Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (6): 1213-1226.doi: 10.3864/j.issn.0578-1752.2022.06.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Risks and Their Prevention and Control of Modified Mycotoxins in Grain and Its Products

YANG Hong(),CAO WenMing(),CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong   

  1. Wilmar Biotechnology Research & Development Center (Shanghai) Co., Ltd., Shanghai 200137
  • Received:2021-06-24 Accepted:2021-12-17 Online:2022-03-16 Published:2022-03-25
  • Contact: WenMing CAO E-mail:yanghong7@cn.wilmar-intl.com;caowenming@cn.wilmar-intl.com

Abstract:

Modified mycotoxins are a principal group of food safety hazards. In this study, based on reviews of the formation mechanism, classification, pollution status, toxicological research, metabolic rule, and analytical and detoxification methods of modified mycotoxins, the known and potential risks were identified, and risk prevention and control measures were analysed. The known risks were: in grain and its products, there was a high positive detection rate of modified mycotoxins, with a wide range of concentrations, which increased the risk of exposure to mycotoxins. Toxicological research on modified mycotoxins demonstrated that some modified mycotoxins transform back into their parent form during the process of metabolism and produced toxic effects equal to their parent form. Additionally, some other modified mycotoxins were toxic in themselves. The potential risks were: the coexistence of a diversity of metabolized toxins might lead to obscure toxicological mechanisms and effects. Some new modified mycotoxins with unknown structures, properties, or toxicities could be produced in the process of crop metabolism or food processing. Because it was restricted by a lack of analytical technology and quality control methods, it was difficult to obtain accurate and reliable qualitative and quantitative results for modified mycotoxins. Thus, the toxicological data for modified mycotoxins were extremely scarce, resulting in disputes over toxicological properties. The risk prevention and control measures were: starting from the source, the new varieties should be bred that were resistant to mycotoxin infection, normalize standards and testing systems should be built, and the purchase, storage, and production of agriculture products should be strictly controlled. In the food processing stage, more detailed research into detoxification technology after mycotoxin infection needs was required.

Key words: modified mycotoxins, parent mycotoxins, grain and its products, risk, prevention and control measures

Fig. 1

Classification of the modified mycotoxins"

Table 1

The distribution situation of the main modified mycotoxins in grain and its products"

类别
Type
种类1)
Classification
检出率
Positive rate
(the range of mean, %)
浓度Concentration
(the range of mean, μg∙kg-1)
修饰型/原型
(均值)
Modified/free ratio (mean)
样本量
Sample size
基质2)
Matrix
国家3)
Country
文献
Reference
单端孢霉烯族Trichothecene DON-3-Glc 6.3—100 5.5—1080 0.01—16 2151 1—7,8 1—12 [29-31,33-38,40-45]
3-AcDON 3.3—100 2.1—341 0.01—4.7 1642 1—4,8 1—3,7—9 [29-31,37-38,41-42]
15-AcDON 4.2—100 2.4—334 0—2.8 1547 1—3,8 1—3,7—8 [29,31,37-38,42]
NIV-3-Glc 0.08—100 13—1042 0.18—0.41 200 1,3—7,8 4,9,12 [30,33,43]
HT2-3-Glc 41—58 5.4—41 0.26—3.3 95 1,3—4 9 [30]
小计
Sub-total
11—92 5.7—568 0.1—5.4 2151 7种谷物11种制品
7 grain and 11 grain products
12
玉米赤霉
烯酮类
Zearalenone
α-ZEL 2.9—100 0.6—97 0—4.4 299
1—4,8 7,9 [30,37,42]
β-ZEL 2.9—83 2—49 0—3.5 [30,37,42]
α-ZEL-14-Glc 0.03—24 3.1—283 0—2.7 [30,37,42]
β-ZEL-14-Glc 0.01—50 0.1—152 0—1.8 [30,37,42]
ZEN-14-Glc 3.2—50 0.15—174 0—4.6 323 [30,37,39,42]
ZEN-14-sulfate 8.8—53 4.9—51 0—0.86 383 1,7,9,11 [30,37,41-42]
ZEN-16-Glc 6.7—58 0.45—4.2 0.03—0.06 95 1,3—4 9 [30]
小计
Sub-total
3.5—60 1.6—116 0—2.6 407 4种谷物9种制品
4 grain and 9 grain proproducts
4

Table 2

The toxicity and chronic dietary exposure in European of mycotoxins found in grain and its products"

