Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (9): 1937-1951.doi: 10.3864/j.issn.0578-1752.2021.09.00

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation

JIN YuTing(),LIU YunFeng,HU HongXiang(),MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing   

  1. School of Resources and Environment, Anhui Agricultural University/Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Hefei 230036
  • Received:2020-07-03 Accepted:2020-08-18 Online:2021-05-01 Published:2021-05-10
  • Contact: HongXiang HU E-mail:yutingjin@126.com;hongxianghu@ahau.edu.cn

Abstract:

【Objective】To explore the effects of straw returning on the loss of nitrogen, phosphorus in rape rice double cropping system in Chaohu Area, so as to provide scientific basis for source control of non-point source pollution in Chaohu Lake Basin. 【Method】Four treatments no straw + no fertilization (CK), conventional fertilization (F), straw returning + conventional fertilization (SF) and straw returning + conventional fertilization reduced by 15% (SDF) of field plot experiment were carried out for three consecutive years (2016-2019). By measuring the concentrations and losses of nitrogen, phosphorus in farmland surface runoff under rape rice rotation, soil nutrients and crop nitrogen and phosphorus nutrient absorption and yield during rape and rice harvest, the effects of straw returning on nutrient loss and soil nutrient content in farmland runoff were discussed. 【Result】The results showed that straw returning combined with chemical fertilizer decreased nitrogen concentration in farmland runoff and increased phosphorus concentration. In rape and rice season, compared with F treatment, the average mass concentration of total nitrogen (TN) decreased by 15.6% and 26.0%, total phosphorus (TP) increased by 12.5% and 8.0%. SF, SDF treatment reduced the loss of nitrogen and phosphorus. In 2017-2019, the runoff loss of TN, TP of rape and rice season were 11.9-26.7 kg·hm-2, 1.3-2.8 kg·hm-2 and 15.6-27.0 kg·hm-2, 0.8-2.0 kg·hm-2 under F treatment. Compared with F, TN of SF treatment in rape and rice season were significantly decreased by 18.4%-29.7% and 21.9%-28.1%, TP loss decreased by 1.3%-4.0% and 1.0%-6.6%. Straw returning can increase soil organic matter and other nutrients, and reduce soil pH value in a short time. Compared with F, the average contents of organic matter, total nitrogen, total phosphorus, available phosphorus and alkali hydrolyzable nitrogen under SF treatment were respectively increased by 6.2%, 8.4%, 27.3%, 19.5%, 5.0% in rape season and 7.0%, 10.9%, 17.7%, 7.5%, 5.1% in rice season. The results showed that straw returning combined with chemical fertilizer could improve the nitrogen and phosphorus accumulation of crop aboveground. The nitrogen and phosphorus accumulation of above ground crops of F treatment in rape and rice seasons were 105.0 kg·hm-2, 20.4 kg·hm-2 and 134.3 kg·hm-2, 36.7 kg·hm-2, respectively. Compared with F treatment, SF increased nitrogen accumulation by 28.9% and 7.8%, phosphorus accumulation by 12.1% and 5.9% in rape and rice season. Compared with F treatment, SF significantly increased the annual yield of rape rice rotation by 7.8% (2017) and 6.4% (2019). 【Conclusion】Under the rape rice rotation system, straw returning combined with chemical fertilizer can not only ensure crop yield, but also increase soil nutrient content and reduce nitrogen and phosphorus loss load.

Key words: straw returning, runoff, loss of nitrogen and phosphorus, soil nutrients, yield

Table 1

Different straw nutrient content and annual input of nitrogen and phosphorus"

秸秆种类
Types of straw
全碳
Total C (g·kg-1)
全氮
Total N (g·kg-1)
全磷
Total P (g·kg-1)
全钾
Total K (g·kg-1)

Nitrogen (kg·hm-2)

Phosphorus (kg·hm-2)
油菜 Rape 403.40 6.65 0.67 17.58 42.60 4.56
水稻 Rice 427.59 7.83 0.79 21.80 53.76 6.41

