4a 0.90±0.14a 39.0±3.7a 4.5±1.2a
R-O 0.92±0.01a 41.3±10.0b 4.7±0.9a 0.97±0.03a 44.2±3.0a 4.6±0.5a 0.75±0.14a 28.6±3.3b 4.0±1.2a 0.81±0.10a 33.5±3.9a 4.1±0.6a
R-C 1.02±0.07a 57.1±9.2a 5.6±0.6a 1.05±0.05a 51.6±9.1a 4.9±0.7a 0.86±0.09a 42.5±7.8a 4.9±0.8a 0.84±0.11a 46.1±12.4a 5.4±0.9a
R-F 1.01±0.06a 60.2±6.7a 6.0±0.8a 1.05±0.08a 47.4±4.3a 4.5±0.1a 0.85±0.22a 39.4±2.8a 4.9±1.8a 0.96±0.10a 39.0±4.4a 4.1±0.9a
NPK R-W 1.02±0.07a 56.3±1.2ab 5.5±0.3ab 0.95±0.03a 57.1±5.7a 6.0±0.7a 0.81±0.12a 43.4±5.5a 5.4±0.5a 0.77±0.13a 45.3±1.8a 6.0±1.2a
R-O 0.95±0.07a 50.1±6.8b 5.3±0.6b 0.97±0.02a 51.4±7.2a 5.0±0.5a 0.85±0.11a 33.4±8.1a 4.0±1.5a 0.84±0.03a 38.8±3.2a 4.6±0.2a
R-C 1.04±0.09a 65.4±10.0a 6.3±0.6a 0.99±0.11a 58.0±11.8a 5.8±0.5a 0.87±0.09a 42.2±12.6a 4.9±1.6a 0.86±0.22a 43.8±14.0a 5.1±0.8a
R-F 1.05±0.04a 58.6±7.0ab 5.6±0.5ab 0.98±0.07a 50.1±11.1a 5.1±1.0a 0.91±0.04a 44.3±6.0a 4.8±0.7a 0.78±0.08a 47.1±4.6a 6.1±0.9a
轮作 Rotation 6.9** 8.3** 1.9ns 1.5ns 1.6ns 3.7* 1.1ns 4.3* 2.2ns 0.9ns 2.9ns 1.8ns
施肥 Fertilization 1.1ns 3.6* 5.7** 4.4* 22.0*** 24.1*** 1.6ns 1.9ns 0.07ns 3.9* 1.1ns 5.1*
轮作×施肥
Rotation × Fertilization
0.6ns 0.5ns 0.9ns 0.4ns 0.6ns 0.7ns 0.2ns 0.3ns 0.1ns 0.9ns 0.4ns 1.4ns

Fig. 2

Phosphorus fraction contents in dry season (a) and rice season (b) under different rotation systems in 2019 Resin-Pi: Resin extracted phosphorus; NaHCO3-Pi /NaHCO3-Po: 0.5 mol·L-1 NaHCO3 extracted inorganic or organic phosphorus; NaOH-Pi/ NaOH-Po: 0.1 mol·L-1 NaOH extracted inorganic phosphorus or organic phosphorus; d.HCl-Pi: 1 mol·L-1 HCl extracted inorganic phosphorus; c.HCl-Pi/ c.HCl-Po: concentrated hydrochloric acid extracted inorganic or organic phosphorus; Residual-P: Residual phosphorus The data in the figure is the mean ± standard deviation. Different lowercase letters in the same column indicate significant differences at P<0.05 between different rotation systems under the same fertilization treatment in the dry season (or rice season)"

Table 3

Percentage of different phosphorus fraction contents"

时期
Season
施肥处理
Fertilization treatment
轮作制度
Rotation system
不同活性磷组分
Different active phosphorus fraction
不同形态磷组分
