Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 3029-3041.doi: 10.3864/j.issn.0578-1752.2022.15.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Very Fast Chilling on Flavor Quality in Chilled Lamb

YAN TongJing(),ZHANG DeQuan,LI Xin,LIU Huan,FANG Fei,LIU ShanShan,WANG Su,HOU ChengLi()   

  1. Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193
  • Received:2021-12-07 Accepted:2022-04-11 Online:2022-08-01 Published:2022-08-02
  • Contact: ChengLi HOU E-mail:tongjing_yan@163.com;houchengli@caas.cn

Abstract:

【Objective】The objective of this study was to clarify the effect of very fast chilling on flavor quality of chilled lamb, so as to provide a theoretical and experimental basis, to some extent, for developing very fast chilling technology. 【Method】Lamb Silverside muscles were obtained from hot carcasses at 1 h postmortem, and were chilled under conventional chilling (chilling rate 1.94℃∙h-1) and very fast chilling (chilling rate 15.10℃∙h-1), respectively. The contents of nucleotides, free amino acids and volatile compounds were determined during storage. The taste active value and odor activity value were calculated to identify the key volatile compounds in chilled lamb. 【Result】5'-GMP, Alanine and Glutamic acid were identified as the key taste contributors in chilled lamb based on the taste activity value. 13 volatile compounds were identified as key flavor contributors of chilled lamb according to the odor activity value, including 8 aldehydes, 4 alcohols and 1 furan. Specifically, the 8 aldehydes included pentanal, (E)-2-octenal, nonanal, heptanal, (E, E)-2,4-nonadienal, (E)-2-nonenal, octanal, hexanal, the 4 alcohols included hexanol, (E)-2-octene-1-ol, octanol, 1-octen-3-ol, and the furan was 2-pentyl-furan. With the prolongation of storage time, 5'-AMP, 5'-IMP and 5'-GMP were gradually degraded into hypoxanthine and inosine, and sweet amino acids (serine), bitter amino acids (valine, methionine, leucine, tyrosine, phenylalanine, lysine, arginine) and volatile compounds (including 1-octen-3-ol, hexanal, octanal) increased significantly, which changed the flavor quality of chilled lamb in conventional chilling group. The degradation of 5'-AMP, 5'-IMP, 5'-GMP and the formation of free amino acids (including glutamic acid, glycine, proline, valine) and volatile compounds (including 1-octene-3-ol, hexanal, octanal, nonanal, heptanal, hexanol, 2-pentyl-furan) were delayed in very fast chilling group. This change maintained the freshness and reduced negative effects of bitter amino acids, aldehydes and alcohols on the flavor quality of chilled lamb. The result of the cluster analysis showed that flavor quality of chilled lamb at 72 h postmortem in very fast chilling group was similar to that of chilled lamb at 6 h postmortem in conventional chilling group. 【Conclusion】Very fast chilling could delay the changes of volatile compounds and taste compounds, therefore it maintained the flavor quality of chilled lamb in the state of pre-rigor.

Key words: very fast chilling, chilled lamb, nucleotide, free amino acid, volatile compound

Table 1

Changes in the content of nucleotides in VFC group and conventional chilling group"

核苷酸含量
Nucleotide
(mg/100 g)
常规冷却处理组 Conventional chilling group 超快速冷却处理组 VFC group
1 h 6 h 24 h 72 h 1 h 6 h 24 h 72 h
5'-ADP 168.45±33.83ab 142.09±41.91b 202.23±29.18Ba 144.00±31.73b 160.15±44.11b 159.90±33.06b 262.71±52.58Aa 134.99±22.87b
5'-AMP 12.50±3.08b 13.78±1.42b 21.67±2.21a 13.86±3.11Bb 12.98±2.66b 14.35±3.25b 20.70±1.92a 20.60±2.06Aa
5'-IMP 88.97±7.92b 93.38±36.63Bb 238.77±25.48a 71.89±30.36Bb 88.53±10.16c 168.85±44.43Ab 238.42±6.88a 165.43±36.19Ab
5'-GMP 1435.57±148.46b 1329.23±151.56b 1401.95±81.82b 1662.15±291.40Ba 1339.31±193.05c 1256.05±297.83c 1682.89±250.17b 2033.82±240.19Aa
肌苷 I 288.70±66.57Bd 610.29±55.32c 852.14±118.58b 1536.00±181.02Aa 367.38±55.40Ac 670.04±86.08b 1024.14±151.75a 1118.69±93.11Ba
次黄嘌呤 Hx 13.50±2.56c 12.93±1.14c 17.41±3.03b 35.00±2.49Aa 15.60±2.39b 13.68±2.78b 18.50±2.08a 20.40±2.21Ba