Table 2

Specific fertilization time of crop field experiment"

作物类型Crop type 年份 Year 基肥Basal fertiliers 追肥1 Top dressed nitrogen 1 追肥2 Top dressed nitrogen 2
油菜季
Rice season
2017 2016/11/7 2017/1/12 2017/2/22
2018 2017/11/8 2018/1/10 2018/2/19
2019 2018/11/12 2019/1/14 2019/2/25
水稻季
Rice season
2017 2017/6/7 2017/6/20 2017/8/1
2018 2018/6/8 2018/6/29 2018/8/5
2019 2019/6/12 2019/6/24 2019/8/8

Table 3

Nutrient accumulation of rape rice crops in 2017-2019"

种植季度 Planting season 处理 Treatment 氮素累积量 Total N accumulation (kg·hm-2) 磷素累积量 Total P accumulation (kg·hm-2)
秸秆
Straw
籽粒
Grain
地上部
Aboveground
秸秆
Straw
籽粒
Grain
地上部Aboveground
2017 油菜 2017 Rape CK 25.54±1.79c 43.46±1.79c 69.02±3.45b 2.02±0.48c 5.03±0.40b 6.59±0.70b
F 52.93±2.76a 73.91±1.03a 102.21±25.04ab 5.59±0.10b 14.3±2.00a 19.89±2.11a
SF 58.10±0.56a 77.45±6.63a 131.79±10.02a 7.69±0.81a 14.63±1.25a 22.32±0.44a
SDF 43.51±1.10b 77.13±8.49a 120.63±7.39ab 5.93±0.03b 14.16±1.72a 20.08±1.75a
2017 水稻 2017 Rice CK 46.22±0.23c 51.88±5.34b 98.1±5.42b 5.46±0.16b 20.41±1.34b 25.88±1.45c
F 50.15±1.31ab 80.86±6.03a 131.02±6.85a 6.71±0.63a 29.28±2.33a 35.99±2.07ab
SF 56.15±0.82a 82.06±2.32a 143.14±24.19a 6.89±0.21a 31.21±2.28a 38.1±2.09a
SDF 52.40±1.40ab 84.38±2.74a 136.79±2.62a 6.58±0.05a 30.61±0.40ab 36.19±0.43a
2018 油菜 2018 Rape CK 26.33±1.84c 44.82±1.85b 71.15±3.56b 2.06±0.49c 5.13±0.41b 6.73±0.72b
F 54.57±2.85a 76.20±1.05a 105.37±25.81ab 5.70±0.11b 14.59±2.04a 20.29±2.15a
SF 59.90±0.57a 79.85±6.83a 135.87±10.33a 7.84±0.83a 14.93±1.28a 22.77±0.45a
SDF 44.85±1.13a 79.51±8.75a 124.37±7.62ab 6.05±0.03ab 14.45±1.76a 20.49±1.79a
2018 水稻 2018 Rice CK 47.65±0.24c 53.49±5.51b 101.14±5.59c 5.57±0.16b 20.83±1.36b 26.4±1.48c
F 53.83±1.35ab 82.49±6.22a 135.31±7.06b 6.85±0.64a 29.88±2.38a 36.73±2.11ab
SF 56.85±0.84a 89.56±5.37a 146.41±5.07a 7.04±0.21a 31.84±2.33a 38.88±2.13a
SDF 55.03±1.45a 88.71±2.82a 143.74±2.70ab 6.72±0.06ab 30.13±0.41ab 36.85±0.44ab
2019 油菜 2019 Rape CK 26.86±1.88c 45.72±1.89b 72.58±3.63b 2.10±0.50c 5.38±0.43b 7.01±0.74c
F 55.66±2.90a 77.72±1.08a 107.48±26.33ab 5.81±0.11b 15.32±2.15a 21.14±2.25ab
SF 61.09±0.59a 81.44±6.97a 138.58±10.53a 8.00±0.85a 16.67±1.34a 23.67±0.49a
SDF 45.75±1.15b 81.1±5.78a 126.85±7.77ab 6.17±0.03ab 15.17±1.85a 21.34±1.88ab
2019 水稻 2019 Rice CK 50.03±0.25c 56.16±5.78b 106.2±5.87c 5.68±0.16b 21.25±1.39b 26.93±1.51c
F 55.62±1.41ab 80.86±1.36a 136.48±2.12ab 6.99±0.65a 30.48±2.43a 37.46±2.16ab
SF 60.74±0.88a 83.74±1.76a 144.48±2.15a 7.18±0.21a 32.48±2.38a 39.66±2.17a
SDF 56.73±1.52ab 81.60±2.97a 138.33±2.84ab 6.85±0 06ab 30.65±0.42ab 37.5±0.45ab

