Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (4): 768-779.doi: 10.3864/j.issn.0578-1752.2021.04.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization

LEI HaoJie1(),LI GuiChun2,KE HuaDong1,WEI Lai1,DING WuHan1,XU Chi1,LI Hu1()   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Research Center for Agricultural Green Development in China, Beijing 100081
    2Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2020-05-19 Accepted:2020-09-11 Online:2021-02-16 Published:2021-02-16
  • Contact: Hu LI E-mail:haojielink@126.com;lihu0728@sina.com

Abstract:

【Objective】The aim of this study was to ascertain the impact differences and emission reduction contribution of drip irrigation and fertilization on N2O emissions from farmland of typical planting types in North China, and to clarify its comprehensive control mechanism, so as to provide scientific support and technical reserves for the optimization and control of regional agricultural production carbon and nitrogen and the promotion and application of drip fertilization technology in North China.【Method】Two typical crop planting modes (winter wheat-summer corn rotation and facility vegetable fields) were selected as the research objects, and four treatments were set, namely control (CK), conventional flood irrigation fertilization (FP), drip irrigation fertilization (FPD), and drip irrigation Optimized fertilization (OPTD). Continuous static observation and analysis of soil N2O emissions from these two systems were performed by using automatic static chamber-gas chromatography.【Result】The changes of N2O fluxes from the two crop systems were significantly positively correlated with the soil temperature of 5cm (P<0.05), and both crop systems had the highest N2O emission peak during the basal fertilizer period. In the greenhouse vegetable and food crop systems, the total cumulative N2O emissions of FP treatment were the highest, reaching (5.47±0.23) and (1.70±0.02) kg N·hm-2, respectively. For the N2O emission intensity per unit yield, the FP treatment in the facility vegetable system was (159.72±2.47) g N·t-1, which was much lower than the grain crop system (258.41±6.35) g N·t-1. The focus of future N2O emission reduction was still food crop production. Drip irrigation and fertilization could significantly reduce the total N2O emissions of the two systems. Compared with FP treatment, drip irrigation and fertilization in facility vegetable systems could significantly reduce the total N2O emissions by 19.0% (P<0.05), while in food crop systems could be reduced by 35.0% (P<0.05). In addition, when the nitrogen application rates of the two systems were reduced by 50% and 30%, the emission reduction contribution was expanded to 30.2% and 45.8%, respectively, while ensuring crop yields.【Conclusion】There were obvious differences in the characteristics of soil N2O emissions from facility vegetable and food crop systems. The N2O emission intensity of food crop production was significantly higher than that of facility vegetable production, and the further attention should be paid. At the same time, drip irrigation and fertilization technology could reduce N2O emissions in two typical crop systems in North China farmland, but it had a greater contribution to N2O emission reduction in the winter wheat-summer corn rotation system, and it had the potential for further application in the North China Plain.

Key words: drip irrigation and fertilization, facility vegetables, food crops, N2O, emission reduction contribution

Table 1

Physical and chemical properties of soil foundation of the tested farmland"

试验点
Site
有机质
SOM
(g·kg-1)
pH 有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
容重
Bulk density (g·cm-3)
全氮
Total N
(g·kg-1)
铵态氮
NH4+-N (mg·kg-1)
硝态氮
NO3--N (mg·kg-1)
顺义Shunyi 14.3 7.2 1.22 128.1 1.69 11.7 3.2 147.5
桓台Huantai 19.6 29.81 167.9 1.58 0.7 18.4

Table 2

Total fertilizer and irrigation rate in different treatments"

试验点
Site
处理
Treatment
有机肥
Organic fertilizer (kg N·hm-2)
化肥 Fertilizer (kg N·hm-2) 灌溉方式
Irrigation method
总灌溉量
Irrigation water (mm)
施肥灌溉日期
Date
N P2O5 K2O
顺义
Shunyi
CK 500 0 120 200 漫灌Flood 365 9/13;10/12;11/1;11/20;12/4
FP 500 700 120 200 漫灌Flood 365
FPD 500 700 120 200 滴灌Drip 269
OPTD 500 350 120 200 滴灌Drip 269
桓台
Huantai
CK 0 84.7 118.3 漫灌Flood 591 10/14;11/7;4/6;4/30;5/13;5/28
FP 270 84.7 118.3 漫灌Flood 591
FPD 270 84.7 118.3 滴灌Drip 591
OPTD 189 84.7 118.3 滴灌Drip 591