真菌毒素
Mycotoxin
IARC分类
IARC classification
每日耐受摄入量TDI
Tolerable daily intake
(ng·kg-1 body weight·day-1)
毒性与危害
Toxicity and hazard
慢性膳食暴露平均消费者
Chronic dietary exposure at the mean percentile
(ng·kg-1 body weight·day-1)
慢性膳食暴露
高消费者(P95)
Chronic dietary exposure at the 95th percentile
(ng·kg-1 body weight·day-1)
参考文献
Reference
幼儿
Toddlers
成人
Adults
幼儿
Toddles
成人
Adults
DON
3-AcDON
15-AcDON
DON-3-Glc
Group 3 DON+3-AcDON+15-
AcDON+DON-3-Glc=
1000
引发呕吐、腹痛、腹泻、发烧以及内毒素血症等极性中毒症状;引起食欲减退、消化不良等慢性中毒症状,高剂量摄入会导致休克甚至死亡。具有细胞毒性、基因毒性、免疫毒性和致癌性,与人类大骨节病、克山病的发生有关
It triggers some polar poisoning symptoms such as vomiting, bellyache, diarrhea, fever and indotoxemia; It can cause some chronic poisoning symptoms such as decreasing appetite, indigestion and so on. High intake of it can lead to shock or even death. It has cytotoxin, genotoxin, immunotoxicity and carcinogenicity, relating to the occurrence of Kaschin-Beck disease and Keshan disease
600—1700 300—700 1100—2700 500—1400 [1,49-50]
T-2
HT-2
Group 3 T-2+HT-2=100 危害造血组织和免疫器官,引发出血性综合征,白细胞减少,贫血,胃肠道功能受损等
Endanger hemopoietic system and immune organs, causing hemorrhagic bowel syndrome, leukopenia, anemia, impaired the function of gastrointestinal tract, etc.
12—43 3.4—18 23—91 7.2—39
NIV Group 3 NIV=1200 急性毒性较脱氧雪腐镰刀菌烯醇强,具有较强的细胞毒性,抑制免疫系统,造成血清总蛋白下降,碱性磷酸酶、谷草转氨酶活性升高等,并具有胚胎毒性作用
Acute toxicity of it is stronger than that of DON. It has quite strong cytotoxin to suppress immune system, causing decreasing of total serum protein and increasing of the enzyme activity of alkaline phosphatase and glutamic oxalacetic transaminase. It also has embryotoxicity
4.3—202 0.4—75 12—484 1.1—224
ZEN Group 3 ZEN=250 生殖毒性、肾脏毒性、免疫毒性、肝脏毒性和诱发肿瘤的形成
It has reproduction toxicity, nephrotoxicity, immunotoxicity, liver toxicity. It induces the formation of tumor
93—100 2.4—29 24—277 4.7—54
FB1
FB2
FB3
Group 2B FB1+FB2+FB3=2000 可致大脑白质软化症,神经性中毒而表现意识障碍、失明和运动失调等症状,严重者甚至造成死亡。对猪造成肺水肿综合征,并能造成肝脏和食道损伤。引起灵长类动物的动脉粥样硬化样改变,诱发大鼠肝癌,与人类食道癌的发生密切相关
It causes leukomalacia and neurotoxicity to exhibit some symptoms including disturbance of consciousness, blindness and ataxia, and even death. For pig, it can give rise to edema syndrome and impair liver and esophagus. It triggers the change of atherosclerosis of quadrumane, inducing rat hepatocarcinoma, having a close relation to the occurrence of human esophageal cancer
180—1650 50—650 580—3260 90—1250

Table 3

The number, latent toxicity and related reaction type of deoxynivalenol modified mycotoxins, zearalenone modified mycotoxins and fumonisin modified mycotoxins"

类型
Type
数量(个)Number 分析方法(个)
Analytical method
举例
Example
毒性情况
Toxicity
反应类型
Reaction type
文献
References
Modified DON 44 3 DON-3-Glc 毒性与DON相当
Equivalent toxicity of DON
糖苷化 Glycosylation [54]
DON-diGlc 未报道, 因结合寡糖,极性增强,更易排出体外
Unreported. The combination with oligose increased DON-diGlc polarity, made it more easier being eliminated from body
糖苷化
Glycosylation
-
DON-3-GlcA 可能低毒,随尿液排毒
Maybe low toxicity, excreted in urine
糖酸化Glucuronidation [32]
DON-15-sulfate 低毒,植物核糖体活性中度抑制剂
Low toxicity, DON-15-sulfate is considered as a moderate inhibitor of plant ribosome activity
磺化
Sulfonation
[32]
DON-glutathione 可能低毒。谷胱甘肽本身能帮助保持正常的免疫系统功能,并具有抗氧化和整合解毒的作用
Maybe low toxicity. Glutathione is beneficial to retain the immune system functioning normally and has effect of anti-oxidation and integrated detoxification
硫化
Sulfuration
[32]
3-AcDON 毒性与DON相当
Equivalent toxicity of DON
乙酰化
Acetylation
[32]
norDON A 无毒
Nontoxicity
热降解
Thermal degradation
[6]
DOMs 可能低毒,C12-C13 位环氧键被破坏,随尿液排毒
Maybe low toxicity, the epoxy bond of C12-C13 of mother nucleus is damaged, excreted from body in urine
去环氧化
De-epoxidation
[32,57]
3-epimer-DON 可能低毒,体内和体外实验研究表明毒性比DON低
Maybe low toxicity, the results of vivo- and vitro- experiments demonstrated 3-epimer-DON toxicity is lower than DON
异构化
Isomerization
[57-59]
Modified ZEN 43 2 α-ZEL 可能有毒,其与雌激素受体结合能力比ZEN强9—2200多倍
Likely to be toxic, its capacity of combining with oestrogen receptors are 9-2200 times stronger than ZEN
还原化
Reduction
[27]
ZEN-14-Glc 可能有毒。猪口服方式给药时,主要转化为ZEN和α-ZEL
Likely to be toxic. After oral administration in pig, ZEN-14-Glc mainly transforms into ZEN and α-ZEL
糖苷化
Glycosylation
[22,32]
ZEN-14-GlcA 可能低毒,随尿液排毒
Maybe low toxicity, excreted in urine
糖酸化
Glucuronidation
[22]
ZEN-14-sulfate 可能有毒。 猪口服给药时,转化为ZEN、ZEN-14-GlcA和其他代谢物
Likely to be toxic. After oral administration in pig, ZEN-14-sulfate mainly transforms into ZEN, ZEN-14-GlcA and other metabolites
磺化
Sulfonation
[22,32]
Modified FB 15 0 HFB1 可能低毒,老鼠喂养试验中,有肝、肾毒性,抑制神经酰胺合成酶
Maybe low toxicity. In rat trials, HFB1 exhibits liver toxicity, nephrotoxicity, and suppression of ceramide synthetase
水解
Hydrolyzation
[11]
N-fatty-acyl-FB1 可能有毒,通过细胞实验,毒性比HFB1强,约是FB1的10倍
Maybe low toxicity. Through cell experiment, N-fatty-acyl-FB1 toxicity is stronger than HFB1, and is almost ten times stronger than FB1
酰化
Acylation
[28,32]
EFB1 palmitic acid 未明确,极性比FBs更弱,毒性不同于FBs
Undetermined. EFB1 palmitic acid polarity is much weaker than FBs, and its toxicity is different from FBs
酯化
Esterification
[14,32]