Table 4

Rape-rice crop yield in 2017-2019"

处理
Treatment
2017年产量 Yield in 2017 (t·hm-2) 2018年产量Yield in 2018 (t·hm-2) 2019年产量Yield in 2019 (t·hm-2)
油菜Rape 水稻Rice 周年Annual 油菜Rape 水稻Rice 周年Annual 油菜Rape 水稻Rice 周年Annual
CK 1.00±0.05b 6.48±0.25b 7.48±0.25c 1.17±0.05b 7.83±0.08b 9.00±0.12b 1.17±0.07c 7.94±0.09c 9.11±0.15c
F 2.86±0.14a 8.59±0.11a 11.44±0.07b 3.04±0.06a 10.4±0.03a 13.44±0.03a 3.07±0.05b 10.60±0.12b 13.67±0.08b
SF 2.96±0.11a 9.38±0.44a 12.33±0.42a 3.09±0.06a 10.69±0.23a 13.78±0.18a 3.25±0.03a 11.30±0.12a 14.55±0.12a
SDF 2.86±0.14a 8.47±0.13a 11.33±0.22b 2.98±0.05a 10.43±0.09a 13.46±0.09a 3.10±0.02b 10.96±0.17ab 14.05±0.18b

Fig. 1

Changes of farmland runoff from 2017 to 2019"

Fig. 2

Changes of nitrogen mass concentration in field runoff from 2017 to 2019"

Fig. 3

Changes of phosphorus mass concentration in field runoff from 2017 to 2019"

Fig. 4

Nitrogen loss in field runoff from 2017 to 2019 Different lowercase letters on the column indicate significant differences between different treatments (P<0.05). The same as below"

Table 5

Characteristics of nitrogen and phosphorus loss from field runoff from 2017 to 2019"

种植季度
Planting season
处理
Treatment
占总氮流失量比例 Proportion in TN loss (%) 占总磷流失量比例Proportion in TP loss (%)
NO3--N/TN NH4+-N/TN TDP/TP
2017 油菜
2017 Rape
CK 7.89±0.33c 4.96±0.08c 38.13±1.06a
F 18.24±0.88ab 6.24±0.27b 37.85±2.73a
SF 20.57±0.54a 7.41±0.51a 35.96±4.03a
SDF 17.04±1.37b 7.66±0.53a 37.37±3.62a
2017 水稻
2017 Rice
CK 10.08±0.87a 13.97±0.51b 47.95±1.56a
F 12.31±1 17a 23.67±2.04a 50.37±1.34a
SF 12.26±0.37a 26.21±1.57a 51.67±1.03a
SDF 11.04±1.42a 22.62±1.73a 52.33±6.14a
2018 油菜
2018 Rape
CK 31.82±1.87a 5.69±0.19a 49.75±1.65b
F 28.64±0.57a 5.85±0.98a 54.64±1.06a
SF 29.71±0.51a 5.79±0.29a 54.32±0.79a
SDF 32.12±0.21a 6.40±0.09a 53.64±0.20a
2018 水稻
2018 Rice
CK 15.15±1.97a 16.91±1.04b 50.48±1.57a
F 10.61±0.80a 25.82±1.64a 52.30±1.13a
SF 11.20±1.89a 31.35±2.13a 51.72±2.70a
SDF 14.58±2.61a 16.47±1.82b 50.40±1.24a
2019 油菜
2019 Rape
CK 22.62±0.64b 9.32±0.50a 34.43±0.63b
F 28.09±0.38a 9.36±0.33a 35.51±0.34a
SF 29.72±0.85a 7.77±0.55b 35.28±0.75a
SDF 31.34±2.49a 7.87±0.33b 34.89±0.29a
2019 水稻
2019 Rice
CK 12.05±1.35a 15.20±0.24c 40.18±1.76b
F 9.68±0.15a 31.50±0.54a 40.98±0.15ab
SF 9.88±0.79a 29.27±2.93a 44.05±0.95a
SDF 10.15±0.35a 21.77±0.77b 41.28±0.77ab