Table 2

Changes in the content of free amino acids in VFC group and conventional chilling group"

游离氨基酸含量
Free amino acid (mg/100 g)
常规冷却处理组 Conventional chilling group 超快速冷却处理组 VFC group
1 h 6 h 24 h 72 h 1 h 6 h 24 h 72 h
天冬氨酸 Aspartic acid 0.98±0.68a 0.10±0.16Bb 0.00±0.00b 0.13±0.23b 1.37±1.13a 1.68±1.04Aa 0.78±0.88a 0.44±0.60a
谷氨酸 Glutamic acid 11.40±3.60a 13.85±2.76a 11.17±3.99a 14.22±3.16Aa 12.77±4.87a 12.45±6.48a 9.49±3.51a 9.77±2.95Ba
鲜味氨基酸 Umami amino acid 12.38±3.14a 13.95±2.86a 11.17±3.99a 14.35±3.06Aa 14.13±5.25a 14.13±7.34a 10.27±3.97a 10.21±2.92Ba
苏氨酸 Threonine 3.71±0.78a 3.94±0.58a 3.83±0.51a 4.46±0.63a 3.44±1.30a 3.77±0.30a 3.92±0.86a 4.36±0.63a
丝氨酸 Serine 3.04±0.25b 3.22±0.18b 3.27±0.33b 3.99±0.54a 2.67±0.68a 2.97±0.24a 3.36±0.40a 3.36±0.68a
甘氨酸 Glycine 12.90±2.03a 10.85±1.60a 11.47±1.25Aa 11.99±1.88Aa 9.50±3.85a 9.47±1.61a 8.70±1.33Ba 9.10±1.19Ba
丙氨酸 Alanine 37.66±6.22a 36.62±3.07a 38.81±5.66a 37.46±4.64a 38.49±9.66a 34.27±7.25a 35.41±5.40a 32.07±7.33a
脯氨酸 Proline 3.08±0.66a 3.12±0.81a 3.48±0.46Aa 3.65±0.43a 2.39±0.40b 2.48±0.46b 2.63±0.45Bb 3.29±0.24a
甜味氨基酸 Sweet amino acid 60.38±5.75a 57.74±2.86a 60.86±6.43a 61.55±5.21a 56.48±12.9a 52.96±9.24a 54.02±7.66a 52.19±9.01a
缬氨酸 Valine 2.17±0.47b 2.07±0.42b 2.33±0.32Aab 2.72±0.51Aa 1.90±0.63a 1.69±0.37a 1.57±0.50Ba 2.01±0.51Ba
蛋氨酸 Methionine 0.57±0.10b 0.57±0.05b 0.73±0.23b 1.00±0.31a 0.42±0.20b 0.70±0.38ab 0.92±0.29a 0.92±0.38a
异亮氨酸 Isoleucine 0.08±0.14a 0.08±0.17a 0.02±0.00a 0.10±0.14a 0.05±0.05ab 0.17±0.19a 0.06±0.09ab 0.01±0.03b
亮氨酸 Leucine 2.85±0.53b 2.66±0.83b 3.27±0.43ab 4.06±0.94a 2.04±1.19b 2.37±0.33b 2.70±0.79ab 3.33±0.38a
酪氨酸 Tyrosine 2.10±0.37b 1.85±0.27b 2.03±0.27b 2.54±0.49a 1.51±0.87a 1.77±0.35a 1.66±0.93a 1.96±0.64a
苯丙氨酸 Phenylalanine 1.54±0.20b 1.50±0.15b 1.68±0.21b 2.13±0.51a 1.43±0.32a 1.46±0.43a 1.89±0.47a 1.71±0.48a
赖氨酸 Lysine 2.79±0.42b 3.04±0.35b 3.04±0.34b 3.87±0.64a 3.15±1.10a 3.21±0.58a 3.40±1.05a 3.60±0.98a
组氨酸 Histidine 1.99±0.47a 2.12±0.23a 2.09±0.20a 2.33±0.49a 2.20±0.69a 1.91±0.50a 2.28±0.57a 1.45±1.09a
精氨酸 Arginine 3.42±0.43b 3.69±0.51b 3.54±0.26b 4.32±0.43a 4.08±1.33a 4.08±1.42a 4.36±0.95a 4.12±0.97a
苦味氨基酸 Bitter amino acid 17.52±2.37b 17.58±1.75b 18.73±1.05b 23.08±3.74a 16.79±4.24a 17.35±1.56a 18.83±4.12a 19.10±3.86a
总氨基酸 Total free amino acids 90.28±6.22b 89.28±1.29b 90.77±7.89b 98.98±7.65Aa 87.40±20.12a 84.45±16.09a 83.13±10.37a 81.51±11.50Ba