Table 4

The contaminant situation of zearalenone modified mycotoxins and fumonisin modified mycotoxins in grain and its products"

类型
Type
基质
Matrix
修饰型真菌毒素
Modified mycotoxin
数量
Number (positive)
与原型的含量百分比
Modified/Free ratio
文献
Reference
谷物原料
Grain raw material
玉米 Corn ZEN-14-sulfate 41 高达30% UP to 30% [1]
小麦 Wheat ZEN-14-Glc 10 高达30% UP to 30%
玉米Corn Physical emtrapped fumonisins 31 高达100% UP to 100%
Physical emtrapped fumonisins 97 高达60% UP to 60%
Physical emtrapped fumonisins 120 高达60% UP to 60%
谷物食品
Grain products
高纤维面包
Fiber enriched bread
ZEL, ZEN-14-Glc, ZEN-14-sulfate, 52 总和,高达100%
As the sum, up to 100%
α-ZEL-14Glc, β-ZEL-14-Glc
谷物早餐
Breakfast cereals
ZEL, ZEN-14-Glc, ZEN-14-sulfate, 62 总和,高达110%
As the sum, up to 110%
α-ZEL-14-Glc, β-ZEL-14-Glc
燕麦片
Oatmeal
ZEL, ZEN-14-Glc, ZEN-14-Sulfate, 13
总和,高达100%
As the sum, up to 100%
α-ZEL14Glc, β-ZEL-14-Glc
玉米片 Corn flakes Physical emtrapped fumonisins 4 高达100% UP to 100%
无麸质产品 Gluten-free products Physical emtrapped fumonisins 21 高达100% UP to 100%
[1] European Food Safety Authority. Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA Journal, 2014,12(12):3916.
[2] LU Q, QIN J A, FU Y W, LUO J Y, LU J H, LOGRIECO A F, YANG M H. Modified mycotoxins in foodstuffs, animal feed, and herbal medicine: A systematic review on global occurrence, transformation mechanism and analysis methods. Trends in Analytical Chemistry, 2020,133:116088.
doi: 10.1016/j.trac.2020.116088
[3] NATHANAIL A V, VARGA E, MENG-REITERE J, BUESCHL C, MICHLMAYR H, MALACHOVA A, FRUHMANN P, JESTOI M, PELTONEN K, ADAM G, LEMMENS M, SCHUHMACHER R, BERTHILLER F. Metabolism of the fusarium mycotoxins T-2 toxin and HT-2 toxin in wheat. Journal of Agricultural and Food Chemistry, 2015,63:7862-7872.
doi: 10.1021/acs.jafc.5b02697
[4] MCCORMICK S P, KATO T, MARAGOS C M, BUSMAN M, LATTANZIO V M T, GALAVERNA G, DALL-ASTA C, CRICH D, PRICE N P J, KURTZMAN C P. Anomericity of T-2 toxin-glucoside: Masked mycotoxin in cereal crops. Journal of Agricultural and Food Chemistry, 2015,63:731-738.
doi: 10.1021/jf504737f
[5] BRETZ M, KNECHT A, GӦCKLER S, HUMPF H U. Structural elucidation and analysis of thermal degradation products of the Fusarium mycotoxin nivalenol. Molecular Nutrition & Food Research, 2005,49:309-316.
[6] BRETZ M, BEYER M, CRAMER B, KNECHT A, HUMPF H U. Thermal degradation of the Fusarium mycotoxin deoxynivalenol. Journal of Agricultural and Food Chemistry, 2006,54(17):6445-6451. doi: 10.1021/jf061008g.
doi: 10.1021/jf061008g
[7] ZACHARIASOVA M, VACLAVIKOVA M, LACINA O, VACLAVIK L, HAJSLOVA J. Deoxynivalenol oligoglycosides: New “masked” fusarium toxins occurring in malt, beer, and breadstuff. Journal of Agricultural and Food Chemistry, 2012,60(36):9280-9291. doi: 10.1021/jf302069z.
doi: 10.1021/jf302069z
[8] WARTH B, FRUHMANN P, WIESENBERGER G, KLUGER B, SARKANJ B, LEMMENS M, HAMETNER C, FRÖHLICH J, ADAM G, KRSKA R, SCHUHMACHER R. Deoxynivalenol-sulfates: Identification and quantification of novel conjugated (masked) mycotoxins in wheat. Analytical and Bioanalytical Chemistry, 2015,407(4):1033-1039.
doi: 10.1007/s00216-014-8340-4
[9] European Food Safety Authority. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA Journal, 2017,15(7):4851.
[10] BERTHILLER F, WERNER U, SULYOK M, KRSKA R, HAUSER M T, SCHUHMACHER R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin Zearalenone in the model plant Arabidopsis thaliana. Food Additives & Contaminants, 2006,23(11):1194-1200. doi: 10.1080/02652030600778728.
doi: 10.1080/02652030600778728
[11] HUMPF H U, VOSS K A. Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Molecular Nutrition & Food Research, 2004,48(4):255-269. doi: 10.1002/mnfr.200400033.
doi: 10.1002/mnfr.200400033