Fig. 5

Loss of phosphorus in field runoff from 2017 to 2019"

Table 6

Dynamic changes of soil nutrient content and pH in fields from 2017 to 2019"

种植季度
Planting season
处理
Treatment
有机质
Organic matter (g·kg-1)
全氮
Total nitrogen (g·kg-1)
全磷
Total phosphorus
(g·kg-1)
速效磷
Available phosphorus (mg·kg-1)
碱解氮
Hydrolyzable nitrogen (mg·kg-1)
pH
2017油菜
2017 Rape
CK 24.64±1.46b 1.53±0.02d 0.42±0.02a 18.55±0.36b 158.38±0.88b 6.90±0.31a
F 27.69±0.97a 1.72±0.04c 0.38±0.00a 22.22±1.37ab 162.76±1.75b 6.29±0.14ab
SF 28.79±0.38a 1.92±0.01b 0.55±0.11a 24.52±3.30ab 171.50±1.01a 5.93±0.12b
SDF 28.52±0.46a 1.81±0.01a 0.46±0.00a 25.76±0.86a 172.38±2.63a 6.20±0.15ab
2017水稻
2017 Rice
CK 25.42±0.09b 1.52±0.02b 0.36±0.01b 14.77±0.73b 144.78±0.82c 6.68±0.03a
F 25.48±0.07b 1.55±0.01b 0.50±0.02ab 23.45±2.39a 148.63±0.47b 6.41±0.01b
SF 26.83±0.43a 1.63±0.03b 0.54±0.06a 23.27±0.32a 154.82±0.42a 6.34±0.01c
SDF 26.43±0.27ab 1.59±0.04ab 0.52±0.01a 22.53±0.35a 150.15±2.45b 6.32±0.00c
2018油菜
2018 Rape
CK 25.35±0.31c 1.50±0.05c 0.36±0.01d 22.42±0.74b 141.25±0.71d 7.24±0.02a
F 26.96±0.33b 1.56±0.02bc 0.41±0.00c 24.06±0.28b 154.92±1.35c 6.53±0.13b
SF 28.65±0.61a 1.65±0.02a 0.48±0.00a 29.25±1.31a 167.13±0.96a 5.55±0.09d
SDF 28.19±0.11ab 1.61±0.01ab 0.46±0.00b 26.95±0.24a 160.18±0.65b 5.93±0.17c
2018水稻
2018 Rice
CK 26.87±0.57c 1.72±0.06b 0.40±0.00c 18.12±1.17c 142.33±1.68c 6.30±0.09a
F 28.97±0.13b 1.86±0.10b 0.48±0.02b 21.28±0.70b 175.93±0.62b 5.73±0.03b
SF 31.09±0.56a 2.24±0.18a 0.59±0.03a 24.99±0.48a 184.33±2.33a 5.53±0.06b
SDF 29.06±0.27b 2.18±0.13a 0.55±0.01ab 23.19±0.17ab 181.65±4.55ab 5.72±0.07b
2019油菜
2019 Rape
CK 26.41±0.71b 1.67±0.08a 0.40±0.05b 22.54±1.95c 145.34±2.48a 6.98±0.06a
F 27.16±0.36ab 1.70±0.05ba 0.51±0.01ab 30.82±0.28b 179.13±1.54b 5.96±0.20b
SF 29.47±1.38a 1.84±0.11a 0.63±0.07a 38.33±1.31a 183.23±1.11b 5.93±0.29b
SDF 28.31±0.00ab 1.85±0.09a 0.61±0.06a 31.24±2.15b 179.35±3.24a 6.61±0.13a
2019水稻
2019 Rice
CK 26.68±0.26c 1.63±0.04b 0.42±0.02c 18.51±0.76a 154.22±2.86b 6.52±0.09a
F 28.81±0.29b 1.82±0.06a 0.54±0.02b 23.85±1.55a 173.71±3.12a 6.48±0.07ab
SF 31.10±0.68a 1.91±0.03a 0.68±0.05a 25.47±3.23a 184.52±9.72a 6.23±0.07bc
SDF 28.56±0.34b 1.82±0.06a 0.65±0.03b 23.99±0.71a 175.90±2.49a 6.01±0.01d
[1] WANG J, WANG D J, ZHANG G, WANG Y, WANG C, TENG Y, CHRISTIE P. Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention. Agricultural Water Management, 2014,141:66-73.
[2] KOPACEK J, HEJZLAR J, POACH M. Factors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900-2010. Environmental Science & Technology, 2013,47(12):6400-6407.
[3] LIU J, LI J M, MA Y B, WANG E L, LIANG Q, JIA Y H, LI T S, WANG G C. Crop productivity and nitrogen balance as influenced by nitrogen deposition and fertilizer application in North China. Sustainability, 2019,11(5):1347-1359.