Different forms phosphorus fraction
活性磷
Labile P
(%)
中等活性磷
Moderately labile P (%)
稳定性磷
Stable P
(%)
有机磷
Organic P
(%)
无机磷
Inorganic P
(%)
残余态磷
Residual P
(%)
2019年旱季
Dry season
in 2019
CK R-W 15.9±1.1b 65.5±1.7a 18.6±1.7b 10.4±1.3a 77.7±2.8a 12.0±2.0ab
R-O 13.0±1.0c 63.6±2.0a 23.3±2.5a 10.0±1.0a 75.4±2.8a 14.5±2.0a
R-C 13.3±1.5c 63.0±3.9a 23.7±3.1a 9.7±1.5a 76.0±4.0a 14.3±2.6a
R-F 19.4±0.7a 63.2±2.0a 17.4±1.4b 11.4±0.6a 79.2±1.1a 9.3±0.8b
NK R-W 16.8±3.2a 66.5±3.6b 16.7±1.1a 7.4±2.6a 83.4±2.6a 9.3±1.0a
R-O 9.5±1.2b 72.9±1.7a 17.6±0.5a 6.5±0.5a 84.9±0.5a 8.7±0.2a
R-C 15.6±2.2a 68.7±4.3ab 15.7±2.9a 6.1±2.2a 84.9±2.9a 9.0±3.5a
R-F 15.2±1.4a 66.8±3.0ab 18.0±1.7a 6.6±0.3a 82.6±1.6a 10.9±1.8a
NPK R-W 15.2±0.9ab 69.5±1.8a 15.4±1.9ab 7.1±0.5ab 85.1±1.5ab 7.8±1.0a
R-O 11.6±1.4b 68.8±2.2a 19.6±3.6a 8.8±0.8a 80.3±3.6b 10.9±3.3a
R-C 18.3±3.8a 68.0±7.0a 13.7±3.3b 4.0±0.8c 88.6±4.6a 7.3±3.9a
R-F 13.1±2.2b 72.1±1.1a 14.9±1.5ab 6.1±1.4b 86.7±2.1a 7.2±1.3a
轮作Rotation 12.0*** 0.5ns 4.4* 3.6* 2.1ns 1.6ns
施肥 Fertilization 1.1ns 10.9*** 14.8*** 33.4*** 29.7*** 11.4***
轮作×施肥
Rotation × Fertilization
5.0** 1.6ns 3.0* 2.4ns 2.3ns 2.1ns
2019年稻季
Rice season in 2019
CK R-W 15.8±0.1a 69.3±0.4a 14.9±0.6a 7.6±0.7b 85.4±0.6a 6.9±0.5a
R-O 12.3±2.4a 71.2±3.4a 16.5±1.4a 10.2±1.4a 81.7±2.4c 8.1±1.3a
R-C 14.9±3.1a 68.8±2.2a 16.3±1.4a 9.5±0.8a 82.4±0.5bc 8.1±1.1a
R-F 15.1±2.1a 68.7±1.6a 16.2±1.3a 7.8±0.1b 84.7±0.8ab 7.5±0.6a
NK R-W 15.0±3.0a 68.7±1.5a 16.4±2.1a 5.4±0.5ab 86.6±1.4a 8.0±1.1a
R-O 13.4±2.3a 71.6±0.9a 14.9±1.5a 5.9±0.1a 86.6±1.4a 7.4±1.3a
R-C 13.7±1.0a 71.1±3.8a 15.2±3.7a 4.6±0.8b 86.4±4.0a 9.0±4.1a
R-F 13.5±0.6a 69.3±0.2a 17.2±0.5a 5.2±0.6ab 84.4±0.5a 10.4±1.0a
NPK R-W 17.8±1.9a 68.4±2.7a 13.8±1.1a 6.9±0.3ab 86.1±1.2ab 7.0±1.0a
R-O 15.4±0.9a 69.4±2.5a 15.2±3.2a 5.0±1.9bc 86.8±2.4ab 8.2±2.9a
R-C 17.7±4.7a 68.4±2.6a 13.9±2.1a 3.9±0.4c 89.0±0.5a 7.0±0.9a
R-F 15.1±2.3a 67.6±0.6a 17.3±2.7a 7.1±0.9a 83.8±2.7b 9.0±1.9a
轮作Rotation 1.8ns 1.8ns 1.6ns 2.2ns 1.7ns 1.3ns
施肥 Fertilization 3.9* 2.0ns 0.8ns 58.2*** 8.3** 1.2ns
轮作×施肥
Rotation × Fertilization
0.4ns 0.3ns 0.8ns 7.5*** 2.9* 0.7ns

Fig. 3