Fig. 1

N2O emission flux of each treatment in facility vegetable system and food crop system The red downward arrow in the figure represents each fertilization and irrigation event"

Fig. 2

Correlation analysis of N2O emission flux with 5 cm soil temperature, WFPS and air temperature The size of the circle or triangle in the figure represents the value of the correlation coefficient. The larger the size, the larger the correlation coefficient"

Table 3

Cumulative emissions and emission coefficients of the facility vegetable system and food crop system"

处理
Treatment
设施菜地系统 Facility vegetable system 粮食作物系统 Food crop system
排放总量
Cumulative emissions (kg N·hm-2)
排放系数
Emission coefficient (%)
排放总量
Cumulative emissions (kg N·hm-2)
排放系数
Emission coefficient (%)
CK 1.50±0.12d 0.43±0.02d
FP 5.47±0.23a 0.57±0.05a 1.70±0.02a 0.47±0.01a
FPD 4.43±0.14b 0.42±0.00b 1.11±0.03b 0.29±0.01b
OPTD 3.82±0.06c 0.66±0.04a 0.92±0.10c 0.31±0.04b

Fig. 3

N2O emission intensity of each treatment in facility vegetable system and food crop system respectively"

[1] 李晓冉, 张银平, 刁培松, 王振伟, 姚文燕, 王占滨. 我国蔬菜生产概况及精量播种机研究现状. 农机化研究, 2021,43(5):263-268.
LI X R, ZHANG Y P, DIAO P S, WANG Z W, YAO W Y, WANG Z B. General situation of vegetable production and research status of precision seeder in China. Journal of Agricultural Mechanization Research, 2021,43(5):263-268. (in Chinese)
[2] 李世楠. 我国设施蔬菜产业发展现状与未来发展趋势探讨. 中国林副特产, 2019(1):84-85.
LI S N. Discussion on the development status and future development trend of my country's protected vegetable industry. Forest By-Product and Speciality in China, 2019(1):84-85. (in Chinese)
[3] 李若楠, 武雪萍, 张彦才, 王丽英, 陈丽莉, 翟凤芝. 节水减氮对温室土壤硝态氮与氮素平衡的影响. 中国农业科学, 2016,49(4):695-704.
LI R N, WU X P, ZHANG Y C, WANG L Y, CHEN L L, ZHAI F Z. Effects of reduced application of nitrogen and irrigation on soil nitrate nitrogen content and nitrogen balance in greenhouse production. Scientia Agricultura Sinica, 2016,49(4):695-704. (in Chinese)
[4] 邱建军, 王立刚. 环渤海区域农业碳氮平衡定量评价及调控技术研究. 北京: 科学技术出版社, 2012.
QIU J J, WANG L G. Study on agricultural C, N balance and mitigation technique in Bohai Coastal Region. Beijing:Science and Technology Press, 2012. (in Chinese)
[5] 裴淑玮, 张圆圆, 刘俊锋, 伦小秀, 牟玉静. 华北平原玉米-小麦轮作农田N2O交换通量的研究. 环境科学, 2012,33(10):3641-3646.
PEI S W, ZHANG Y Y, LIU J F, LUN X X, MOU Y J. N2O exchange fluxes from wheat-maize crop rotation system in the North China Plain. Environmental Science, 2012,33(10):3641-3646. (in Chinese)
[6] 高祥照, 杜森, 钟永红, 吴勇, 张赓. 水肥一体化发展现状与展望. 中国农业信息, 2015(2):14-19, 63.
GAO X Z, DU S, ZHONG Y H, WU Y, ZHANG Q. The present situation and prospect of the integrated development of water and fertilizer. China Agricultural Information, 2015(2):14-19, 63. (in Chinese)
[7] FEIGIN A, LETEY J, JARRELL W M. N utilization efficiency by drip irrigated celery receiving preplant or water applied N fertilizer. Agronomy Journal, 1982,74(6):978-983.
[8] 白由路. 高效施肥技术研究的现状与展望. 中国农业科学, 2018,51(11):2116-2125.
BAI Y L. The situation and prospect of research on efficient fertilization. Scientia Agricultura Sinica, 2018,51(11):2116-2125. (in Chinese)