[4] GUO H Y, WANG X R, ZHU J G. Quantification and index of non-point source pollution in Taihu Lake Region with GIS. Environment Geochem Health, 2004,26(2):147-156.
[5] PENG S Z, YANG S H, XU J Z, LUO Y F, HOU H J. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy and Water Environment, 2011,9(3):333-342.
[6] ZHENG H J, LIU Z, NIE X F, ZUO J C, WANG L Y. Comparison of active nitrogen loss in four pathways on a sloped peanut field with red soil in China under conventional fertilization conditions. Sustainability 2019,11(22):6219-6234.
[7] CHEROBIM V F, HUNG C H, FAVARETTO N. Tillage system and time post-liquid dairy manure: Effects on runoff, sediment and nutrients losses. Agricultural Water Management, 2017,184:96-103.
[8] WANG J, LU G A, GUO X S, WANG Y Q, DING S W, WANG D Z. Conservation tillage and optimized fertilization reduce winter runoff losses of nitrogen and phosphorus from farmland in the Chaohu Lake region, China. Nutrient Cycling in Agroecosystems, 2015,101(1):93-106.
[9] 王士超, 闫志浩, 王瑾瑜, 槐圣昌, 武红亮, 邢婷婷, 叶洪龄, 卢昌艾. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响. 中国农业科学, 2020,53(4):782-794.
WANG S C, YAN Z H, WANG J Y, HUAI S C, WU H L, XING T T, YE H L, LU C A. Nitrogen fertilizer and its combination with straw affect soil labile carbon and nitrogen fractions in paddy fields. Scientia Agricultura Sinica, 2020,53(4):782-794. (in Chinese)
[10] 武际, 郭熙盛, 鲁剑巍, 王允青, 张晓玲, 许征宇. 连续秸秆覆盖对土壤无机氮供应特征和作物产量的影响. 中国农业科学, 2012,45(9):1741-1749.
WU J, GUO X S, LU J W, WANG Y Q, ZHANG X L, XU Z Y. Effects of continuous straw mulching on supply characteristics of soil inorganic nitrogen and crop yields. Scientia Agricultura Sinica, 2012,45(9):1741-1749. (in Chinese)
[11] 吴凤至, 史志华, 岳本江, 王玲. 坡面侵蚀过程中泥沙颗粒特性研究. 土壤学报, 2012,49(6):1235-1240.
WU F Z, SHI Z H, YUE B J, WANG L. Particle characteristics of sediment in erosion on hillslope. Acta Pedologica Sinica, 2012,49(6):1235-1240. (in Chinese)
[12] 张丹, 付斌, 胡万里, 翟丽梅, 刘宏斌, 陈安强, 盖霞普, 张亦涛, 刘剑, 王洪媛. 秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量. 农业工程学报, 2017,33(9):133-140.
ZHANG D, FU B, HU W L, ZHAI L M, LIU H B, CHEN A Q, GAI X P, ZHANG Y T, LIU J, WANG H Y. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(9):133-140. (in Chinese)
[13] 刘红江, 郭智, 郑建初, 陈留根, 周炜. 不同栽培技术对水稻产量及径流NPK流失的影响. 农业环境科学学报, 2015,34(9):1790-1796.
LIU H J, GUO Z, ZHENG J C, CHEN L G, ZHOU W. Effect of different cultivation techniques on rice yield and NPK runoff losses. Journal of Agro-Environment Science, 2015,34(9):1790-1796. (in Chinese)
