Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3685-3696.doi: 10.3864/j.issn.0578-1752.2022.19.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development

PANG HaoWan1(),FU QianKun1,YANG QingQing1,ZHANG YuanYuan2,FU FengLing1,YU HaoQiang1()   

  1. 1Maize Research Institute, Sichuan Agricultural University, Chengdu 611130
    2College of Life Science & Biotechnology, Mianyang Tearchers’ College, Mianyang 621000, Sichuan
  • Received:2022-04-18 Accepted:2022-06-16 Online:2022-10-01 Published:2022-10-10
  • Contact: HaoQiang YU E-mail:1421781500@qq.com;yhq1801@sicau.edu.cn

Abstract:

【Objective】 Maize, a kind of crucial crop, is widely used in food supply, livestock feed, and industry. AP2/EREBP (APETALA2/ethylene response element-binding protein) transcription factor (TF) plays an important role in plant growth, development, and stress response. Previous study showed that ZmEREB93 might regulate seed size as a target gene of ZmBES1/BZR1-5 TF. ZmEREB93 was cloned and used to analyze its expression pattern and function, which lays foundation to clarify the function and mechanism of ZmEREB93 regulating seed size. 【Method】 The full length of ZmEREB93 was cloned from maize inbred line B73 by PCR. The characters of nucleotide and amino acid sequences were analyzed by informatic methods. Subsequently, the tissue expression specificity of ZmEREB93 was analyzed via quantitative real time PCR (qRT-PCR). The expression vector in plant and yeast was constructed and used for subcellular localization and transcription activation assay, respectively. ZmEREB93 was transformed into Arabidopsis mediated by agrobacterium transformation. The seed phenotype of transgenic lines was analyzed. Finally, the potential target genes of ZmEREB93 were screened by chromatin immunoprecipitation sequencing (Chip-seq) and co-expression analysis, and further confirmed by yeast one hybrid (Y1H). 【Result】 The ZmEREB93 gene was cloned by PCR. Sequence analysis showed that ZmEREB93 had no intron and a 618 bp ORF, encoding 205 amino acids with a highly conserved AP2 domain and belongs to the ERF subclade of AP2 family. The results of qRT-PCR showed that the ZmEREB93 gene highly expressed in kernels of 15 and 25 days after pollination (DAP), and slightly expressed in stem and root, but did not express in tassel, silk and bract. The expression level of ZmEREB93 was the highest in 25 DAP kernels reached 11 times of that in 15 DAP kernels. The results of transcriptional activation and subcellular localization assay exhibited that ZmEREB93 protein had no transcriptional activation activity in yeast cells and was localized in the nucleus, respectively. Compared to wild type, the seeds of transgenic lines were significantly smaller and showed lower thousand-seed-weight. Chip-seq and co-expression analysis suggested that the Zm00001d013611, Zm00001d006016, Zm00001d027448 and Zm00001d03991 genes were candidate target genes regulated by ZmEREB93 TF. The result of Y1H showed that ZmEREB93 directly bind to Zm00001d013611 promoter. 【Conclusion】 Maize ZmEREB93 TF specifically expressed in seeds and negatively regulated seed size.

Key words: maize, transcription factors, AP2/EREBP, grain

Fig. 1

Amplification of the ORF of ZmEREB93 gene M: 1000 bp ladder DNA marker; 1 and 2: ORF amplification from cDNA and gDNA, respectively"

Fig. 2

Sequence alignment of ZmEREB93 and its homologous proteins AtERF12: Arabidopsis thaliana, AT1G28360; SbERF12: Sorghum bicolor, SORBI_3009G184300; OsERF12: Oryza sativa, OS05G0497200; SiERF12: Setaria italica, XP_004970252.1; AlERF12: Aeluropus littoralis, QYY53011.1; ZjERF12: Ziziphus jujuba, XP_015890508.1; DzERF12: Durio zibethinus, XP_022777342.1; CiERF12: Carya illinoinensis, XP_042944848.1; CqERF12: Chenopodium quinoa, XP_021740383.1; ItERF12: Ipomoea triloba, XP_031112454.1"

Fig. 3

Expression pattern analysis of the ZmEREB93 gene"

Fig. 4

Transcriptional activation activity analysis of ZmEREB93"

Fig. 5

Subcellular localization of ZmEREB93"

Fig. 6

Identification of transgenic lines a: PCR detection of every line; b: GFP detection of every line; M: 1000 bp ladder DNA marker; L#1 and L#2: Transgenic Arabidopsis lines with ZmEREB93, respectively; WT: Wild type. The same as below"

Fig. 7

Seed phenotype of transgenic lines *:P<0.05;**:P<0.01;***:P<0.0001"