[9] 农业部办公厅. 推进水肥一体化实施方案(2016-2020年). 2017-11-27. http://www.moa.gov.cn/nybgb/2016/diwuqi/201711/t20171127_ 5920793.htm.
General Office of the Ministry of Agriculture. Fertigation implementation (2016-2020). 2017-11-27. http://www.moa.gov.cn/nybgb/2016/diwuqi/201711/t20171127_ 5920793.htm.(in Chinese)
[10] TYAGI L, KUMARI B, SINGH S N. Water management-A tool for methane mitigation from irrigated paddy fields. Science of the Total Environment, 2010,408:1085-1090.
[11] ROBERTSON G P, GROFFIMAN P M. Nitrogen transformations// Paul E A. Soil Microbiology, Ecology and Biochemistry. Massachusetts: Academic Press, 2015: 421-446.
[12] 王艳丽, 李虎, 孙媛, 王立刚. 水肥一体化条件下设施菜地的N2O排放. 生态学报, 2016,36(7):2005-2014.
WANG Y L, LI H, SUN Y, WANG L G. N2O emissions from a vegetable field with fertigation management and under greenhouse conditions. Acta Ecologica Sinica, 2016,36(7):2005-2014. (in Chinese)
[13] 张西超, 叶旭红, 韩冰, 李文, 范庆锋, 邹洪涛, 张玉龙. 灌溉方式对设施土壤温室气体排放的影响. 环境科学研究, 2016,29(10):1487-1496.
ZHANG X C, YE X H, HAN B, LI W, FAN Q F, ZOU H T, ZHANG Y L. Effects of irrigation methods on emissions of greenhouse gases from facilities soil. Research of Environmental Sciences, 2016,29(10):1487-1496. (in Chinese)
[14] 陈静, 王迎春, 李虎, 王立刚, 邱建军, 肖碧林. 滴灌施肥对冬小麦农田土壤NO3--N分布、累积及氮素平衡的影响 . 植物营养与肥料学报, 2015,21(4):927-935.
CHEN J, WANG Y C, LI H, WANG L G, QIU J J, XIAO B L. Characteristics soil nitrate nitrogen distribution,accumulation and nitrogen balance in winter wheat field under drip fertigation. Journal of Plant Nutrition and Fertilizers, 2015,21(4):927-935. (in Chinese)
[15] 王维汉, 毛前, 严爱兰. 滴灌下青椒地N2O排放规律研究. 中国农村水利水电, 2014(7):31-34.
WANG W H, MAO Q, YAN A L. N2O emission from green pepper field under drip irrigation. China Rural Water and Hydropower, 2014(7):31-34. (in Chinese)
[16] 郭树芳, 齐玉春, 尹飞虎, 彭琴, 董云社, 贺云龙, 闫钟清. 不同灌溉方式对华北平原冬小麦田土壤CO2和N2O排放通量的影响. 环境科学, 2016,37(5):1880-1890.
GUO S F, QI Y C, YIN F H, PENG Q, DONG Y S, HE Y L, YAN Z Q. Effect of irrigation patterns on soil CO2 and N2O emissions from winter wheat field in North China plain. Environmental Science, 2016,37(5):1880-1890. (in Chinese)
[17] KENNEDY T L, SUDDICK E C, SIX J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agriculture, Ecosystems & Environment, 2013,170:16-27.
[18] HUA K, ZHU B, WANG X. Soil organic carbon loss from carbon dioxide and methane emissions, as well as runoff and leaching on a hillslope of Regosol soil in a wheat-maize rotation. Nutrient Cycling in Agro-ecosystems, 2015,103(1):75-86.
[19] 谢海宽, 江雨倩, 李虎, 徐驰, 丁武汉, 王立刚, 张婧. 北京设施菜地N2O和NO排放特征及滴灌优化施肥的减排效果. 植物营养与肥料学报, 2019,25(4):591-600.
XIE H K, JIANG Y Q, LI H, XU C, DING W H, WANG L G, ZHANG J. N2O and NO emissions from greenhouse vegetable fields and the mitigation efficacy of the optimized fertigation in Beijing. Journal of Plant Nutrition and Fertilizers, 2019,25(4):591-600. (in Chinese)
[20] 张仲新, 李玉娥, 华珞, 万运帆, 姜宁宁. 不同施肥量对设施菜地N2O排放通量的影响. 农业工程学报, 2010,26(5):269-275.