[14] YANG H S, XU M M, KOIDE R T, LIU Q, DAI Y J, LIU L, BIAN X M. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system. Journal of the Science of Food and Agriculture, 2015,96(4):1141-1149.
[15] QIU S, MCCOMB A, BELL R, DAVIS J. Leaf-litter application to a sandy soil modifies phosphorus leaching over the wet season of southwestern Australia. Hydrobiologia, 2005,545(1):33-44.
[16] 鲍士旦. 土壤农业分析. 北京: 中国农业出版社, 2000.
BAO S D. Soil Agriculture Analysis. Beijing: China Agriculture Press, 2000. (in Chinese)
[17] ZHANG T Q, TAN C S, ZHENG Z M, DRURY C F. Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization. Journal of Environmental Quality, 2015,44(2):503-511.
[18] JUNG J W, LIM S S, KWAK J H, PARK H J, YOON K S, KIM H Y, BAEK W J, CHOI W J. Further understanding of the impacts of rainfall and agricultural management practices on nutrient loss from rice paddies in a monsoon area. Water Air and Soil Pollution, 2015,226(9):283-293.
[19] YU L L, TANG Y L, WANG Z G, GOU Y G, WANG J W. Nitrogen-cycling genes and rhizosphere microbial community with reduced nitrogen application in maize/soybean strip intercropping. Nutrient Cycling in Agroecosystems, 2019,113(1):35-49.
[20] YANG S Q, HAN R Y, LI X, LIU H Y, WU H J, YANG Z L. Effect of slope farmland soil and water and soil nitrogen and phosphorus loss based on different crop and straw applications and ridge patterns in the basin of the main stream of the Songhua River. Acta Ecologica Sinica, 2018,38(1):42-47.
[21] FEI C, ZHANG S R, WEI W L, LIANG B, LI J L, DING X D. Straw and optimized nitrogen fertilizer decreases phosphorus leaching risks in a long-term greenhouse soil. Journal of Soils and Sediments, 2020,20(3):1199-1207.
[22] 王昆昆, 廖世鹏, 任涛, 李小坤, 丛日环, 鲁剑巍. 连续秸秆还田对油菜水稻轮作土壤磷素有效性及作物磷素利用效率的影响. 中国农业科学, 2020,53(1):94-104.
WANG K K, LIAO S P, REN T, LI X K, CONG R H, LU J W. Effect of continuous straw returning on soil phosphorus availability and crop phosphorus utilization efficiency of oilseed rape-rice rotation. Scientia Agricultura Sinica, 2020,53(1):94-104. (in Chinese)
[23] 杨坤宇, 王美慧, 王毅, 尹黎明, 李勇, 吴金水. 不同农艺管理措施下双季稻田氮磷径流流失特征及其主控因子研究. 农业环境科学学报, 2019,38(8):1723-1734.
YANG K Y, WANG M H, WANG Y, YIN L M, LI Y, WU J S. Characteristics and determinants of nitrogen and phosphorus runoff losses under different agronomic measures in double cropping paddy fields. Journal of Agro-Environment Science, 2019,38(8):1723-1734. (in Chinese)
[24] HAHN C, PRASUHN V, STAMM C, SCHULIN R. Phosphorus losses in runoff from manured grassland of different soil P status at two rainfall intensities. Agriculture Ecosystems & Environment, 2012,153:65-74.
[25] 武爱莲, 王劲松, 董二伟, 王立革, 郭珺, 南江宽, 韩雄, Louis McDonald, 焦晓燕. 施用生物炭和秸秆对石灰性褐土氮肥去向的影响. 土壤学报, 2019,56(1):176-185.
