Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3334-3342.doi: 10.3864/j.issn.0578-1752.2022.17.006

• PLANT PROTECTION • Previous Articles     Next Articles

SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae

CUI JiangKuan(),REN HaoHao(),CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua()   

  1. College of Plant Protection, Henan Agricultural University/State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
  • Received:2022-03-16 Accepted:2022-04-03 Online:2022-09-01 Published:2022-09-07
  • Contact: JiHua TANG E-mail:jk_cui@163.com;renhh3@163.com;tangjihua1@163.com

Abstract:

【Objective】 Corn cyst nematode (Heterodera zeae) is one of the sedentary semi-endoparasitic nematode of Heterodera spp., infects the roots of various gramineae crops. The occurrence and spread of H. zeae will pose a serious threat to corn yield production. The objective of this study is to establish the rapid and accurate molecular detection system for H. zeae from the related cyst nematode species, which will lay a technical foundation for the monitoring, early warning and prevention and control of H. zeae.【Method】 A total of 20 cyst nematode populations of H. zeae related species were collected as the nematode samples, from Henan, Hebei, Gansu, Shandong, Hunan, Guangxi and Beijing. Thirteen random primers containing 10 bases were selected, and RPAD technique was used to analyze the polymorphism of the tested nematode samples. The specific RPAD fragment was screened and transformed to SCAR-PCR primers of H. zeae. PCR was used to test the accuracy of specific primers for H. zeae and the stability, sensitivity and effectiveness of the detection technology system.【Result】 By comparative analysis of the RAPD results, one specific fragment of 468 bp was produced by primer OPA03. The fragment was recovered for sequencing. According to the fragment sequencing information, a pair of specific primers HzF1/HzR1 was designed. The specific primers HzF1 and HzR1 specificity test results showed that, one 393 bp specific fragment was amplified from H. zeae, no target bands were amplified in the other 16 populations of 5 related Heterodera spp. species (H. avenae, H. filipjevi, H. glycines, H. elachista and H. schachtii) and 4 populations of other species (Aphelenchoides besseyi, Ditylenchus destructor, Pratylenchus neglectus, P. coffeae). Furthermore, the 393 bp specific fragment was also amplified from the 6 related Heterodera spp. species mixed DNA. Meanwhile, there were no target bands when the mixed population without H. zeae. The system realized the accurate and stable detection of H. zeae, and the sensitivity and practical range of the established rapid detection technology system were tested. The results showed that the detection system was sensitive to single cyst and single 2nd stage juvenile (J2) of H. zeae. The minimum detection thresholds were 1/2 000 of single cyst or 1/80 of single J2, respectively.【Conclusion】 The SCAR-PCR rapid molecular detection technique established in this study can be used for the rapid detection of single samples and mixed populations of H. zeae. It has sensitive detection ability for both the cysts and the J2 of H. zeae, with strong primer specificity, convenient and stable detection method and high sensitivity.

Key words: Heterodera zeae, RAPD, specific detection, SCAR-PCR

Table 1

Populations of nematodes used for species specific of H. zeae SCAR-PCR detection"