Fig. 1

TAVs and EUCs of non-volatile compounds in VFC group and conventional chilling group"

Table 3

Identification of volatile compounds in VFC group and conventional chilling group"

挥发性风味物质
Volatile compound
LRI 定性方式
Identification method
挥发性风味物质
Volatile compound
LRI 定性方式
Identification method
理论值
Theoretical value
计算值
Calculated value
理论值
Theoretical value
计算值
Calculated value
正-4-癸烯醛 (Z)-4-Decenal 1542 1543 MS, LRI 正-2-辛烯-1-醇 (Z)-2-Octene-1-ol 1617 1617 MS, LRI
癸醛 Decanal 1483 1481 MS, LRI 1-壬烯-4-醇 1-Nonen-4-ol - 1655 MS
反,反-2,4-壬二烯醛
(E, E)-2,4-Nonadienal
1686 1695 MS, LRI 1-辛烯-3-醇 1-Octen-3-ol 1430 1452 MS, LRI
戊醛 Pentanal 964 974 MS, LRI 2-辛酮 2-Octanone 1285 1278 MS, LRI
反-2-壬醛 (E)-2-Nonenal 1514 1527 MS, LRI 6-甲基-2-庚酮 6-methyl-2-Heptanone 1237 1249 MS, LRI
反-2-辛烯醛 (E)-2-Octenal 1396 1413 MS, LRI 3-辛酮 3-Octanone 1253 1251 MS, LRI
苯甲醛 Benzaldehyde 1476 1522 MS, LRI 3-辛烯-2-酮 3-Octene-2-one 1414 1410 MS, LRI
辛醛 Octanal 1273 1267 MS, LRI 1-辛烯-3-酮 1-Octene-3-one 1310 1302 MS, LRI
庚醛 Heptanal 1163 1176 MS, LRI 2-庚酮 2-Heptanone 1174 1178 MS, LRI
壬醛 Nonanal 1369 1362 MS, LRI 2,3-辛二酮 2,3-Octanedione 1325 1315 MS, LRI
己醛 Hexanal 1064 1080 MS, LRI 乙酸 Acetic acid 1401 1463 MS, LRI
2-乙基-1-己醇 2-ethyl-1-Hexanol 1505 1493 MS, LRI N-己酸乙烯酯 n-Caproic acid vinyl - 1652 MS
反-2-辛烯-1-醇 (E)-2-Octene-1-ol 1617 1619 MS, LRI 十三烷 Tridecane - 1268 MS
庚醇 Heptanol 1465 1462 MS, LRI 1,3-辛二烯 1,3-Octadiene 958 957 MS, LRI
辛醇 Octanol 1488 1564 MS, LRI 苯乙烯 Styrene 1236 1237 MS, LRI
戊醇 Pentanol 1274 1271 MS, LRI 2-戊基-呋喃 2-pentyl-Furan 1215 1217 MS, LRI
己醇 Hexanol 1358 1375 MS, LRI