Correlation analysis of soil available phosphorus content and its potential influencing factors (n=36) ns: Indicates not significant; * Indicates P<0.05, ** Indicates P<0.01"

Table 4

Soil microbial characteristics under different rotation systems"

时期
Season
施肥处理
Fertilization treatment
轮作制度
Rotation system
微生物量碳MBC
(mg·kg-1)
微生物量氮MBN
(mg·kg-1)
微生物量磷MBP
(mg·kg-1)
微生物量
碳氮比
MBC/MBN
微生物量
碳磷比
MBC/MBP
微生物量
氮磷比MBN/MBP
碱性磷酸酶
ALP
(μg·g-1·h-1)
2019年旱季
Dry season
in 2019
CK R-W 639.9±81.2ab 59.9±13.7bc 18.9±3.1a 11.0±2.1b 34.1±3.4b 3.1±0.3c 277.3±61.4c
R-O 590.3±52.1b 67.7±2.1b 13.5±2.5b 8.7±1.0bc 44.2±5.4b 5.1±1.1b 441.4±59.9ab
R-C 744.7±54.9a 45.1±1.9c 21.1±1.6a 16.5±1.1a 35.4±3.4b 2.1±0.2c 386.5±93.4bc
R-F 646.8±110.1ab 84.9±9.4a 10.1±0.3b 7.7±0.9c 64.2±8.6a 8.4±1.1a 459.6±85.7a
NK R-W 1174.1±67.4a 96.4±15.7ab 21.8±3.5a 12.3±1.3a 55.1±11.7a 4.6±1.4a 231.6±19.6a
R-O 1157.0±94.0a 99.9±0.1a 15.8±4.8a 11.6±0.9a 77.5±23.7a 6.7±2.1a 259.4±41.7a
R-C 1190.4±85.4a 84.7±37.9b 15.7±4.7a 14.0±0.4a 77.8±14.5a 5.5±1.1a 257.7±84.0a
R-F 1206.4±78.4a 93.5±18.6ab 15.3±2.8a 13.2±2.6a 80.2±12.5a 6.1±0.4a 258.4±45.0a
NPK R-W 1380.1±77.9b 121.3±7.3a 17. 5±1.7a 11.4±0.8b 79.4±6.3c 7.0±1.1a 250.9±39.6a
R-O 1657.1±16.3a 120.1±3.1a 13.8±1.4b 13.8±0.3ab 120.4±10.9b 8.7±0.8a 301.2±30.4a
R-C 1487.5±75.3b 112.2±11.7ab 9.5±2.9c 13.4±1.9ab 162.2±38.4a 12.3±3.7a 238.4±98.4a
R-F 1398.5±74.2b 96.5±12.5b 9.2±0.2c 14.6±1.6a 151.7±9.6ab 10.5±1.3a 289.8±22.0a
轮作Rotation 2.6ns 3.2* 14.0*** 10.9*** 12.9*** 7.6** 4.0*
施肥 Fertilization 425.7*** 69.2*** 10.3** 9.3** 90.1*** 34.8*** 20.1***
轮作×施肥
Rotation × Fertilization
5.0** 4.8** 4.1** 8.7*** 4.1** 5.0** 1.4ns
2019年稻季
Rice season
in 2019
CK R-W 742.7±13.6a 87.9±5.7a 14.4±4.4a 8.5±0.4a 55.3±18.4a 6.6±2.3a 291.6±67.5a
R-O 810.6±55.6a 76.8±7.5ab 12.6±2.4a 10.6±1.1a 66.3±15.1a 6.3±1.5a 338.5±40.1a
R-C 679.2±105.8a 71.2±25.1ab 15.7±7.6a 10.7±5.4a 53.1±32.4a 5.0±1.9a 308.5±50.3a
R-F 781.5±92.1a 54.0±7.7b 13.1±2.1a 14.8±3.9a 61.5±16.9a 4.2±0.5a 310.2±32.1a
NK R-W 395.2±69.5a 45.1±1.3b 15.1±4.8c 8.8±1.7a 28.1±10.9a 3.2±1.0a 254.3±48.0a
R-O 328.9±119.2a 54.4±19.0ab 27.0±1.7b 6.0±0.3ab 12.0±3.8b 2.0±0.6b 276.3±21.4a
R-C 221.7±104.1a 78.2±10.0a 38.1±5.9a 3.0±1.8c 6.2±3.8b 2.1±0.2b 241.5±99.1a