[12] KIM E K, SCOTT P M, LAU B P Y. Hidden fumonisins in corn flakes. Food Additives and Contaminants, 2003,20:161-169.
doi: 10.1080/0265203021000035362
[13] SEEFELDER W, KNECHT A, HUMPF H U. Bound fumonisin B1: Analysis of fumonisin-B1 glyco and amino acid conjugates by liquid Chromatography-Electrospray Ionization-Tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2003,51(18):5567-5573. doi: 10.1021/jf0344338.
doi: 10.1021/jf0344338
[14] BARTÓK T, TÖLGYESI L, MESTERHáZY Á, BARTOK M, SZECSI A. Identification of the first fumonisin mycotoxins with three acyl groups by ESI-ITMS and ESI-TOFMS following RP-HPLC separation: palmitoyl, linoleoyl and oleoyl EFB1 fumonisin isomers from a solid culture of Fusarium verticillioides. Food Additives and Contaminants, 2010,27(12):1714-1723.
[15] PARK J W, SCOTT P M, LAU B P Y, LEWIS D A. Analysis of heat-processed corn foods for fumonisins and bound fumonisins. Food Additives & Contaminants, 2004,21(12):1168-1178. doi: 10.1080/02652030400021873.
doi: 10.1080/02652030400021873
[16] DALL’ASTA C, MANGIA M, BERTHILLER F, MOLINELLI A, SULYOK M, SCHUHMACHER R, KRSKA R, GALAVERNA G, DOSSENA A, MARCHELLI R. Difficulties in fumonisin determination: the issue of hidden fumonisins. Analytical and Bioanalytical Chemistry, 2009,395(5):1335-1345. doi: 10.1007/s00216-009-2933-3.
doi: 10.1007/s00216-009-2933-3
[17] JECFA. Evaluation of certain contaminants in food. 72nd Report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Technical Report Series, 2011,959:1-115.
[18] EFSA PANEL ON CONTAMINANTS IN THE FOOD CHAIN (CONTAM), KNUTSEN H K, ALEXANDER J, BARREGÅRD L, BIGNAMI M, BRÜSCHWEILER B, CECCATELLI S, COTTRILL B, DINOVI M, GRASL-KRAUPP B, HOGSTRAND C, HOOGENBOOM L R, NEBBIA C S, OSWALD I P, PETERSEN A, ROSE M, ROUDOT A C, SCHWERDTLE T, VLEMINCKX C, VOLLMER G, WALLACE H, DE SAEGER S, ERIKSEN G S, FARMER P, FREMY J M, GONG Y Y, MEYER K, NAEGELI H, PARENT-MASSIN D, RIETJENS I, VAN EGMOND H, ALTIERI A, ESKOLA M, GERGELOVA P, RAMOS BORDAJANDI L, BENKOVA B, DÖRR B, GKRILLAS A, GUSTAVSSON N, VAN MANEN M, EDLER L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA Journal European Food Safety Authority, 2017,15(9):e04718. doi: 10.2903/j.efsa.2017.4718.
doi: 10.2903/j.efsa.2017.4718
[19] NAGL V, WOECHTL B, SCHWARTZ-ZIMMERMANN H E, HENNIG-PAUKA I, MOLL W D, ADAM G, BERTHILLER F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicology Letters, 2014,229(1):190-197. doi: 10.1016/j.toxlet.2014.06.032.
doi: 10.1016/j.toxlet.2014.06.032
[20] GRATZ S W, DINESH R, YOSHINARI T, HOLTROP G, RICHARDSON A J, DUNCAN G, MACDONALD S, LIOYD A, TARBIN J. Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Molecular Nutrition & Food Research, 2017,61(4):1600680.
[21] VIDAL A, CLAEYS L, MENGELERS M, VANHOORNE V, VERVAET C, HUYBRECHTS B, DE SAEGER S, DE BOEVRE M. Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Scientific Reports, 2018,8(1):5255. doi: 10.1038/s41598-018-23526-9.
doi: 10.1038/s41598-018-23526-9
[22] BINDER S B, SCHWARTZ-ZIMMERMANN H E, VARGA E, BICHL G, MICHLMAYR H, ADAM G, BERTHILLER F. Metabolism of zearalenone and its major modified forms in pigs. Toxins, 2017,9(2):56.
doi: 10.3390/toxins9020056
[23] DELLAFIORA L, GALAVERNA G, RIGHI F, COZZINI P, DALL'ASTA C. Assessing the hydrolytic fate of the masked mycotoxin Zearalenone-14-glucoside - A warning light for the need to look at the “maskedome”. Food and Chemical Toxicology, 2017,99:9-16. doi: 10.1016/j.fct.2016.11.013.
doi: 10.1016/j.fct.2016.11.013
[24] 赵琼晖, 袁梓洢, 王宏菊, 张建莹. 食品中修饰型真菌毒素及其同时检测方法研究进展. 食品工业科技, 2020,41(2):336-344.
ZHAO Q H, YUAN Z Y, WANG H J, ZHANG J Y. Progress on the modified mycotoxins and their simultaneous determination methods in food. Science and Technology of Food Industry, 2020,41(2):336-344. (in Chinese)