Fig. 2

Changes in the content of volatile compounds in VFC group and conventional chilling group"

Fig. 3

OVAs and contribution rates of volatile compounds in VFC group and conventional chilling group"

Fig. 4

Cluster analysis of lamb in VFC group and conventional chilling group"

[1] 张德权, 侯成立. 热鲜肉与冷却肉品质差异之管见. 肉类研究, 2020, 34(5): 83-90. doi: 10.7506/rlyj1001-8123-20200220-041.
doi: 10.7506/rlyj1001-8123-20200220-041
ZHANG D Q, HOU C L. Humble opinion on the quality difference between hot meat and chilled meat. Meat Research, 2020, 34(5): 83-90. doi: 10.7506/rlyj1001-8123-20200220-041. (in Chinese)
doi: 10.7506/rlyj1001-8123-20200220-041
[2] BUENO M, RESCONI V C, CAMPO M M, FERREIRA V, ESCUDERO A. Development of a robust HS-SPME-GC-MS method for the analysis of solid food samples. Analysis of volatile compounds in fresh raw beef of differing lipid oxidation degrees. Food Chemistry, 2019, 281: 49-56.
doi: 10.1016/j.foodchem.2018.12.082
[3] RAMALINGAM V, SONG Z, HWANG I. The potential role of secondary metabolites in modulating the flavor and taste of the meat. Food Research International, 2019, 122: 174-182. doi: 10.1016/j.foodres.2019.04.007.
doi: 10.1016/j.foodres.2019.04.007
[4] 肖雄, 张德权, 李铮, 李欣, 任驰, Zubair Hussain, 刘登勇, 侯成立. 宰后僵直和解僵过程羊肉风味品质分析. 现代食品科技, 2019, 35(6): 287-294. doi: 10.13982/j.mfst.1673-9078.2019.6.038.
doi: 10.13982/j.mfst.1673-9078.2019.6.038
XIAO X, ZHANG D Q, LI Z, LI X, REN C, HUSSAIN Z, LIU D Y, HOU C L. Analysis of flavor quality of pre- and post-rigor lamb. Modern Food Science and Technology, 2019, 35(6): 287-294. doi: 10.13982/j.mfst.1673-9078.2019.6.038. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2019.6.038
[5] 肖雄, 侯成立, 李欣, 郑晓春, 张德权, 任驰, 摆玉蔷, 颜统晶, 刘登勇. 宰后贮藏过程中羔羊肉食用品质的变化. 肉类研究, 2019, 33(9): 53-58. doi: 10.7506/rlyj1001-8123-20190625-145.
doi: 10.7506/rlyj1001-8123-20190625-145
XIAO X, HOU C L, LI X, ZHENG X C, ZHANG D Q, REN C, BAI Y Q, YAN T J, LIU D Y. Changes in eating quality of lamb during postmortem storage. Meat Research, 2019, 33(9): 53-58. doi: 10.7506/rlyj1001-8123-20190625-145. (in Chinese)
doi: 10.7506/rlyj1001-8123-20190625-145
[6] XIAO X, HOU C L, ZHANG D Q, LI X, REN C, IJAZ M, HUSSAIN Z, LIU D Y. Effect of pre- and post-rigor on texture, flavor, heterocyclic aromatic amines and sensory evaluation of roasted lamb. Meat Science, 2020, 169: 108220. doi: 10.1016/j.meatsci.2020.108220.
doi: 10.1016/j.meatsci.2020.108220
[7] NEETHLING J, HOFFMAN L C, MULLER M. Factors influencing the flavour of game meat: A review. Meat Science, 2016, 113: 139-153. doi: 10.1016/j.meatsci.2015.11.022.
doi: 10.1016/j.meatsci.2015.11.022
[8] KHAN M I, JO C, TARIQ M R. Meat flavor precursors and factors influencing flavor precursors: A systematic review. Meat Science, 2015, 110: 278-284. doi: 10.1016/j.meatsci.2015.08.002.
doi: 10.1016/j.meatsci.2015.08.002
[9] 肖雄, 侯成立, 李欣, 陈丽, 张德权, 任驰, 摆玉蔷, 刘登勇. 宰后不同时间蒙寒杂交羔羊霖肉的营养品质分析. 食品科学技术学报, 2020, 38(2): 99-106. doi: 10.3969/j.issn.2095-6002.2020.02.013.