R-F 214.8±106.3a 41.6±10.4b 40.8±2.6a 5.0±1.6bc 5.2±2.6b 1.0±0.3b 229.3±31.9a
NPK R-W 740.4±42.1b 59.9±16.5a 12.5±1.9c 12.9±3.1a 59.9±7.7a 4.7±0.7a 263.5±70.1a
R-O 656.6±22.6b 78.3±6.4a 32.3±7.7b 8.4±0.7a 21.0±4.1b 2.5±0.6b 237.3±21.6a
R-C 743.3±86.5b 71.4±19.8a 40.7±4.6b 11.1±3.5a 18.6±4.4b 1.8±0.4bc 226.2±38.1a
R-F 907.2±51.0a 80.9±8.6a 56.0±2.9a 11.2±0.7a 16.2±1.0b 1.4±0.2c 178.1±25.9b
轮作Rotation 2.2ns 2.2ns 42.3*** 1.7ns 4.9** 9.6*** 1.3ns
施肥 Fertilization 138.8*** 7.3** 72.9*** 17.7*** 36.8*** 35.1*** 9.2**
轮作×施肥
Rotation × Fertilization
4.1** 3.8** 13.0*** 3.0* 2.4ns 0.7ns 0.6ns

Fig. 4

The contribution of each influencing factor to soil available phosphorus in dry season (a) and rice season (b) based on the PLS-PM model and the total effect of each influencing factor in the dry season (c) and rice season (d) in 2019 The solid line indicates that the action path is significant, and the dotted line indicates that the action path is not significant; the thickness of the line indicates the size of the path coefficient"

[1] BALEMI T, NEGISHO K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review. Journal of Soil Science and Plant Nutrition, 2012(ahead).doi: 10.4067/s0718-95162012005000015.
doi: 10.4067/s0718-95162012005000015
[2] 马进川. 我国农田磷素平衡的时空变化与高效利用途径[D]. 北京: 中国农业科学院, 2018.
MA J C. Temporal and spatial variation of phosphorus balance and solutions to improve phosphorus use efficiency in Chinese arable land[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[3] LUEDERS T, KINDLER R, MILTNER A, FRIEDRICH M W, KAESTNER M. Identification of bacterial micropredators distinctively active in a soil microbial food web. Applied and Environmental Microbiology, 2006, 72(8): 5342-5348. doi: 10.1128/AEM.00400-06.
doi: 10.1128/AEM.00400-06
[4] BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology & Biotechnology, 2012, 28(4): 1327-1350. doi: 10.1007/s11274-011-0979-9.
doi: 10.1007/s11274-011-0979-9
[5] ZHANG H Z, SHI L L, WEN D Z, YU K L. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biology and Fertility of Soils, 2016, 52(1): 41-51. doi: 10.1007/s00374-015-1053-9.