种群编号
Population code
种类
Species
来源
Origin
寄主植物
Host plant
Hz01 玉米孢囊线虫H. zeae 广西来宾Laibin, Guangxi 玉米Zea mays
Hz02 玉米孢囊线虫H. zeae 河南省濮阳市清丰县Qingfeng County, Puyang, Henan 玉米Zea mays
Hz03 玉米孢囊线虫H. zeae 河南省许昌市长葛Changge, Xuchang, Henan 玉米Zea mays
Hz04 玉米孢囊线虫H. zeae 河南省许昌市禹州Yuzhou, Xuchang, Henan 玉米Zea mays
Ha01 禾谷孢囊线虫H. avenae 河南省周口市扶沟县Fugou County, Zhoukou, Henan 小麦Triticum aestivum
Ha02 禾谷孢囊线虫H. avenae 河南省洛阳市偃师Yanshi, Luoyang, Henan 小麦Triticum aestivum
Ha03 禾谷孢囊线虫H. avenae 河北省沙河市Shahe, Hebei 小麦Triticum aestivum
Ha04 禾谷孢囊线虫H. avenae 山东省烟台市莱州Laizhou, Yantai, Shandong 小麦Triticum aestivum
Hf01 菲利普孢囊线虫H. filipjevi 河南省商丘市虞城县Yucheng County, Shangqiu, Henan 小麦Triticum aestivum
Hf02 菲利普孢囊线虫H. filipjevi 河南省洛阳市栾川县Luanchuan County, Luoyang, Henan 小麦Triticum aestivum
Hf03 菲利普孢囊线虫H. filipjevi 河北省邯郸市Handan, Hebei 小麦Triticum aestivum
Hf04 菲利普孢囊线虫H. filipjevi 山东省滕州市Tengzhou, Shandong 小麦Triticum aestivum
He01 旱稻孢囊线虫H. elachista 河南省信阳市潢川县Huangchuan County, Xinyang, Henan 水稻Oryza sativa
He02 旱稻孢囊线虫H. elachista 河南省新乡市获嘉县Huojia County, Xinxiang, Henan 水稻Oryza sativa
He03 旱稻孢囊线虫H. elachista 湖南省长沙市Changsha, Hunan 水稻Oryza sativa
Hg01 大豆孢囊线虫H. glycines 河南省周口市淮阳县Huaiyang County, Zhoukou, Henan 大豆Glycine max
Hg02 大豆孢囊线虫H. glycines 河南省南阳市内乡县Neixiang County, Nanyang, Henan 大豆Glycine max
Hg03 大豆孢囊线虫H. glycines 甘肃省庆阳市Qingyang, Gansu 大豆Glycine max
Hg04 大豆孢囊线虫H. glycines 河北省廊坊市Langfang, Hebei 大豆Glycine max
Hs01 甜菜孢囊线虫H. schachtii 中国农业科学院Chinese Academy of Agricultural Sciences 甜菜Beta vulgaris
Ab01 水稻干尖线虫A. besseyi 河南农业大学Henan Agricultural University 水稻Oryza sativa
Dd01 马铃薯腐烂茎线虫D. destructor 河南农业大学Henan Agricultural University 马铃薯Solanum tuberosum
Pn01 落选短体线虫P. neglectus 河南农业大学Henan Agricultural University 小麦Triticum aestivum
Pc01 咖啡短体线虫P. coffeae 河南农业大学Henan Agricultural University 小麦Triticum aestivum

Table 2

Random primers used in this study"

引物名称 Primer name 引物序列 Primer sequence (5′-3′)
OPA02 TGCCGAGCTG
OPA03 AGTCAGCCAC
OPA06 GGACCCTGAC
OPA09 GGGTAACGCC
OPA13 CAGCACCCAC
OPA18 AGGTGACCGT
OPB15 GGAGGGTGTT
OPC06 AAGACCCCTC
OPD13 GGGGTGACGA
OPG06 GTGCCTAACC
OPG08 TCACGTCCAC
OPG10 AGGGCCGTCT
OPK16 GAGCGTCGAA

Fig. 1

Amplification products of the DNA from single cyst of H. zeae obtained by 13 RAPD primers"

Fig. 2

Amplification for the DNA from single cyst of H. zeae and other related species population by primer OPA03"

Fig. 3

SCAR-PCR detection of H. zeae and related populations with species-specific primers of H. zeae"

Fig. 4

Sensitivity detection of the DNA from single cyst of H. zeae by SCAR primers"

Fig. 5

Sensitivity detection of the DNA from single J2 of H. zeae by the SCAR primers"