ZHANG Z X, LI Y E, HUA L, WAN Y F, JIANG N N. Effects of different fertilizer levels on N2O flux from protected vegetable land. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(5):269-275. (in Chinese)
[21] 江雨倩, 李虎, 王艳丽, 张婧, 孙媛, 王立刚, 黄诚诚, 张建峰. 滴灌施肥对设施菜地N2O 排放的影响及减排贡献. 农业环境科学学报, 2016,35(8):1616-1624.
JIANG Y Q, LI H, WANG Y L, ZHANG J, SUN Y, WANG L G, HUANG C C, ZHANG J F. Effects of fertigation on N2O emissions and their mitigation in greenhouse vegetable fields. Journal of Agro-Environment Science, 2016,35(8):1616-1624. (in Chinese)
[22] 陈海燕, 李虎, 王立刚, 邱建军. 京郊典型设施蔬菜地N2O排放规律及影响因素研究. 中国土壤与肥料, 2012(5):5-10.
CHEN H Y, LI H, WANG L G, QIU J J. Characteristics and influencing factors on nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs. Soil and Fertilizer Sciences in China, 2012(5):5-10. (in Chinese)
[23] 张婧, 李虎, 王立刚, 邱建军. 京郊典型设施蔬菜地土壤N2O排放特征. 生态学报, 2014,34(14):4088-4098.
ZHANG J, LI H, WANG L G, QIU J J. Characteristics of nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs. Acta Ecologica Sinica, 2014,34(14):4088-4098. (in Chinese)
[24] 王敬, 程谊, 蔡祖聪, 张金波. 长期施肥对农田土壤氮素关键转化过程的影响. 土壤学报, 2016,53(2):292-304.
WANG J, CHENG Y, CAI Z C, ZHANG J B. Effect of long-term fertilization on key processes of soil nitrogen cycling in agricultural soil:A review. Acta Pedologlca Sinica, 2016,53(2):292-304. (in Chinese)
[25] 吕玉, 周龙, 龙光强, 汤利. 不同氮水平下间作对玉米土壤硝化势和氨氧化微生物数量的影响. 环境科学, 2016,37(8):3229-3236.
LÜ Y, ZHOU L, LONG G Q, TANG L. Effect of different nitrogen rates on the nitrification potential and abundance of ammoniaoxidizer in intercropping maize soils. Environmental Sciences, 2016,37(8):3229-3236. (in Chinese)
[26] 张婧, 夏光利, 李虎, 朱国梁, 牟小翎, 王立刚, 黄诚诚, 江雨倩. 一次性施肥技术对冬小麦/夏玉米轮作系统土壤N2O排放的影响. 农业环境科学学报, 2016,35(1):195-204.
ZHANG J, XIA G L, LI H, ZHU G L, MOU X L, WANG L G, HUANG C C, JIANG Y Q. Effect of single basal fertilization on N2O emissions in wheat and maize rotation system. Journal of Agro- Environment Science, 2016,35(1):195-204. (in Chinese)
[27] 刘巧, 吉艳芝, 郭艳杰, 张丽娟, 张杰, 韩建. 水氮调控对葡萄园土壤温室气体排放及其增温潜势的影响. 中国农业科学, 2019,52(8):1413-1424.
LIU Q, JI Y Z, GUO Y J, ZHANG L J, ZHANG J, HAN J. Effects of water and nitrogen regulation on greenhouse gas emissions and warming potential in vineyard soil. Scientia Agricultura Sinica, 2019,52(8):1413-1424. (in Chinese)
[28] BROKEN W, MATZNER E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 2009,15(4):808-824.
[29] HE F F, JIANG R F, CHEN Q, ZHANG F S, SU F. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environmental Pollution, 2009,157(5):1666-1672.
[30] WANG L G, LI H, QIU J J. Characterization of emissions of nitrous oxide from soils of typical crop fields in Huang-Huai-Hai Plain. Scientia Agricultura Sinica, 2008,41(4):1248-1254.
[31] ALIYU G, SANZ-COBENA A, MÜLLER C, ZAMAN M, LUO J F, LIU D Y, YUAN J J, CHEN Z M, NIU Y H, AROWOLO A, DING W X. A meta-analysis of soil background N2O emissions from croplands in China shows variation among climatic zones. Agriculture,Ecosystems and Environment, 2018,267.