doi: 10.1007/s00374-015-1053-9
[6] MENEZES-BLACKBURN D, GILES C, DARCH T, GEORGE T S, BLACKWELL M, STUTTER M, SHAND C, LUMSDON D, COOPER P, WENDLER R, BROWN L, ALMEIDA D S, WEARING C, ZHANG H, HAYGARTH P M. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant and Soil, 2018, 427(1): 5-16. doi: 10.1007/s11104-017-3362-2.
doi: 10.1007/s11104-017-3362-2
[7] 范明生, 江荣风, 张福锁, 吕世华, 刘学军. 水旱轮作系统作物养分管理策略. 应用生态学报, 2008, 19(2): 424-432.
FAN M S, JIANG R F, ZHANG F S, LÜ S H, LIU X J. Nutrient management strategy of paddy rice-upland crop rotation system. Chinese Journal of Applied Ecology, 2008, 19(2): 424-432. (in Chinese)
[8] POWERS S M, BRUULSEMA T W, BURT T P, CHAN N L, ELSER J J, HAYGARTH P M, HOWDEN N J K, JARVIE H P, YANG L, PETERSON H M, SHARPLEY A N, SHEN J B, WORRALL F, ZHANG F S. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9(5): 353-357. doi: 10.1038/NGEO2693.
doi: 10.1038/NGEO2693
[9] FLESSA H, FISCHER W R. Plant-induced changes in the redox potentials of rice rhizospheres. Plant and Soil, 1992, 143(1): 55-60. doi: 10.1007/BF00009128.
doi: 10.1007/BF00009128
[10] LINDSAY W L, NORVELL W A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 1978, 42(3): 421-428. doi: 10.2136/sssaj1978.03615995004200030009x.
doi: 10.2136/sssaj1978.03615995004200030009x
[11] 刘学军, 吕世华, 张福锁, 毛达如. 水肥状况对土壤剖面中锰的移动和水稻吸锰的影响. 土壤学报, 1999, 36(3): 369-376.
LIU X J, LÜ S H, ZHANG F S, MAO D R. Effect of water and fertilization on movement of manganese in soils and on its uptake by rice. Acta Pedologica Sinica, 1999, 36(3): 369-376. (in Chinese)
[12] 鲁如坤, 蒋柏藩, 牟润生. 磷肥对水稻和旱作的肥效及其后效的研究. 土壤学报, 1965, 2(2): 152-160.
LU R K, JIANG P F, MU Y S. Studies on the methods of application of phosphatic fertilizer in relation to the yield of crops. Acta Pedologica Sinica, 1965, 2(2): 152-160. (in Chinese)
[13] FAN Y X, ZHONG X J, LIN F, LIU C, YANG L M, WANG M H, CHEN G S, CHEN Y, YANG Y S. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 2019, 337: 246-255. doi: 10.1016/j.geoderma.2018.09.028.
doi: 10.1016/j.geoderma.2018.09.028
[14] PII Y, MIMMO T, TOMASI N, TERZANO R, CESCO S, CRECCHIO C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 2015, 51(4): 403-415. doi: 10.1007/s00374-015-0996-1.
doi: 10.1007/s00374-015-0996-1
[15] BÜNEMANN E K, KELLER B, HOOP D, JUD K, BOIVIN P, FROSSARD E. Increased availability of phosphorus after drying and rewetting of a grassland soil: Processes and plant use. Plant and Soil, 2013, 370(1): 511-526. doi: 10.1007/s11104-013-1651-y.
doi: 10.1007/s11104-013-1651-y
[16] ROMANYÀ J, ROVIRA P. Organic and inorganic P reserves in rain-fed and irrigated calcareous soils under long-term organic and conventional agriculture. Geoderma, 2009, 151(3/4): 378-386. doi: 10.1016/j.geoderma.2009.05.009.