doi: 10.3969/j.issn.2095-6002.2020.02.013
XIAO X, HOU C L, LI X, CHEN L, ZHANG D Q, REN C, BAI Y Q, LIU D Y. Nutritional quality analysis of knuckle muscle in Mongolian and small-tailed Han crossbreed lamb at different postmortem times. Journal of Food Science and Technology, 2020, 38(2): 99-106. doi: 10.3969/j.issn.2095-6002.2020.02.013. (in Chinese)
doi: 10.3969/j.issn.2095-6002.2020.02.013
[10] BELLÉS M, ALONSO V, RONCALÉS P, BELTRÁN J A. A review of fresh lamb chilling and preservation. Small Ruminant Research, 2017, 146: 41-47.
doi: 10.1016/j.smallrumres.2016.12.003
[11] 李文东, 韩玲, 宋仁德, 赵索南, 石红梅, 余群力. 快速冷却对宰后牦牛肉成熟过程中细胞凋亡酶活力与嫩度的影响. 现代食品科技, 2019, 35(3): 73-79. doi: 10.13982/j.mfst.1673-9078.2019.3.012.
doi: 10.13982/j.mfst.1673-9078.2019.3.012
LI W D, HAN L, SONG R D, ZHAO S N, SHI H M, YU Q L. The effect of rapid chilling on tenderness and apoptotic activity during yak meat postmortem aging. Modern Food Science and Technology, 2019, 35(3): 73-79. doi: 10.13982/j.mfst.1673-9078.2019.3.012. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2019.3.012
[12] LIANG C, ZHANG D Q, WEN X Y, LI X, CHEN L, ZHENG X C, FANG F, LI J H, HOU C L. Effects of chilling rate on the freshness and microbial community composition of lamb carcasses. LWT-Food Science and Technology, 2022, 153: 112559.
doi: 10.1016/j.lwt.2021.112559
[13] JOSEPH R L. Very fast chilling of beef and tenderness-A report from an EU concerted action. Meat Science, 1996, 43: 217-227. doi: 10.1016/0309-1740(96)00067-8.
doi: 10.1016/0309-1740(96)00067-8
[14] WARNER R D, JACOB R H, ROSENVOLD K, ROCHFORT S, TRENERRY C, PLOZZA T, MCDONAGH M B. Altered post- mortem metabolism identified in very fast chilled lamb Mlongissimus thoracis et lumborum using metabolomic analysis. Meat Science, 2015, 108: 155-164. doi: 10.1016/j.meatsci.2015.06.006.
doi: 10.1016/j.meatsci.2015.06.006
[15] YAN T J, HOU C L, WANG Z Y, LI X, CHEN L, LIANG C, XU Y J, ZHANG D Q. Effects of chilling rate on progression of rigor mortis in postmortem lamb meat. Food Chemistry, 2022, 373(Pt B): 131463. doi: 10.1016/j.foodchem.2021.131463.
doi: 10.1016/j.foodchem.2021.131463
[16] JACOB R, ROSENVOLD K, NORTH M, KEMP R, WARNER R, GEESINK G. Rapid tenderisation of lamb M. longissimus with very fast chilling depends on rapidly achieving sub-zero temperatures. Meat Science, 2012, 92(1): 16-23. doi: 10.1016/j.meatsci.2012.03.015.
doi: 10.1016/j.meatsci.2012.03.015
[17] FERNÁNDEZ A M, VIEIRA C. Effect of chilling applied to suckling lamb carcasses on hygienic, physicochemical and sensory meat quality. Meat Science, 2012, 92(4): 569-574.
doi: 10.1016/j.meatsci.2012.05.029
[18] 中华人民共和国农业部. 羊肉分割技术规范: NY/T 1564-2007[S]. 北京: 中国农业出版社, 2008.
Ministry of Agriculture of the People’s Republic of China. Cutting technical specification of mutton: NY/T 1564-2007[S]. Beijing: Chinese Agriculture Press, 2008. (in Chinese)
[19] 马建荣. 传统烤羊腿特征风味物质解析与新型烤制技术研究[D]. 杨凌: 西北农林科技大学, 2019.