[32] 徐玉秀, 郭李萍, 谢立勇, 云安萍, 李迎春, 张璇, 赵迅, 刁田田. 中国主要旱地农田N2O背景排放量及排放系数特点. 中国农业科学, 2016,49(9):1729-1743.
XU Y X, GUO L P, XIE L Y, YUN A P, LI Y C, ZHANG X, ZHAO X, DIAO T T. Characteristics of background emissions and emission factors of N2O from major upland fields in China. Scientia Agricultura Sinica, 2016,49(9):1729-1743. (in Chinese)
[33] 吕晓东, 王婷. 旱地农田氧化亚氮排放研究进展. 甘肃农业科技, 2018(10):67-73.
LÜ X D, WANG T. Research progress of nitrous oxide emissions from dryland farmland. Gansu Agricultural Science and Technology, 2018(10):67-73. (in Chinese)
[34] SONG X T, LIU M, JU X T, GAO B, SU F, CHEN X P, REES R M. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the north China plain. Environmental Science & Technology, 2018,52(21):12504-12513.
[35] MILLAR N, ROBERTSON G P, GRACE R R, GEHL R J, HOBEN J P. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture. Mitigation and Adaptation Strategies for Global Change, 2010,15:185-204.
[36] 李燕青, 唐继伟, 车升国, 温延臣, 孙文彦, 赵秉强. 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响. 中国农业科学, 2015,48(21):4381-4389.
LI Y Q, TANG J W, CHE S G, WEN Y C, SUN W Y, ZHAO B Q. Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China plain. Scientia Agricultura Sinica, 2015,48(21):4381-4389. (in Chinese)
[37] 徐钰, 刘兆辉, 张建军, 石璟, 王梅, 杨岩, 江丽华. 不同氮肥管理措施对华北地区夏玉米田增产减排的效果分析. 中国土壤与肥料, 2018(1):9-15.
XU Y, LIU Z H, ZHANG J J, SHI J, WANG M, YANG Y, JIANG L H. Effect of different nitrogen management measures on yield and nitrous oxide emission of summer maize field in North China plain. Soil and Fertilizer Sciences in China, 2018(1):9-15. (in Chinese)
[38] CUI Z L, YUE S C, WANG G L, MENG Q F, WU L, YANG Z P, ZHANG Q, LI S Q, ZHANG F S, CHEN X P. Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Global Change Biology, 2013,19(8):2467-2477.
[39] CUI Z L, WANG G L, YUE S C, WU L, ZHANG W F, ZHANG F S, CHEN X P. Closing the N-use efficiency gap to achieve food and environmental security. Environmental Science & Technology, 2014,48(10):5780-5787.
[40] ZHANG M, CHEN Z Z, LI Q L, FAN C H, XIONG Z Q. Quantitative relationship between nitrous oxide emissions and nitrogen application rate for a typical intensive vegetable cropping system in Southeastern China. Clean-soil, Air,Water, 2016,44(12):1725-1732.
[41] 吴震, 陈安枫, 朱爽阁, 熊正琴. 集约化菜地N2O排放及减排——基于文献整合分析. 农业环境科学学报, 2020,39(4):707-714.
WU Z, CHEN A F, ZHU S G, XIONG Z Q. Assessing nitrous oxide emissions and mitigation potentials from intensive vegetable ecosystems in China—Meta-analysis. Journal of Agro-Environment Science, 2020,39(4):707-714. (in Chinese)
[42] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014,20(4):783-795.
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer, 2014,20(4):783-795. (in Chinese)
[43] 黄丽华, 沈根祥, 顾海蓉, 钱晓雍, 施兴荣, MARIA L G. 肥水管理方式对蔬菜田N2O释放影响的模拟研究. 农业环境科学学报, 2009,28(6):1319-1324.
HUANG L H, SHEN G X, GU H R, QIAN X Y, SHI X R, MARIA L G. Simulation of some impacts of fertilization and water management on nitrous oxide e-missions from vegetable field. Journal of Agro-Environment Science, 2009,28(6):1319-1324. (in Chinese)