[25] KOVALSKY P, KOS G, NÄHRER K, SCHWAB C, JENKINS T, SCHATZMAYR G, SULYOK M, KRSKA R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize-an extensive survey. Toxins, 2016,8(12):363.
doi: 10.3390/toxins8120363
[26] LORENZ N, DÄNICKE S, EDLER L, GOTTSCHALK C, LASSEK E, MARKO D, RYCHLIK M, MALLY A. A critical evaluation of health risk assessment of modified mycotoxins with a special focus on Zearalenone. Mycotoxin Research, 2019,35(1):27-46. doi: 10.1007/s12550-018-0328-z.
doi: 10.1007/s12550-018-0328-z
[27] STEINKELLNER H, BINAGLIA M, DALL'ASTA C, GUTLEB A C, METZLER M, OSWALD I P, PARENT-MASSIN D, ALEXANDER J. Combined hazard assessment of mycotoxins and their modified forms applying relative potency factors: Zearalenone and T2/HT2 toxin. Food and Chemical Toxicology, 2019,131:110599. doi: 10.1016/j.fct.2019.110599.
doi: 10.1016/j.fct.2019.110599
[28] HUMPF H U, SCJMELZ E M, MEREDITHI F I, VESPER H, VALES T R, WANG E, MENALDINO D S, LIOTTA D C, MERRILL A H. Acylation of naturally occurring and synthetic 1- deoxysphinganines by ceramide synthase. The Journal of Biological Chemistry, 1998,273(30):19060-19064.
doi: 10.1074/jbc.273.30.19060
[29] BERTHILLER F, DALL'ASTA C, SCHUHMACHER R, LEMMENS M, ADAM G, KRSKA R. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2005,53(9):3421-3425. doi: 10.1021/jf047798g.
doi: 10.1021/jf047798g
[30] NATHANAIL A V, SYVÄHUOKO J, MALACHOVÁ A, JESTOI M, VARGA E, MICHLMAYR H, ADAM G, SIEVILäiNEN E, BERTHILLER F, PELTONEN K. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Analytical and Bioanalytical Chemistry, 2015,407(16):4745-4755.
doi: 10.1007/s00216-015-8676-4
[31] 李凤琴, 于钏钏, 邵兵, 王伟, 于红霞. 2007-2008年中国谷物中隐蔽型脱氧雪腐镰刀烯醇及多组分真菌毒素污染状况. 中华预防医学杂志, 2011,45(1):57-63.
LI F Q, YU C C, SHAO B, WANG W, YU H X. Natural occurrence of masked deoxynivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2008. Chinese Journal of Preventive Medicine, 2011,45(1):57-63. (in Chinese)
[32] FREIRE L, SANT'ANA A S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology, 2018,111:189-205. doi: 10.1016/j.fct.2017.11.021.
doi: 10.1016/j.fct.2017.11.021
[33] YOSHINARI T, SAKUDA S, FURIHATA K, FURUSAWA H, OHNISHI T, SUGITA-KONISHI Y, ISHIZAKI N, TERAJIMA J. Structural determination of a nivalenol glucoside and development of an analytical method for the simultaneous determination of nivalenol and deoxynivalenol, and their glucosides, in wheat. Journal of Agricultural and Food Chemistry, 2014,62(5):1174-1180. doi: 10.1021/jf4048644.
doi: 10.1021/jf4048644
[34] SASANYA J J, HALL C, WOLF-HALL C. Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography-UV-mass spectrometry. Journal of Food Protection, 2008,71(6):1205-1213. doi: 10.4315/0362-028x-71.6.1205.
doi: 10.4315/0362-028x-71.6.1205
[35] PALACIOS S A, ERAZO J G, CIASCA B, LATTANZIO V M T, REYNOSO M M, FARNOCHI M C, TORRES A M. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chemistry, 2017,230:728-734. doi: 10.1016/j.foodchem.2017.03.085.
doi: 10.1016/j.foodchem.2017.03.085
[36] BRYLA M, KSIENIEWICZ-WO´ZNIAK E, WA´SKIEWICZ A, SZYMCZYK K, JEDRZEJCZAK R. Natural occurrence of nivalenol, deoxynivalenol, and Deoxynivalenol-3-Glucoside in polish winter wheat. Toxins, 2018,10(2):81.
doi: 10.3390/toxins10020081
[37] DE BOEVRE M, DI MAVUNGU J D, MAENE P, AUDENAERT K, DEFORCE D, HAESAERT G, EECKHOUT M, CALLEBAUT A, BERTHILLER F, VAN PETEGHEM C, DE SAEGER S. Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, Zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food. Food Additives & Contaminants: Part A, 2012,29(5):819-835. doi: 10.1080/19440049.2012.656707.
doi: 10.1080/19440049.2012.656707
[38] WANG W, MA J J, YU C C, LIN X H, JIANG H R, SHAO B, LI E Q. Simultaneous determination of masked deoxynivalenol and some important type B trichothecenes in Chinese corn kernels and corn-based products by ultra-performance liquid chromatography- tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2012,60(46):11638-11646. doi: 10.1021/jf3038133.