[1] SRIVASTAVA A N, CHAWLA G. Maize cyst nematode, Heterodera zeae: A key nematode pest of maize and its management. New Delhi, India: Director, IARl, 2005: 8-9.
[2] WU H Y, QIU Z Q, MO A S, LI J Q, PENG D L. First report of Heterodera zeae on maize in China. Plant Disease, 2017, 101(7): 1330.
[3] CUI J K, ZHOU B, JIAO Y J, LÜ Y, LU J F, MENG H G, JIANG S J. First report of Heterodera zeae on maize (Zea mays L.) in Henan Province, China. Plant Disease, 2020, 104(7): 2031.
[4] LUC M, SIKORA R A, BRIDGE J. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. UK: CABI Publishing, 2005: 122.
[5] BAJAJ H K, KANWAR R S. Parasitization of maize by Heterodera avenae and H. filipjevi. Nematologia Mediterranea, 2005, 33: 203-207.
[6] BAHETI B L, DODWADIYA M, RATHORE B S, BHATI S S. Bioagents: An effective and ecofriendly option for the management of maize cyst nematode, Heterodera zeae on sweet corn (Zea mays L. Saccharata). Journal of Biopesticides, 2015, 8(2): 141-146.
[7] XIAO D X, FENG Y X, ZHOU Y, XUAN Y H, CHEN L J, WANG Y Y, LIU X Y, DUAN Y X, ZHU X F. First report of Heterodera elachista on Zea mays and Echinochloa crusgalli var. mitis in Liaoning Province, China. Plant Disease, 2019, 103(6): 1433.
[8] RINGER C E, SARDANELLI S, KRUSBERG L R. Investigations of the host range of the corn cyst nematode Heterodera zeae from Maryland. Journal of Nematology, 1987, 19(1): 97-106.
[9] SHAHZAD S, GHAFFAR A. Tomato, a natural host of Heterodera zeae in Pakistan. International Nematology Network Newsletter, 1986, 3(4): 38.
[10] QASIM M, GHAFFAR A. Heterodera zeae in the rhizosphere of declining almond trees. Nematologia Mediterranea, 1986, 14(1): 159.
[11] SRIVASTAVA A N, JAISWAL R K. Host and non-host status of plant species for the maize cyst nematode, Heterodera zeae, in India. Nematologia Mediterranea, 2011, 39: 203-206.
[12] CORREIA F J S, ABRANTES I M. Characterization of Heterodera zeae populations from Portugal. Journal of Nematology, 2005, 37(3): 328-335.
[13] MAQBOOL M A. Occurrence of root-knot and cyst nematodes in Pakistan. Nematologia Mediterranea, 1981, 9(2): 211-212.
[14] ABOUL-EID H Z, GHORAB A I. The occurrence of Heterodera zeae in maize fields in Egypt. Egyptian Journal of Phytopathology, 1983, 13(1/2): 51-61.
[15] CHINNASRI B, TANGCHITSOMKID N, TOIDA Y. Heterodera zeae on maize in Thailand. Japanese Journal of Nematology, 1994, 24(1): 35-38.
[16] SHARMA S B, PANDE S, SAHA M, KAUSHAL K K, LAL M, SINGH M, SINGH K, POKHAREL R, UPRETI R P, SINGH K. Plant parasitic nematodes associated with rice and wheat based cropping systems in Nepal. International Journal of Nematology, 2001, 11(1): 35-38.
[17] SARDANELLI S, KRUSBERG L, GOLDEN A M. Corn cyst nematode, Heterodera zeae, in the United States. Plant Disease, 1981, 65(7): 622.
doi: 10.1094/PD-65-622
[18] SKANTAR A M, HANDOO Z A, ZANAKIS G N, TZORTZAKAKIS E A. Molecular and morphological characterization of the corn cyst nematode, Heterodera zeae, from Greece. Journal of Nematology, 2012, 44(1): 58-66.
[19] ASGHARI R, POURJAM E, HEYDAR R, TANHA MAAFI Z, LATIFI A M. First report of corn cyst nematode, Heterodera zeae in Afghanistan. Australasian Plant Disease Notes, 2013, 8(1): 93-96.
[20] SUBBOTIN S A, WAEYENBERGE L, MOENS M. Identification of cyst forming nematodes of the genus Heterodera (Nematoda: Heteroderidae) based on the ribosomal DNA-RFLP. Nematology, 2000, 2(2): 153-164.
doi: 10.1163/156854100509042
[21] 彭德良, SUBBOTIN S, MOENS M. 小麦禾谷胞囊线虫(Heterodera avenae)的核糖体基因(rDNA)限制性片段长度多态性研究. 植物病理学报, 2003, 33(4): 323-329.
PENG D L, SUBBOTIN S, MOENS M. rDNA restriction fragment length polymorphism of Heterodera avenae in China. Acta Phytopathologica Sinica, 2003, 33(4): 323-329. (in Chinese)
[22] WILLIAMS J G, KUBELIK A R, LIVAK K J, RAFALSKI J A, TINGEY S V. DNA polymorphism amplified by arbitrary primers are useful as genetic marker. Nucleic Acids Research, 1990, 18(22): 6531-6535.
doi: 10.1093/nar/18.22.6531
[23] WELSH J, MCCLELLAND M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 1990, 18(24): 7213-7218.
doi: 10.1093/nar/18.24.7213
[24] CASWELL-CHEN E P, WILLIAMSON V M, WU F F. Random amplified polymorphic DNA analysis of Heterodera cruciferae and H. schachtii populations. Journal of Nematology, 1992, 24(3): 343-351.
[25] 刘佳, 徐娇, 代君丽, 李洪连. 中国黄淮麦区燕麦孢囊线虫荥阳群体致病型相关RAPD标记的建立. 麦类作物学报, 2013, 33(6): 1294-1299.
LIU J, XU J, DAI J L, LI H L. RAPD markers of Heterodera avenae Xingyang population from Huang-huai floodplain in China. Journal of Triticeae Crops, 2013, 33(6): 1294-1299. (in Chinese)
[26] PARAN I, MICHELMORE R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 1993, 85(8): 985-993.
doi: 10.1007/BF00215038