Table 1

Target gene of ZmEREB93"

基因ID
Gene ID
染色体
Chromosome
富集倍数
Enrichment fold
相关系数
Correlation
coefficient
DRE/CRT元件数
DRE/CRT element No.
基因注释
GO annotation
拟南芥中同源基因
Homologous gene in Arabidopsis
Zm00001d013611 5 2.69831 0.7976 3 低质量蛋白质:atherin
Low quality protein: atherin
ERT2(AT4G20880)[35]
Zm00001d006016 2 3.10428 0.7756 3 锌指A20和AN1结构域的应激相关蛋白
Zinc finger A20 and AN1 domain-containing stress-associated protein
SAP5(AT3G12630)[36]
Zm00001d027448 1 3.88035 0.7052 1 DUF21结构域蛋白
DUF21 domain-containing protein
AT1G47330
Zm00001d039991 3 2.71538 0.7853 1 未鉴定的 LOC100278084
Uncharacterized LOC100278084
AT1G13360

Fig. 8

Y1H assay a: Y1H was used to confirm the binding of ZmEREB93 to Zm00001d013611, Zm00001d006016, Zm00001d027448 and Zm00001d039991 promoter. P016, P488, P991 and P611 indicate Zm00001d013611, Zm00001d006016, Zm00001d027448 and Zm00001d039991 promoter, respectively; b: Y1H was used to confirm the binding of ZmEREB93 to different fragments of Zm00001d013611 promoter. P1, P2 and P3 mean different fragment of Zm00001d013611 promoter. △ represents DRE/CRT core element"