doi: 10.1021/jf3038133
[39] SCHNEWEIS I, MEYER K, ENGELHARDT G, BAUER J. Occurrence of Zearalenone-4-β-d-glucopyranoside in wheat. Journal of Agricultural and Food Chemistry, 2002,50(6):1736-1738. doi: 10.1021/jf010802t.
doi: 10.1021/jf010802t
[40] MALACHOVA A, DZUMAN Z, VEPRIKOVA Z, VACLAVIKOVA M, ZACHARIASOVA M, HAJSLOVA J. Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: The major mycotoxins found in cereal-based products on the Czech market. Journal of Agricultural and Food Chemistry, 2011,59(24):12990-12997. doi: 10.1021/jf203391x.
doi: 10.1021/jf203391x
[41] VENDL O, CREWS C, MACDONALD S, KRSKA R, BERTHILLER F. Occurrence of free and conjugated Fusarium mycotoxins in cereal-based food. Food Additives & Contaminants: Part A, 2010,27(8):1148-1152. doi: 10.1080/19440041003801166.
doi: 10.1080/19440041003801166
[42] DE BOEVRE M, JACXSENS L, LACHAT C, EECKHOUT M, DI MAVUNGU J D, AUDENAERT K, MAENE P, HAESAERT G, KOLSTEREN P, DE MEULENAER B, DE SAEGER S. Human exposure to mycotoxins and their masked forms through cereal-based foods in Belgium. Toxicology Letters, 2013,218(3):281-292. doi: 10.1016/j.toxlet.2013.02.016.
doi: 10.1016/j.toxlet.2013.02.016
[43] LEE S Y, WOO S Y, TIAN F, SONG J, MICHLMAYR H, KIM J B, CHUN H S. Occurrence of deoxynivalenol, nivalenol, and their glucosides in korean market foods and estimation of their population exposure through food consumption. Toxins, 2020,12:89.
doi: 10.3390/toxins12020089
[44] RAHIMI E, SADEGHI E, BOHLOULI S, KARAMI F. Fates of deoxynivalenol and deoxynivalenol-3-glucoside from wheat flour to Iranian traditional breads. Food Control, 2018,91:339-343.
doi: 10.1016/j.foodcont.2018.04.014
[45] JIN Z, ZHOU B, GILLESPIE J, GROSS T, BARR J, SIMSEK S, BRUEGGEMAN R, SCHWARZ P. Production of deoxynivalenol (DON) and DON-3-glucoside during the malting of Fusarium infected hard red spring wheat. Food Control, 2018,85:6-10.
doi: 10.1016/j.foodcont.2017.09.002
[46] BERTHILLER F, CREWS C, DALL’ASTA C, SAEGER S D, HAESAERT G, KARLOVSKY P, OSWALD I P, SEEFELDER W, SPEIJERS G, STROKA J. Masked mycotoxins: A review. Molecular Nutrition & Food Research, 2013,57:165-186.
[47] PASCARI X, GIL-SAMARRA S, MARIN S, RAMOS A J, SANCHIS V. Fate of zearalenone, deoxynivalenol and deoxynivalenol- 3-glucoside during malting process. Food Science and Technology, 2019,99:540-546.
[48] 中华人民共和国卫生部. 食品安全国家标准食品中真菌毒素限量: GB 2761—2017. 北京: 中国标准出版社, 2017.
Ministry of Health of the PRC. National food safety standard limit of mycotoxin in food: GB 2761-2017. Beijing: China Standards Press, 2017. (in Chinese)
[49] STOEV S D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environmental Toxicology and Pharmacology, 2015,39(2):794-809. doi: 10.1016/j.etap.2015.01.022.
doi: 10.1016/j.etap.2015.01.022
[50] 吴限鑫, 林秋君, 郭春景, 王建忠, 王雪鑫, 李广. 国内外主要粮油产品中真菌毒素限量、检测标准及风险评估现状分析. 中国粮油学报, 2019,34(9):130-138.
WU X X, LIN Q J, GUO C J, WANG J Z, WANG X X, LI G. Analysis of limits, testing standards and risk assessment of mycotoxins in major grain and oil products at home and abroad. Journal of the Chinese Cereals and Oils Association, 2019,34(9):130-138. (in Chinese)
[51] BERTHILLER F, KRSKA R, DOMIG K J, KNEIFEL W, JUGE N, SCHUHMACHER R, ADAM G. Hydrolytic fate of deoxynivalenol- 3-glucoside during digestion. Toxicology Letters, 2011,206(3):264-267. doi: 10.1016/j.toxlet.2011.08.006.
doi: 10.1016/j.toxlet.2011.08.006
[52] ABBOTT A. Microbiology: Gut reaction. Nature, 2004,427(6972):284-286. doi: 10.1038/427284a.
doi: 10.1038/427284a
[53] HATTORI M, TAYLOR T D. The human intestinal microbiome: A new frontier of human biology. DNA Research, 2009,16(1):1-12. doi: 10.1093/dnares/dsn033.