doi: 10.1016/j.geoderma.2009.05.009
[17] RICHARDSON A E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 2001, 28(9): 897. doi: 10.1071/pp01093.
doi: 10.1071/pp01093
[18] DELUCA T H, GLANVILLE H C, HARRIS M, EMMETT B A, PINGREE M R A, DE SOSA L L, CERDÁ-MORENO C, JONES D L. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biology and Biochemistry, 2015, 88: 110-119. doi: 10.1016/j.soilbio.2015.05.016.
doi: 10.1016/j.soilbio.2015.05.016
[19] ROSLING A, MIDGLEY M G, CHEEKE T, URBINA H, FRANSSON P, PHILLIPS R P. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist, 2016, 209(3): 1184-1195. doi: 10.1111/nph.13720.
doi: 10.1111/nph.13720
[20] PISTOCCHI C, MÉSZÁROS É, TAMBURINI F, FROSSARD E, BÜNEMANN E K. Biological processes dominate phosphorus dynamics under low phosphorus availability in organic horizons of temperate forest soils. Soil Biology and Biochemistry, 2018, 126: 64-75. doi: 10.1016/j.soilbio.2018.08.013.
doi: 10.1016/j.soilbio.2018.08.013
[21] TANG X, SHI X, MA Y, HAO X. Phosphorus efficiency in a long-term wheat-rice cropping system in China. The Journal of Agricultural Science, 2011, 149(3): 297-304. doi: 10.1017/s002185961000081x.
doi: 10.1017/s002185961000081x
[22] YADVINDER-SINGH, DOBERMANN A, BIJAY-SINGH, BRONSON K F, KHIND C S. Optimal phosphorus management strategies for wheat-rice cropping on a loamy sand. Soil Science Society of America Journal, 2000, 64(4): 1413-1422. doi: 10.2136/sssaj2000.6441413x.
doi: 10.2136/sssaj2000.6441413x
[23] HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi: 10.2136/sssaj1982.03615995004600050017x.
doi: 10.2136/sssaj1982.03615995004600050017x
[24] MOIR J, TIESSEN H. Characterization of available P by sequential extraction//Soil Sampling and Methods of Analysis. 2nd ed. CRC Press, 2007.
[25] MALTAIS-LANDRY G, SCOW K, BRENNAN E, TORBERT E, VITOUSEK P. Higher flexibility in input N: P ratios results in more balanced phosphorus budgets in two long-term experimental agroecosystems. Agriculture, Ecosystems & Environment, 2016, 223: 197-210. doi: 10.1016/j.agee.2016.03.007.
doi: 10.1016/j.agee.2016.03.007
[26] 孙博, 李帅帅, 周毅, 张莹, 陈健, 刘田, 郭俊杰, 凌宁, 郭世伟. 不同轮作模式下优化施肥对水稻产量及磷素积累与分配的影响. 南京农业大学学报, 2020, 43(4): 658-666.
SUN B, LI S S, ZHOU Y, ZHANG Y, CHEN J, LIU T, GUO J J, LING N, GUO S W. Effects of optimized fertilization on rice yield and accumulation and distribution of phosphorus under different rotation systems. Journal of Nanjing Agricultural University, 2020, 43(4): 658-666. (in Chinese)
[27] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[28] CROSS A F, SCHLESINGER W H. A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 1995, 64(3/4): 197-214. doi: 10.1016/0016-7061(94)00023-4.
doi: 10.1016/0016-7061(94)00023-4
[29] BROOKES P C, POWLSON D S, JENKINSON D S. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 1982, 14(4): 319-329. doi: 10.1016/0038-0717(82)90001-3.
doi: 10.1016/0038-0717(82)90001-3
[30] WU J, JOERGENSEN R G, POMMERENING B, CHAUSSOD R, BROOKES P C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. doi: 10.1016/0038-0717(90)90046-3.