[44] YAO Z S, YAN G X, ZHENG X H, WANG R, LIU C Y, KLAUS B B. Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system. Environment Pollution, 2017,231:929-941.
[45] Kim D G, Hernandez-Ramirez G, Giltrap D. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agriculture,Ecosystems and Environment, 2013,168:53-65.
[46] 韩冰, 叶旭红, 张西超, 李文, 范庆锋, 邹洪涛, 张玉龙. 不同灌溉方式设施土壤N2O 排放特征及其影响因素. 水土保持学报, 2016,30(5):310-315.
HAN B, YE X H, ZHANG X C, LI W, FAN Q F, ZOU H T, ZHANG Y L. Characteristics of soil nitrous oxide emissions and influence factors under different irrigation managements from greenhouse soil. Journal of Soil and Water Conservation, 2016,30(5):310-315. (in Chinese)
[47] KALLENBACH C M, ROLSTON D E, HORWATH W R. Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation. Agriculture, Ecosystems and Environment, 2010,137(3/4):251-260.
[48] SANCHEZ-MARTIN L, ARCE A, BENITO A, GARCIA-TORRES L, VALLEJO A. Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop. Soil Biology and Biochemistry, 2008,40:1698-1706.
[49] SCHEER C, WASSMANNN R, KIENZLER K, IBRAGIMOV N, ESCHANOV R. Nitrous oxide emissions from fertilized irrigated cotton (Gossypium hirsutum L.) in the Aral Sea Basin, Uzbekistan: influence of nitrogen applications and irrigation practices. Soil Biology and Biochemistry, 2008,40(2):290-301.
[50] DUAN P P, FAN C H, ZHANG Q Q, XIONG Z Q. Overdose fertilization induced ammonia-oxidizing archaea producing nitrous oxide in intensive vegetable fields. Science of the Total Environment, 2019,650:1787-1794.
[51] 曹子敏. 不同水肥管理对设施蔬菜土壤氮循环功能微生物的影响[D]. 北京: 中国地质大学, 2019.
CAO Z M. Effects of different irrigation and fertilization managements on nitrogen cycle functional microbes in greenhouse vegetable soils[D]. Beijing: China University of Geosciences, 2019. (in Chinese)
[52] 陈宁, 孙凯宁, 王克安, 杨宁, 宋计平, 吕晓惠. 不同灌溉方式对茄子栽培土壤微生物数量和土壤酶活性的影响. 土壤通报, 2016,47(6):1380-1385.
CHEN N, SUN K N, WANG K A, YANG N, SONG J P, LÜ X H. Effects of different irrigation methods on soil microbial biomass and soil enzyme activities in eggplant cultivation. Chinese Journal of Soil Science, 2016,47(6):1380-1385. (in Chinese)
[53] AGUILERA E, LASSALETTA L, SANZ-COBENA A, GARNIER J, VALLEJO A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems: A review. Agriculture,Ecosystems and Environment, 2013,164:32-52.
[54] 刘虎成, 徐坤, 张永征, 孙敬强. 滴灌施肥技术对生姜产量及水肥利用率的影响. 农业工程学报, 2012,28(S1):106-111.
LIU H C, XU K, ZHANG Y Z, SUN J Q. Effect of drip fertigation on yield, water and fertilizer utilization in ginger. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(Suppl.1):106-111. (in Chinese)
[55] 齐玉春, 郭树芳, 董云社, 彭琴, 贾军强, 曹丛丛, 孙良杰, 闫钟清, 贺云龙. 灌溉对农田温室效应贡献及土壤碳储量影响研究进展. 中国农业科学, 2014,47(9):1764-1773.
QI Y C, GUO S F, DONG Y S, PENG Q, JIA J Q, CAO C C, SUN L J, YAN Z Q, HE Y L. Advances in research on the effects of irrigation on the greenhouse gases emission and soil carbon sequestration in agro-ecosystem. Scientia Agricultura Sinica, 2014,47(9):1764-1773. (in Chinese)