doi: 10.1093/dnares/dsn033
[54] ZHANG Z Q, NIE D X, FAN K, YANG J H, GUO W B, MENG J J, ZHAO Z H, HAN Z. A systematic review of plant-conjugated masked mycotoxins: Occurrence, toxicology, and metabolism. Critical Reviews in Food Science and Nutrition, 2020,60(9):1523-1537. doi: 10.1080/10408398.2019.1578944.
doi: 10.1080/10408398.2019.1578944
[55] ROGOWSKA A, POMASTOWSKI P, SAGANDYKOVA G, BUSZEWSKI B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon, 2019,162:46-56. doi: 10.1016/j.toxicon.2019.03.004.
doi: 10.1016/j.toxicon.2019.03.004
[56] NAGL V, SCHATZMAYR G. Deoxynivalenol and its masked forms in food and feed. Current Opinion in Food Science 2015,5:43-49.
doi: 10.1016/j.cofs.2015.08.001
[57] HE J W, BONDY G S, ZHOU T, CALDWELL D, BOLAND G J, SCOTT P M. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol- transformation product by Devosia mutans 17-2-E-8. Food and Chemical Toxicology, 2015,84:250-259. doi: 10.1016/j.fct.2015.09.003.
doi: 10.1016/j.fct.2015.09.003
[58] YAO Y, LONG M. The biological detoxification of deoxynivalenol: A review. Food and Chemical Toxicology, 2020,145:111649. doi: 10.1016/j.fct.2020.111649.
doi: 10.1016/j.fct.2020.111649
[59] BRACARENSE A P F L, PIERRON A, PINTON P, GEREZ J R, SCHATZMAYR G, MOLL W D, ZHOU T, OSWALD I P. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: in vivo analysis in piglets. Food and Chemical Toxicology, 2020,140:111241. doi: 10.1016/j.fct.2020.111241.
doi: 10.1016/j.fct.2020.111241
[60] DALL'ASTA C, GALAVERNA G, MANGIA M, SFORZA S, DOSSENA A, MARCHELLI R. Free and bound fumonisins in gluten-free food products. Molecular Nutrition & Food Research, 2009,53(4):492-499. doi: 10.1002/mnfr.200800088.
doi: 10.1002/mnfr.200800088
[61] 张晓明, 杨治彪, 高升成. 农产品中真菌毒素的管控. 现代农业科技, 2016(3):322-323.
ZHANG X M, YANG Z B, GAO S C. Control of mycotoxins in agricultural products. Modern Agricultural Science and Technology, 2016(3):322-323. (in Chinese)
[62] 周贻兵, 李磊, 吴玉田, 刘利亚. 小麦粉中2种新型真菌毒素含量测定方法. 食品工业, 2021,42(5):448-451.
ZHOU Y B, LI L, WU Y T, LIU L Y. Determination method of two new mycotoxins in wheat flour. The Food Industry, 2021,42(5):448-451. (in Chinese)
[63] LANCOVA K, HAJSLOVA J, POUSTKA J, KRPLOVA A, ZACHARIASOVA M, DOSTALEK P, SACHAMBULA L. Transfer of Fusarium mycotoxins and ‘masked’ deoxynivalenol (deoxynivalenol- 3-glucoside) from field barley through malt to beer. Food Additives & Contaminants: Part A, 2008,25(6):732-744. doi: 10.1080/02652030701779625.
doi: 10.1080/02652030701779625
[64] NERVA L, CHITARRA W, SICILIANO I, GAIOTTI F, CIUFFO M, FORGIA M, VARESE G C, TURINA M. Mycoviruses mediate mycotoxin regulation in Aspergillus ochraceus. Environmental Microbiology, 2019,21(6):1957-1968. doi: 10.1111/1462-2920.14436.
doi: 10.1111/1462-2920.14436
[65] HOENISCH R W, DAVIS R M. Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot in field corn. Plant Disease, 1994,78(5):517-519.
doi: 10.1094/PD-78-0517
[66] DORNER J W. Efficacy of a biopesticide for control of aflatoxins in corn. Journal of Food Protection, 2010,73(3):495-499. doi: 10.4315/0362-028x-73.3.495.
doi: 10.4315/0362-028x-73.3.495
[67] WU Q H, KUČA K, HUMPF H U, KLÍMOVÁ B, CRAMER B. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal- based thermal food processing: a review study. Mycotoxin Research, 2017,33(1):79-91. doi: 10.1007/s12550-016-0263-9.
doi: 10.1007/s12550-016-0263-9
[68] 吕聪, 邢福国, 刘阳. 国内外真菌毒素防控新技术. 中国猪业, 2017,12(6):27-32.
LÜ C, XING F G, LIU Y. New technologies of mycotoxin prevention and control at home and abroad. China Swine Industry, 2017,12(6):27-32. (in Chinese)
[69] TIAN Y, TAN Y L, LIU N, YAN Z, LIAO Y C, CHEN J, DE SAEGER S, YANG H, ZHANG Q Y, WU A B. Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum. Toxins, 2016,8(11):335.