WU A L, Wang J S, Dong E W, WANG L G, GUO J, NAN J K, HAN X, LOUIS M D, JIAO X Y. Effect of application of biochar and straw on fate of fertilizer N in cinnamon soil. Acta Pedologica Sinica, 2019,56(1):176-185. (in Chinese)
[26] TAO R, WAKELIN S A, LIANG Y C, CHU G X. Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification. Soil Biology and Biochemistry, 2017,114(11):20-30.
[27] 斯林林, 周静杰, 吴良欢, 胡兆平. 生物炭配施缓控释肥对稻田田面水氮素动态变化及径流流失的影响. 环境科学, 2018,39(12):5383-5390.
SI L L, ZHOU J J, WU L H, HU Z P. Dynamics and runoff losses of nitrogen in paddy field surface water under combined application of biochar and slow/controlled-release fertilizer. Environmental Science, 2018,39(12):5383-5390. (in Chinese)
[28] 李培培, 仝昊天, 韩燕来, 姜瑛, 吴传发. 秸秆直接还田与炭化还田对潮土硝化微生物的影响. 土壤学报, 2019,56(6):1471-1481.
LI P P, TONG H T, HAN Y L, JIANG Y, WU C F. Effect of straw return, directly or as biochar, on nitrifying microbes in fluvo-aquic soil. Acta Pedologica Sinica, 2019,56(6):1471-1481. (in Chinese)
[29] 李杰, 石元亮, 王玲莉, 孙毅, 李忠, 魏占波, 石淏心. 硝化抑制剂对稻田土壤N2O排放和硝化、反硝化菌数量的影响. 植物营养与肥料学报, 2019,25(12):2095-2101.
LI J, SHI Y L, WANG L L, SUN Y, LI Z, WEI Z B, SHI H X. Comparison of nitrification inhibitors on N2O emission and abundances of nitrifier and denitrifier in paddy soil. Journal of Plant Nutrition and Fertilizer, 2019,25(12):2095-2101. (in Chinese)
[30] 张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019,52(10):1746-1760.
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019,52(10):1746-1760. (in Chinese)
[31] CHEN Z M, WANG H Y, LIU X W, ZHAO X L, LU D J, ZHOU J M, LI C Z. Changes in soil microbial community and 7organic carbon fractions under short-term straw return in a rice-wheat cropping system. Soil & Tillage Research, 2017,165:121-127.
[32] 王富华, 黄容, 高明, 王子芳, 田冬. 生物质炭与秸秆配施对紫色土团聚体中有机碳含量的影响. 土壤学报, 2019,56(4):929-939.
WANG F H, HUANG R, GAO M, WANG Z F, TIAN D. Effect of combined application of biochar and straw on organic carbon content in purple soil aggregates. Acta Pedologica Sinica, 2019,56(4):929-939. (in Chinese)
[33] YANG H S, ZHAI S L, LI Y F, ZHOU J J, HE R Y, LIU J, XUE Y G, MENG Y L. Waterlogging reduction and wheat yield increase through long-term ditch-buried straw return in a rice-wheat rotation system. Field Crops Research, 2017,209:189-197.
[34] XIAO K C, YU L, XU J M, BROOKES P C. pH, nitrogen mineralization and KCl-extractable aluminum as affected by initial soil pH and rate of vetch residue application: Results from a laboratory study. Journal of Soils and Sediments, 2014,14(9):1513-1525.
[35] 郭春雷, 李娜, 彭靖, 高天一, 马凌云, 韩晓日. 秸秆直接还田及炭化还田对土壤酸度和交换性能的影响. 植物营养与肥料学报, 2018,24(5):1205-1213.