MA J R. Analysis of typical flavor of traditional roasted lamb legs and development of new baking technologies[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[20] 徐啸翔, 曹烨, 傅开元, 谢秋菲. 咬合干扰致大鼠咬肌能量代谢产物含量变化. 北京大学学报(医学版), 2017, 49(1): 25-30. doi: 10.3969/j.issn.1671-167X.2017.01.004.
doi: 10.3969/j.issn.1671-167X.2017.01.004
XU X X, CAO Y, FU K Y, XIE Q F. Changes of productions of energy metabolism in masseter of rats induced by occlusal interference. Journal of Peking University (Health Sciences), 2017, 49(1): 25-30. doi: 10.3969/j.issn.1671-167X.2017.01.004. (in Chinese)
doi: 10.3969/j.issn.1671-167X.2017.01.004
[21] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准婴幼儿食品和乳品中核苷酸的测定: GB 5413.40-2016[S]. 北京: 中国标准出版社, 2017.
National Health and Family Planning Commission of the people's Republic of China. National standard of food safety-Determination of nucleotide in foods and milk products for infants and young children: GB 5413.40-2016[S]. Beijing: Standards Press of China, 2017. (in Chinese)
[22] LIU H, MA J R, PAN T, SULEMAN R, WANG Z Y, ZHANG D Q. Effects of roasting by charcoal, electric, microwave and superheated steam methods on (non) volatile compounds in oyster cuts of roasted lamb. Meat Science, 2021, 172: 108324. doi: 10.1016/j.meatsci.2020.108324.
doi: 10.1016/j.meatsci.2020.108324
[23] XU Y J, ZHANG D Q, LIU H, WANG Z Y, HUI T, SUN J L. Comprehensive evaluation of volatile and nonvolatile compounds in Oyster cuts of roasted lamb at different processing stages using traditional nang roasting. Foods, 2021, 10(7): 1508.
doi: 10.3390/foods10071508
[24] LIU H, WANG Z Y, ZHANG D Q, SHEN Q W, PAN T, HUI T, MA J R. Characterization of key aroma compounds in Beijing roasted duck by gas chromatography-olfactometry-mass spectrometry, odor-activity values, and aroma-recombination experiments. Journal of Agricultural and Food Chemistry, 2019, 67(20): 5847-5856. doi: 10.1021/acs.jafc.9b01564.
doi: 10.1021/acs.jafc.9b01564
[25] 张海艳, 于太永, 关伟军. 肌苷酸形成机理及其含量影响因素浅析. 中国农业科技导报, 2004, 6(3): 17-21.
ZHANG H Y, YU T Y, GUAN W J. Analysis of mechanism of IMP synthesis and factors influencing IMP concentration. Review of China Agricultural Science and Technology, 2004, 6(3): 17-21. (in Chinese)
[26] QI J, ZHANG W W, XU Y, XIE X F, YE M. Enhanced flavor strength of broth prepared from chicken following short-term frozen storage. Food Chemistry, 2021, 356: 129678.
doi: 10.1016/j.foodchem.2021.129678
[27] 邱伟强, 杨雨微, 谢晶, 陈舜胜. 超高压处理对凡纳滨对虾冷藏期间ATP降解途径及其关联产物蓄积的影响. 水产学报, 2021, 45(7): 1162-1171.
QIU W Q, YANG Y W, XIE J, CHEN S S. Effects of ultra-high pressure treatment on ATP degradation pathway and accumulation of related compounds in Litopenaeus vannamei during chilled storage. Journal of Fisheries of China, 2021, 45(7): 1162-1171. (in Chinese)
[28] SIKES A L, JACOB R, D'ARCY B, WARNER R. Very fast chilling modifies the structure of muscle fibres in hot-boned beef loin. Food Research International, 2017, 93: 75-86. doi: 10.1016/j.foodres.2016.12.027.