[27] FULLANODO A, BARRENA E, VIRIBAY M, BARRENA I, SALAZAR A, RITTER E. Identification of potato cyst nematode species Globodera rostochiensis and G. pallida by PCR using specific primer combinations. Nematology, 1999, 1(2): 157-163.
doi: 10.1163/156854199508126
[28] AMIRI S, SUBBOTIN S A, MOENS M. Identification of the beet cyst nematode Heterodera schachtii by PCR. European Journal of Plant Pathology, 2002, 108(6): 497-506.
[29] OU S Q, PENG D L, LIU X M, LI Y, MOENS M. Identification of Heterodera glycines using PCR with sequence characterised amplified region (SCAR) primers. Nematology, 2008, 10(3): 397-403.
doi: 10.1163/156854108783900212
[30] 代君丽, 徐姣, 刘佳. Heterodera filipjevi许昌群体SCAR标记的建立. 植物病理学报, 2018, 48(2): 239-247.
DAI J L, XU J, LIU J. Development of SCAR markers related to Heterodera filipjevi Xuchang population. Acta Phytopathologica Sinica, 2018, 48(2): 239-247. (in Chinese)
[31] 彭德良. 小麦和大豆孢囊线虫毒性、分子诊断及线虫病害生防因子研究[D]. 北京: 中国农业大学, 2001.
PENG D L. Studies on virulence, molecular diagnosis of cereal cyst nematode (Heterodera avenae) and soybean cyst nematode (Heterodera glycines) and biocontrol agents of nematode diseases[D]. Beijing: China Agricultural University, 2001. (in Chinese)
[32] 亓晓莉, 彭德良, 彭焕, 龙海波, 黄文坤, 贺文婷. 基于SCAR标记的小麦禾谷孢囊线虫快速分子检测技术. 中国农业科学, 2012, 45(21): 4388-4395.
QI X L, PENG D L, PENG H, LONG H B, HUANG W K, HE W T. Rapid molecular diagnosis based on SCAR marker system for cereal cyst nematode. Scientia Agricultura Sinica, 2012, 45(21): 4388-4395. (in Chinese)
[33] 郑经武, 李德葆. 植物线虫分子分类及鉴定研究新进展. 植物病理学报, 1998, 28(1): 1-4.
ZHENG J W, LI D B. Recent progress on molecular taxonomy and identification of plant nematodes. Acta Phytopathologica Sinica, 1998, 28(1): 1-4. (in Chinese)
[34] POWERS T O, SANDALL L J. Estimation of genetic divergence in Meloidogyne mitochondrial DNA. Journal of Nematology, 1988, 20(4): 505-511.
[35] RADICE A D, POWERS T O, SANDALL L J, RIGGS R D. Comparisons of mitochondrial DNA from the sibling species Heterodera glycines and H. schachtiin. Journal of Nematology, 1988, 20(3): 443-450.
[36] SUBBOTIN S A, WAEYENBERGE L, MOLOKANOVA I, MOENS M. Identification of Heterodera avenae group species by morphometrics and rDNA-RFLPs. Nematology, 1999, 1(2): 195-207.
doi: 10.1163/156854199508018
[37] 卓侃, 宋汉达, 王宏洪, 陶冶, 张洪玲, 陆秀红, 黄金玲, 刘志明, 廖金铃. 旱稻孢囊线虫在广西的发生及其rDNA-ITS异质性分析. 中国水稻科学, 2014, 28(1): 78-84.
ZHUO K, SONG H D, WANG H H, TAO Y, ZHANG H L, LU X H, HUANG J L, LIU Z M, LIAO J L. Occurence of Heterodera elachista in Guangxi region and its intra-species heterogeneity in rDNA-ITS region. Chinese Journal of Rice Science, 2014, 28(1): 78-84. (in Chinese)
[38] 郑经武, 许建平, 陈卫良, 龚鸿飞, 李德葆. 四种植物线虫的RAPD比较及鉴定研究. 农业生物技术学报, 1998, 6(2): 108, 116.
ZHENG J W, XU J P, CHEN W L, GONG H F, LI D B. Molecular comparison and identification of four plant nematodes using randomly amplified polymorphic DNA (RAPD) markers. Journal of Agricultural Biotechnology, 1998, 6(2): 108, 116. (in Chinese)
[39] 喻盛甫, 王扬, 胡先奇, 白万明. 4种常见根结线虫基因组DNA的RAPD分析. 植物病理学报, 1998, 28(4): 359-365.
YU S F, WANG Y, HU X Q, BAI W M. RAPD analysis of four most common Meloidogyne spp.. Acta Phytopathologica Sinica, 1998, 28(4): 359-365. (in Chinese)
[40] MENG Q P, LONG H, XU J H. PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica and M. arenaria. Acta Phytopathologica Sinica, 2004, 34(3): 204-210.
[41] 葛建军, 刁鹏, 陈洪俊, MARICE M. 马铃薯金线虫的分子检测技术. 植物检疫, 2008, 22(1): 21-23.
GE J J, DIAO P, CHEN H J, MARICE M. Research on the molecular diagnosis for the Globodera rostochiensiss. Plant Quarantine, 2008, 22(1): 21-23. (in Chinese)
[42] PENG H, QI X L, PENG D L, LONG H B, HE X F, HUANG W K, HE W T. Sensitive and direct detection of Heterodera filipjevi in soil and wheat roots by species-specific SCAR-PCR assays. Plant Disease, 2013, 97(10): 1288-1294.
doi: 10.1094/PDIS-02-13-0132-RE
[1] WANG Yu-Juan, ZHANG Yan, FANG Jing-Gui, LIU Chong-Huai, SONG Chang-Nian, SUN Xin. Rapid Identification of 72 Grape Cultivars by Using RAPD Markers-Based MCID Method [J]. Scientia Agricultura Sinica, 2012, 45(14): 2913-2922.
[2] CHENG Zhi-xue,CHEN Qing-hua,PENG Qing-wu,ZHANG Hua,WANG Rui
. Construction of a Molecular Genetic Linkage Map and QTL Analysis of the First Pistillate Flower Node Trait in Chieh-qua
[J]. Scientia Agricultura Sinica, 2010, 43(7): 1508-1515 .
[3] PEI Ying-fang,LIU Yan-lin. Application of DNA Molecular Markers in Genetic Diversities of Saccharomyces cerevisiae Strains
[J]. Scientia Agricultura Sinica, 2010, 43(5): 1023-1030 .
[4] ZHANG Jian-zhen,LI Da-qi,LI Tao,MA En-bo,GUO Ya-ping
. Identification of Oxya-Specific SCAR Molecular Marker
[J]. Scientia Agricultura Sinica, 2010, 43(23): 4834-4839 .
[5] . Selection of Parents for Breeding of Sweetpotato Food Varieties of High Carotene Content
[J]. Scientia Agricultura Sinica, 2009, 42(3): 798-808 .
[6]