GUO C L, LI N, PENG J, GAO T Y, MA L Y, HAN X R. Direct of returning maize straw or as biochar to the field triggers change in acidity and exchangeable capacity in soil. Journal of Plant Nutrition and Fertilizer, 2018,24(5):1205-1213. (in Chinese)
[36] 杨彩迪, 卢升高. 秸秆直接还田和炭化还田对红壤酸度、养分和交换性能的动态影响. 环境科学. DOI: 10.13227/j.hjkx.202002213.
doi: 10.13227/j.hjkx.202002213
YANG C D, LU S G. Dynamic effects of direct returning of straw and corresponding biochar on acidity, nutrients, and exchangeable properties of red soil. Environmental Science. DOI: 10.13227/j.hjkx.202002213. (in Chinese)
doi: 10.13227/j.hjkx.202002213
[37] 王昆昆, 刘秋霞, 朱芸, 李小坤, 任涛, 鲁剑巍, 丛日环. 稻草覆盖还田对直播冬油菜生长及养分积累的影响. 植物营养与肥料学报, 2019,25(6):1047-1055.
WANG K K, LIU Q X, ZHU Y, LI X K, REN T, LU J W, CONG R H. Effects of straw mulching on growth and nutrients accumulation of direct-sown winter oilseed rape. Journal of Plant Nutrition and Fertilizer, 2019,25(6):1047-1055. (in Chinese)
[38] 王景, 陈曦, 张雅洁, 郜红建. 好气和厌氧条件下小麦秸秆的腐解特征研究. 中国农业大学学报, 2015,20(3):161-168.
WANG J, CHEN X, ZHANG Y J, GAO H J. Characteristic of wheat straw decomposition under aerobic and anaerobic condition in soil. Journal of China Agricultural University, 2015,20(3):161-168. (in Chinese)
[39] 代文才, 高明, 兰木羚, 黄容, 王金柱, 王子芳, 韩晓飞. 不同作物秸秆在旱地和水田中的腐解特性及养分释放规律. 中国生态农业学报, 2017,25(2):188-199.
DAI W C, GAO M, LAN M L, HUANG R, WANG J Z, WANG Z F, HAN X F. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields. Chinese Journal of Eco-Agriculture, 2017,25(2):188-199. (in Chinese)
[40] ZHAO X L, WANG H Y, LU D J, CHEN X Q, ZHOU J M. The effects of straw return on potassium fertilization rate and time in the rice-wheat rotation. Soil Science and Plant Nutrition, 2019,65(2):176-182.
[41] 王秋菊, 刘峰, 迟凤琴, 焦峰, 张春峰, 姜辉, 李鹏绯, 朱宝国. 秸秆还田及氮肥调控对不同肥力白浆土氮素及水稻产量影响. 农业工程学报, 2019,35(14):105-111.
WANG Q J, LIU F, CHI F Q, JIAO F, ZHANG C F, JIANG H, LI PENG F, ZHU B G. Effect of straw returning and nitrogen fertilizer regulation on nitrogen and rice yield in albic soil with different fertilities. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(14):105-111. (in Chinese)
[42] 成臣, 汪建军, 程慧煌, 罗亢, 曾勇军, 石庆华, 商庆银. 秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响. 土壤学报, 2018,55(1):247-256.
CHENG C, WANG J J, CHENG H H, LUO K, ZENG Y J, SHI Q H, SHANG Q Y. Effects of straw returning and tillage system on crop yield and soil fertility quality in paddy field under double-cropping- rice system. Acta Pedologica Sinica, 2018,55(1):247-256. (in Chinese)
[43] WANG X H, YANG H S, LIU J, WU J S, CHEN W P, WU J, ZHU L Q, BIAN X M. Effects of ditch-buried straw return on soil organic carbon and rice yields in a rice-wheat rotation system. European Journal of Agronomy, 2015,127:56-63.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!