doi: 10.1016/0038-0717(90)90046-3
[31] BROOKES P C, LANDMAN A, PRUDEN G, JENKINSON D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17(6): 837-842. doi: 10.1016/0038-0717(85)90144-0.
doi: 10.1016/0038-0717(85)90144-0
[32] NANNIPIERI P, GIAGNONI L, LANDI L, RENELLA G. Role of phosphatase enzymes in soil//Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 215-243. doi: 10.1007/978-3-642-15271-9_9.
doi: 10.1007/978-3-642-15271-9_9
[33] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1): 27-37. doi: 10.1007/s11104-013-1696-y.
doi: 10.1007/s11104-013-1696-y
[34] 黄晶, 张杨珠, 徐明岗, 高菊生. 长期施肥下红壤性水稻土有效磷的演变特征及对磷平衡的响应. 中国农业科学, 2016, 49(6): 1132-1141. doi: 10.3864/j.issn.0578-1752.2016.06.009.
doi: 10.3864/j.issn.0578-1752.2016.06.009
HUANG J, ZHANG Y Z, XU M G, GAO J S. Evolution characteristics of soil available phosphorus and its response to soil phosphorus balance in paddy soil derived from red earth under long-term fertilization. Scientia Agricultura Sinica, 2016, 49(6): 1132-1141. doi: 10.3864/j.issn.0578-1752.2016.06.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.06.009
[35] LU S, LEPO J E, SONG H X, GUAN C Y, ZHANG Z H. Increased rice yield in long-term crop rotation regimes through improved soil structure, rhizosphere microbial communities, and nutrient bioavailability in paddy soil. Biology and Fertility of Soils, 2018, 54(8): 909-923. doi: 10.1007/s00374-018-1315-4.
doi: 10.1007/s00374-018-1315-4
[36] WEAND M P, ARTHUR M A, LOVETT G M, SIKORA F, WEATHERS K C. The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry, 2010, 97(2): 159-181. doi: 10.1007/s10533-009-9364-2.
doi: 10.1007/s10533-009-9364-2
[37] ZHANG H Z, SHI L L, LU H B, SHAO Y H, LIU S R, FU S L. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Science of the Total Environment, 2020, 732: 139295. doi: 10.1016/j.scitotenv.2020.139295.
doi: 10.1016/j.scitotenv.2020.139295
[38] WANG Y L, ALMVIK M, CLARKE N, EICH-GREATOREX S, ØGAARD A F, KROGSTAD T, LAMBERS H, CLARKE J L. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AoB PLANTS, 2015, 7(10.1093): aobpla. doi: 10.1093/aobpla/plv097.
doi: 10.1093/aobpla/plv097
[39] VERMA S, SUBEHIA S K, SHARMA S P. Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biology and Fertility of Soils, 2005, 41(4): 295-300. doi: 10.1007/s00374-004-0810-y.
doi: 10.1007/s00374-004-0810-y
[40] ZHU W B, ZHAO X, WANG S Q, WANG Y. Inter-annual variation in P speciation and availability in the drought-rewetting cycle in paddy soils. Agriculture, Ecosystems & Environment, 2019, 286: 106652. doi: 10.1016/j.agee.2019.106652.
doi: 10.1016/j.agee.2019.106652
[41] FAN Y X, LIN F, YANG L M, ZHONG X J, WANG M H, ZHOU J C, CHEN Y, YANG Y S. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biology and Fertility of Soils, 2018, 54(1): 149-161. doi: 10.1007/s00374-017-1251-8.
doi: 10.1007/s00374-017-1251-8
[42] YANG K, ZHU J J, GU J C, YU L Z, WANG Z Q. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Annals of Forest Science, 2015, 72(4): 435-442. doi: 10.1007/s13595-014-0444-7.
doi: 10.1007/s13595-014-0444-7
[43] HEUCK C, WEIG A, SPOHN M. Soil microbial biomass C: N: P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry, 2015, 85: 119-129. doi: 10.1016/j.soilbio.2015.02.029.