[1] DOLL N M, DEPEGE-FARGEIX N, ROGOWSKY P M, WIDIEZ T. Signaling in early maize kernel development. Molecular Plant, 2017, 10(3): 375-388.
doi: S1674-2052(17)30009-6 pmid: 28267956
[2] 高春艳, 吴芮, 袁玉, 刘同玥, 任莉萍. 植物AP2/ERF转录因子及其在非生物胁迫应答中的作用. 江汉大学学报(自然科学版), 2017, 45(3): 236-240.
GAO C Y, WU R, YUAN Y, LIU T Y, REN L P.Function of AP2/ERF transcription factors in plant tolerance to abiotic stress. Journal of Jianghan University (Natural Science Education), 2017, 45(3): 236-240. (in Chinese)
[3] JOFUKU K D, DEN BOER B G, VAN MONTAGU M, OKAMURO J K. Control of flower and seed development by the homeotic gene APETALA2. The Plant Cell, 1994, 6(9): 1211-1225.
[4] CHAKRAVARTHY S, TUORI R P, D’ASCENZO M D, FOBERT P R, DESPRES C, MARTIN G B. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. The Plant Cell, 2003, 15(12): 3033-3050.
doi: 10.1105/tpc.017574
[5] LICAUSI F, OHME-TAKAGI M, PERATA P. APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytologist, 2013, 199(3): 639-649.
pmid: 24010138
[6] WEN K. The important role of AP2 functional genes in plant floral development. Biotechnology Bulletin, 2010, 20(2): 1-7.
[7] 丰锦, 陈信波. 抗逆相关AP2/EREBP转录因子研究进展. 生物技术通报, 2011(7): 1-7.
FENG J, CHEN X B. Research progress of AP2/EREBP transcription factors in stress tolerance. Biotechnology Bulletin, 2011(7): 1-7. (in Chinese)
[8] RIECHMANN J L, MEYEROWITZ E M. The AP2/EREBP family of plant transcription factors. Biological Chemistry, 1998, 379(6): 633-646.
pmid: 9687012
[9] RAO G, SUI J, ZENG Y, HE C, ZHANG J. Genome-wide analysis of the AP2/ERF gene family in Salix Arbutifolia. FEBS Open Bio, 2015, 24(5): 132-137.
[10] SHIGYO M, HASEBE M, ITO M. Molecular evolution of the AP2 subfamily. Gene, 2006, 366(2): 256-265.
pmid: 16388920
[11] SHOESMITH J R, SOLOMON C U, YANG X, WILKINSON L G, SHELDRICK S, EIJDEN E V, COUWENBERG S, PUGH M L, ESKAN M, STEPHENS J, BARAKATE A, DREA S, HOUSTON K, TUCKER M R, MCKIM S M. APETALA2 functions as a temporal factor together with BLADE-ON-PETIOLE2 and MADS29 to control flower and grain development in barley. Development, 2021, 148(5): 1-5.
doi: 10.1242/dev.200265
[12] JIANG W, ZHANG X, SONG X, YANG J, PANG Y. Genome-wide identification and characterization of APETALA2/ethylene-responsive element binding factor superfamily genes in soybean seed development. Frontiers in Plant Science, 2020, 11: 566647.
doi: 10.3389/fpls.2020.566647
[13] LEI M, LI Z Y, WANG J B, FU Y L, XU L. Ectopic expression of the Aechmea fasciata APETALA2 gene AfAP2-2 reduces seed size and delays flowering in Arabidopsis. Plant Physiology and Biochemistry, 2019, 139: 642-650.
doi: 10.1016/j.plaphy.2019.03.034
[14] JOFUKU K D, OMIDYAR P K, GEE Z, OKAMURO J K. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proceedings of the National Academy of Sciences of the USA, 2005, 102(8): 3117-3122.
[15] JIANG L, MA X, ZHAO S, TANG Y, LIU F, GU P, FU Y, ZHU Z, CAI H, SUN C, TAN L. The APETALA2-Like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. The Plant Cell, 2019, 31(1): 17-36.
doi: 10.1105/tpc.18.00304 pmid: 30626621
[16] LUO C, WANG S, NING K, CHEN Z, WANG Y, YANG J, QI M, WANG Q. The APETALA2 transcription factor LsAP2 regulates seed shape in lettuce. Journal of Experimental Botany, 2021, 72(7): 2463-2476.
doi: 10.1093/jxb/eraa592 pmid: 33340036
[17] CHEN Y, FENG P, TANG B, HU Z, XIE Q, ZHOU S, CHEN G. The AP2/ERF transcription factor SlERF.F 5 functions in leaf senescence in tomato. Plant Cell Reports, 2022, 41: 1181-1195.
doi: 10.1007/s00299-022-02846-1
[18] RITONGA F N, NGATIA J N, WANG Y, KHOSO M A, FAROOQ U, CHEN S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. Physiology and Molecular Biology of Plants, 2021, 27(9): 1953-1968.
doi: 10.1007/s12298-021-01061-8 pmid: 34616115
[19] YU Z X, LI J X, YANG C Q, HU W L, WANG L J, CHEN X Y. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Molecular Plant, 2012, 5(2): 353-365.
doi: 10.1093/mp/ssr087
[20] XU S, HOU H, WU Z, ZHAO J, ZHANG F, TENG R, CHEN F, TENG N. Chrysanthemum embryo development is negatively affected by a novel ERF transcription factor, CmERF12. Journal of Experimental Botany, 2022, 73(1): 197-212.
doi: 10.1093/jxb/erab398
[21] FENG C Z, CHEN Y, WANG C, KONG Y H, WU W H, CHEN Y F. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal, 2014, 80(4): 654-668.
doi: 10.1111/tpj.12670
[22] ZHANG J, LIAO J, LING Q, XI Y, QIAN Y. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23(1): 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253
[23] CHUCK G, MEELEY R, HAKE S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development, 2008, 135(18): 3013-3019.
doi: 10.1242/dev.024273 pmid: 18701544
[24] LIU W Y, LIN H H, YU C P, CHANG C K, CHEN H J, LIN J J, LU M J, TU S L, SHIU S H, WU S H, KU M S B, LI W H. Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Proceedings of the National Academy of Sciences, USA, 2020, 117(35): 21747-21756.
[25] LID S E, AL R H, KREKLING T, MEELEY R B, RANCH J, OPSAHL-FERSTAD H G, OLSEN O A. The maize disorganized aleurone layer 1 and 2 (dil1, dil2) mutants lack control of the mitotic division plane in the aleurone layer of developing endosperm. Planta, 2004, 218(3): 370-378.