[1] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[2] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[3] LiYuan ZHANG,JinDong LÜ,XinYue SHI,Na YU,HongTao ZOU,YuLing ZHANG,YuLong ZHANG. Effects of Irrigation Regimes on N2O and NO Emissions from Greenhouse Soil [J]. Scientia Agricultura Sinica, 2021, 54(5): 992-1002.
[4] YAO FanYun,LIU ZhiMing,CAO YuJun,LÜ YanJie,WEI WenWen,WU XingHong,WANG YongJun,XIE RuiZhi. Diurnal Variation of N2O and CO2 Emissions in Spring Maize Fields in Northeast China Under Different Nitrogen Fertilizers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3680-3690.
[5] Shan ZHUANG,Wei LIN,JunJun DING,Qian ZHENG,XinYue KOU,QiaoZhen LI,YuZhong LI. Effects of Different Root Exudates on Soil N2O Emissions and Isotopic Signature [J]. Scientia Agricultura Sinica, 2020, 53(9): 1860-1873.
[6] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[7] LI YongHua,WU XuePing,HE Gang,WANG ZhaoHui. Benefits of Yield, Environment and Economy from Substituting Fertilizer by Manure for Wheat Production of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4879-4890.
[8] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[9] DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai. Effects of Successive Biochar Addition to Soil on Nitrogen Functional Microorganisms and Nitrous Oxide Emission [J]. Scientia Agricultura Sinica, 2020, 53(19): 4024-4034.
[10] YunPeng HOU,LiLi KONG,HongGuang CAI,HuiTao LIU,YuShan GAO,YongJun WANG,LiChun WANG. The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High-Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China [J]. Scientia Agricultura Sinica, 2019, 52(20): 3559-3572.
[11] YaJing XI,JunYu WANG,YinKun LI,XuePing WU,XiaoXiu LI,BiSheng WANG,ShengPing LI,XiaoJun SONG,CaiCai LIU. Effects of Drip Irrigation Water and Fertilizer Integration Combined with Organic Fertilizers on Soil N2O Emission and Enzyme Activity [J]. Scientia Agricultura Sinica, 2019, 52(20): 3611-3624.
[12] YaJing XI,DongYang LIU,JunYu WANG,XuePing WU,XiaoXiu LI,YinKun LI,BiSheng WANG,MengNi ZHANG,XiaoJun SONG,ShaoWen HUANG. Effect of Organic Partial Replacement of Inorganic Fertilizers on N2O Emission in Greenhouse Soil [J]. Scientia Agricultura Sinica, 2019, 52(20): 3625-3636.
[13] WANG Cong, LI ShuQing, LIU ShuWei, ZOU JianWen. Response of N2O Emissions to Elevated Atmospheric CO2 Concentration and Temperature in Rice-wheat Rotation Agroecosystem [J]. Scientia Agricultura Sinica, 2018, 51(13): 2535-2550.
[14] ZHENG Qian, DING JunJun, LI YuZhong, LIN Wei1, XU ChunYing, LI QiaoZhen, MAO LiLi. The Effects of Soil Water Content on N2O Emissions and Isotopic Signature of Nitrification and Denitrification [J]. Scientia Agricultura Sinica, 2017, 50(24): 4747-4758.
[15] XU Yu-xiu, GUO Li-ping, XIE Li-yong, YUN An-ping, LI Ying-chun, ZHANG Xuan, ZHAO Xun, DIAO Tian-tian. Characteristics of Background Emissions and Emission Factors N2O from Major Upland Fields in China [J]. Scientia Agricultura Sinica, 2016, 49(9): 1729-1743.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!