doi: 10.3390/toxins8110335
[70] SHIMA J, TAKASE S, TAKAHASHI Y, IWAI Y, OCHI K. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Applied and Environmental Microbiology, 1997,63(10):3825-3830.
doi: 10.1128/aem.63.10.3825-3830.1997
[71] 何伟杰, 刘易科, 朱展望, 张静伯, 高春保, 廖玉才. 镰刀菌毒素脱氧雪腐镰刀菌烯醇脱毒菌及脱毒酶研究进展. 植物病理学报, 2019,49(5):577-589.
HE W J, LIU Y K, ZHU Z W, ZHANG J B, GAO C B, LIAO Y C. Recent progress on microbial and enzymatic detoxification of Fusarium mycotoxin deoxynivalenol. Acta Phytopathologica Sinica, 2019,49(5):577-589. (in Chinese)
[72] GUAN S, HE J W, YOUNG J C, ZHU H H, LI X Z, JI C, ZHOU T. Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture, 2009,290(3):290-295.
doi: 10.1016/j.aquaculture.2009.02.037
[1] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[2] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[3] MAO LianGang,GUO MingCheng,YUAN ShanKui,ZHANG Lan,JIANG HongYun,LIU XinGang. Analysis on the Status of Insecticides Registered on Small Insects of Fruits and Vegetables in China Based on Recommended Dosage [J]. Scientia Agricultura Sinica, 2022, 55(11): 2161-2173.
[4] ZHANG Qiao,WANG Ke. The Uncertainty of Agricultural Yield Risk Assessment and Agricultural Insurance Pricing: Literature Review and Wayforward [J]. Scientia Agricultura Sinica, 2021, 54(22): 4778-4786.
[5] WANG XiaoBin, YAN Xiang, LI XiuYing. Environmental Safety Risk for Application of Anaerobic Fermentation Biogas Slurry from Livestock Manure in Agricultural Land in China [J]. Scientia Agricultura Sinica, 2021, 54(1): 110-139.
[6] XU YongHong,CHEN Li,TANG Song,DING DeKuan,YANG YuHeng. Prediction of Suitable Area and Risk Analysis for Citrus Target Spot [J]. Scientia Agricultura Sinica, 2020, 53(21): 4430-4439.
[7] LI XiaoBei,ZHAO XiaoYan,LI JianYing,CHEN Lei,ZHOU ChangYan,HE XiangWei. Residue Behavior and Dietary Intake Risk Assessment of Imidaclothiz in Pakchoi (Brassica chinensis L.) [J]. Scientia Agricultura Sinica, 2020, 53(17): 3587-3596.
[8] WANG XiaoBin,YAN Xiang,LI XiuYing,JI HongJie. Environmental Risks for Application of Phosphogysum in Agricultural Soils in China [J]. Scientia Agricultura Sinica, 2019, 52(2): 293-311.
[9] WANG XiaoBin, YAN Xiang, LI XiuYing, CAI DianXiong, LEI Mei. Environment Risk for Application of Flue Gas Desulfurization Gypsum in Soils in China [J]. Scientia Agricultura Sinica, 2018, 51(5): 926-939.
[10] JIA ShiRong. Risk Assessment and Regulation of Genetically Engineered Crops: History and Reformation [J]. Scientia Agricultura Sinica, 2018, 51(4): 601-612.
[11] GAI XiaPu, LIU HongBin, ZHAI LiMei, YANG Bo, REN TianZhi, WANG HongYuan, WU ShuXia, LEI QiuLiang. Effects of Long-Term Additional Application of Organic Manure or Straw Incorporation on Soil Nitrogen Leaching Risk [J]. Scientia Agricultura Sinica, 2018, 51(12): 2336-2347.
[12] HU GuiXian, LAI AiPing, YUAN YuWei, ZHANG ZhiHeng, ZHAO ShouPing, ZHU JiaHong, WANG Qiang. Cumulative Risk Assessment of Dietary Sulfur Dioxide Residues of Consumers [J]. Scientia Agricultura Sinica, 2017, 50(7): 1317-1325.
[13] XU Li, LU AnXiang, TIAN XiaoQin, HE HongJu, YIN JingWei. Accumulation Characteristics and Risk Assessment of Heavy Metals in Typical Greenhouse Vegetable Bases [J]. Scientia Agricultura Sinica, 2017, 50(21): 4149-4158.
[14] LI ZhiXia, NIE JiYun, YAN Zhen, ZHANG XiaoNan, GUAN DiKai, SHEN YouMing, CHENG Yang. Progress in Research of Detection, Risk Assessment and Control of the Mycotoxins in Fruits and Fruit Products [J]. Scientia Agricultura Sinica, 2017, 50(2): 332-347.
[15] YE Meng-liang, NIE Ji-yun, XU Guo-feng, YAN Zhen, ZHENG Li-jing. Residue and Dietary Exposure Risk Assessment of Four Pesticides in Apple [J]. Scientia Agricultura Sinica, 2016, 49(7): 1289-1302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!