doi: 10.1016/j.soilbio.2015.02.029
[44] YUAN H Z, LIU S L, RAZAVI B S, ZHRAN M, WANG J R, ZHU Z K, WU J S, GE T D. Differentiated response of plant and microbial C: N: P stoichiometries to phosphorus application in phosphorus-limited paddy soil. European Journal of Soil Biology, 2019, 95: 103122. doi: 10.1016/j.ejsobi.2019.103122.
doi: 10.1016/j.ejsobi.2019.103122
[45] TISCHER A, POTTHAST K, HAMER U. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 2014, 175(1): 375-393. doi: 10.1007/s00442-014-2894-x.
doi: 10.1007/s00442-014-2894-x
[46] HE Z L, WU J, O’DONNELL A G, SYERS J K. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biology and Fertility of Soils, 1997, 24(4): 421-428. doi: 10.1007/s003740050267.
doi: 10.1007/s003740050267
[47] WANG J P, WU Y H, ZHOU J, BING H J, SUN H Y. Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development. Biology and Fertility of Soils, 2016, 52(6): 825-839. doi: 10.1007/s00374-016-1123-7.
doi: 10.1007/s00374-016-1123-7
[48] ACUÑA J J, DURÁN P, LAGOS L M, OGRAM A, DE LA LUZ MORA M, JORQUERA M A. Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments. Biology and Fertility of Soils, 2016, 52(6): 763-773. doi: 10.1007/s00374-016-1113-9
doi: 10.1007/s00374-016-1113-9
[49] 袁佳慧. 太湖稻麦轮作农田土壤磷素生物有效性研究[D]. 哈尔滨: 东北农业大学, 2018.
YUAN J H. Availability of soil P in A rice-wheat cropping rotation in Taihu lake region[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese)
[1] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[2] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[3] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[4] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[5] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[6] ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850.
[7] JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594.
[8] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[9] ShiChao WANG,ZhiHao YAN,JinYu WANG,ShengChang HUAI,HongLiang WU,TingTing XING,HongLing YE,ChangAi LU. Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields [J]. Scientia Agricultura Sinica, 2020, 53(4): 782-794.
[10] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[11] LI RuoNan,WANG ZhengPei,BATBAYAR Javkhlan,ZHANG DongJie,ZHANG ShuLan,YANG XueYun. Relationship Between Soil Available Phosphorus and Inorganic Phosphorus Forms Under Equivalent Organic Matter Condition in a Tier Soil [J]. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865.
[12] SHI Ke, DONG ShiGang, SHEN FengMin, LONG Qian, JIANG GuiYing, LIU Fang, LIU ShiLiang. Effects of Wheat Seeding Rate with Nitrogen Fertilizer Application Reduction on Soil Microbial Biomass Carbon, Nitrogen and Enzyme Activities in Fluvo-Aquic Soil in Huang-Huai Plain [J]. Scientia Agricultura Sinica, 2019, 52(15): 2646-2663.
[13] CHEN XiaoFen, LIU Ming, JIANG ChunYu, WU Meng, LI ZhongPei. Organic Carbon Mineralization in Aggregate Fractions of Red Paddy Soil Under Different Fertilization Treatments [J]. Scientia Agricultura Sinica, 2018, 51(17): 3325-3334.
[14] WEN YanChen, ZHANG YueDong, YUAN Liang, LI Wei1, LI YanQing, LIN ZhiAn, ZHAO BingQiang. Crop Yield and Soil Fertility Response to Commercial Organic Fertilizer Substituting Chemical Fertilizer [J]. Scientia Agricultura Sinica, 2018, 51(11): 2136-2142.
[15] REN FengLing, ZHANG XuBo, SUN Nan, XU MingGang, LIU KaiLou. A Meta-Analysis of Manure Application Impact on Soil Microbial Biomass Across China’s Croplands [J]. Scientia Agricultura Sinica, 2018, 51(1): 119-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!