doi: 10.1007/s00425-003-1116-2
[26] LI J, CHEN F, LI Y, LI P, WANG Y, MI G, YUAN L. ZmRAP2.7, an AP2 transcription factor, is involved in maize brace roots development. Frontiers in Plant Science, 2019, 10: 820.
doi: 10.3389/fpls.2019.00820 pmid: 31333689
[27] FU J, ZHU C, WANG C, LIU L, SHEN Q, XU D, WANG Q. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2021, 159:257-267.
doi: 10.1016/j.plaphy.2020.12.027
[28] ZANG Z, WANG Z, ZHAO F, YANG W, CI J, REN X, JIANG L, YANG W. Maize ethylene response factor ZmERF061 is required for resistance to Exserohilum turcicum. Frontiers in Plant Science, 2021, 12: 630413.
doi: 10.3389/fpls.2021.630413
[29] LI S, WANG H, LI F, CHEN Z, LI X, ZHU L, WANG G, YU J, HUANG D, LANG Z. The maize transcription factor EREB58 mediates the jasmonate-induced production of sesquiterpene volatiles. The Plant Journal, 2015, 84(2): 296-308.
doi: 10.1111/tpj.12994 pmid: 26303437
[30] SUN F, DING L, FENG W, CAO Y, LU F, YANG Q, LI W, LU Y, SHABEK N, FU F, YU H. Maize transcription factor ZmBES1/ BZR1-5 positively regulates kernel size. Journal of Experimental Botany, 2021, 72(5): 1714-1726.
doi: 10.1093/jxb/eraa544
[31] SUN F A, YU H Q, QU J T, CAO Y, DING L, FENG W Q, MUHAMMAD H B K, LI W C, FU F L. Maize ZmBES1/BZR1-5 decreases ABA sensitivity and confers tolerance to osmotic stress in transgenic Arabidopsis. International Journal of Molecular Sciences, 2020, 21(3): 996.
doi: 10.3390/ijms21030996
[32] 冯文奇, 孙福艾, 丁磊, 郭新, 李晚忱, 付凤玲, 于好强. 玉米转录因子ZmBES1/BZR1-7基因克隆及功能分析. 核农学报, 2020, 34(1): 17-25.
doi: 10.11869/j.issn.100-8551.2020.01.0017
FENG W Q, SUN F A, DING L, GUO X, LI W C, FU F L, YU H Q. Cloning and function analysis of ZmBES1/BZR1-7 gene in maize. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 17-25. (in Chinese)
doi: 10.11869/j.issn.100-8551.2020.01.0017
[33] WALLEY J W, SARTOR R C, SHEN Z, SCHMITZ R J, WU K J, URICH M A, NERY J R, SMITH L G, SCHNABLE J C, ECKER J R, BRIGGS S P. Integration of omic networks in a developmental atlas of maize. Science, 2016, 353(6301): 814-818.
doi: 10.1126/science.aag1125 pmid: 27540173
[34] XIONG F, ZHANG B K, LIU H H, WEI G, WU J H, WU Y N, ZHANG Y, LI S. Transcriptional regulation of PLETHORA1 in the root meristem through an importin and its two Antagonistic Cargos. The Plant Cell, 2020, 32(12): 3812-3824.
doi: 10.1105/tpc.20.00108
[35] TRENTMANN S M. ERN1, a novel ethylene-regulated nuclear protein of Arabidopsis. Plant Molecular Biology, 2000, 44(1): 11-25.
doi: 10.1023/A:1006438432198
[36] KANG M, FOKAR M, ABDELMAGEED H, ALLEN R D. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Molecular Biology, 2011, 75(4/5): 451-466.
doi: 10.1007/s11103-011-9748-2
[37] ZHANG J, LIAO J, LING Q, XI Y, QIAN Y. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23: 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253
[38] XU J J, ZHANG X F, XUE H W. Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development by interacting with an ERF transcription factor. Journal of Experimental Botany, 2016, 67(22): 6399-6411.
doi: 10.1093/jxb/erw409
[39] XU S, HOU H, WU Z, ZHAO J, ZHANG F, TENG R, CHEN F, TENG N. Chrysanthemum embryo development is negatively affected by a novel ERF transcription factor, CmERF12. Journal of Experimental Botany, 2022, 73(1): 197-212.
doi: 10.1093/jxb/erab398
[40] LIU C, MA T, YUAN D, ZHOU Y, LONG Y, LI Z, DONG Z, DUAN M, YU D, JING Y, BAI X, WANG Y, HOU Q, LIU S, ZHANG J S, CHEN S Y, LI D, LIU X, LI Z, WANG W, LI J, WEI X, MA B, WAN X. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. Plant Biotechnology Journal, 2022. Doi: 10.1111/pbi.13825.
doi: 10.1111/pbi.13825
[41] CHANDLER J W, WERR W. A phylogenetically conserved APETALA2/ETHYLENE RESPONSE FACTOR, ERF12, regulates Arabidopsis floral development. Plant Molecular Biology, 2020, 102: 39-54.
doi: 10.1007/s11103-019-00936-5
[42] CHEN X, FENG F, QI W, XU L, YAO D, WANG Q, SONG R. Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Molecular Plant, 2017, 10(3): 427-441.
doi: 10.1016/j.molp.2016.08.008
[43] CAI M, LI S, SUN F, SUN Q, ZHAO H, REN X, ZHAO Y, TAN B C, ZHANG Z, QIU F. Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. The Plant Journal, 2017, 91(1): 132-144.
doi: 10.1111/tpj.13551
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[3] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[4] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[7] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[8] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[9] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[10] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[11] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[12] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[13] YANG Hong,CAO WenMing,CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong. Risks and Their Prevention and Control of Modified Mycotoxins in Grain and Its Products [J]. Scientia Agricultura Sinica, 2022, 55(6): 1213-1226.
[14] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[15] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!