. Genetic Analysis and RAPD Marker of Creeping Habits in Ground-Cover Chrysanthemum
[J]. Scientia Agricultura Sinica, 2009, 42(2): 734-741 .
[7] . Effect of Rotation and Interplanting on Cucumber Yield and Soil Microbial Diversity
[J]. Scientia Agricultura Sinica, 2009, 42(1): 209-209 .
[8] . Identification of RAPD and SCAR markers linked Fulvia fulv [J]. Scientia Agricultura Sinica, 2008, 41(7): 2191-2196 .
[9] Lei SUN Xu-zhen CHENG. Heredity Analysis and Gene Mapping of Bruchid Resistance of A Mungbean Cultivar V2709 [J]. Scientia Agricultura Sinica, 2008, 41(5): 1291-1296 .
[10] . The RAPD marker linked to precocious gene of walnut (Juglans regia L.) and its sequence analysis [J]. Scientia Agricultura Sinica, 2007, 40(9): 2021-2027 .
[11] . The Study on Genomic Polymorphism among [J]. Scientia Agricultura Sinica, 2007, 40(2): 426-432 .
[12] . The Comparison of SSR, AFLP and RAPD Markers for Genetic Analysis of Domestic Silkworm [J]. Scientia Agricultura Sinica, 2007, 40(12): 2926-2930 .
[13] . Study of Relativity of Soil Microbial Diversity and Cucumber Yield, Quality in Protected Cultivation [J]. Scientia Agricultura Sinica, 2007, 40(10): 2274-2280 .
[14] . Identification and Preliminary Analysis of Genetic Diversity of Cenococcum geophilum Fr. [J]. Scientia Agricultura Sinica, 2007, 40(10): 2214-2220 .
[15] ,,,. Study on Correlation between Genetic Distance and Heterosis Percentage of Pig with RAPD Marker [J]. Scientia Agricultura Sinica, 2007, 40(1): 173-177 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!