doi: 10.1016/j.foodres.2016.12.027
[29] LI K, ZHANG Y M, MAO Y W, CORNFORTH D, DONG P C, WANG R H, ZHU H, LUO X. Effect of very fast chilling and aging time on ultra-structure and meat quality characteristics of Chinese Yellow cattle M. Longissimus lumborum. Meat Science, 2012, 92(4): 795-804. doi: 10.1016/j.meatsci.2012.07.003.
doi: 10.1016/j.meatsci.2012.07.003
[30] TRIKI M, HERRERO A M, JIMéNEZ-COLMENERO F, RUIZ- CAPILLAS C. Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods, 2018, 7(9): 132.
doi: 10.3390/foods7090132
[31] 叶藻, 谢晶, 邱伟强, 高磊, 朱慧文, 赵玉, 王颖荣, 张宁. 常温与冷藏条件下不同阶段鸡肉呈味核苷酸及游离氨基酸含量的变化. 食品工业科技, 2015, 36(24): 301-305. doi: 10.13386/j.issn1002-0306.2015.24.057.
doi: 10.13386/j.issn1002-0306.2015.24.057
YE Z, XIE J, QIU W Q, GAO L, ZHU H W, ZHAO Y, WANG Y R, ZHANG N. Changes of flavor nucleotides and free amino acid contents in chicken muscle under room temperature and cold storage. Science and Technology of Food Industry, 2015, 36(24): 301-305. doi: 10.13386/j.issn1002-0306.2015.24.057. (in Chinese)
doi: 10.13386/j.issn1002-0306.2015.24.057
[32] 王红丽, 施文正, 邱伟强, 王锡昌. 草鱼死后常温贮藏过程中的品质变化. 渔业科学进展, 2018, 39(6): 97-105. doi: 10.19663/j.issn2095-9869.20180810003.
doi: 10.19663/j.issn2095-9869.20180810003
WANG H L, SHI W Z, QIU W Q, WANG X C. Quality changes of grass carp(Ctenopharyngodon idellus) in the process of postmortem stored at room temperature. Progress in Fishery Sciences, 2018, 39(6): 97-105. doi: 10.19663/j.issn2095-9869.20180810003. (in Chinese)
doi: 10.19663/j.issn2095-9869.20180810003
[33] ERKAN N, ÜRETENER G, ALPAS H, SELÇUK A, ÖZDEN Ö, BUZRUL S. The effect of different high pressure conditions on the quality and shelf life of cold smoked fish. Innovative Food Science & Emerging Technologies, 2011, 12(2): 104-110.
[34] QI J, LIU D Y, ZHOU G H, XU X L. Characteristic flavor of traditional soup made by stewing Chinese yellow-feather chickens. Journal of Food Science, 2017, 82(9): 2031-2040. doi: 10.1111/1750-3841.13801.
doi: 10.1111/1750-3841.13801
[35] ZOU Y H, KANG D C, LIU R, QI J, ZHOU G H, ZHANG W G. Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef. Ultrasonics Sonochemistry, 2018, 46: 36-45. doi: 10.1016/j.ultsonch.2018.04.005.
doi: 10.1016/j.ultsonch.2018.04.005
[36] ZHENG J Y, TAO N P, GONG J, GU S Q, XU C H. Comparison of non-volatile taste-active compounds between the cooked meats of pre- and post-spawning Yangtze Coilia ectenes. Fisheries Science, 2015, 81(3): 559-568. doi: 10.1007/s12562-015-0858-7.
doi: 10.1007/s12562-015-0858-7
[37] CHEN W C, LI W, YANG Y, YU H L, ZHOU S, FENG J, LI X B, LIU Y F. Analysis and evaluation of tasty components in the pileus and stipe of Lentinula edodes at different growth stages. Journal of Agricultural and Food Chemistry, 2015, 63(3): 795-801. doi: 10.1021/jf505410a.
doi: 10.1021/jf505410a
[38] YUE J, ZHANG Y F, JIN Y F, DENG Y, ZHAO Y Y. Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles. Food Chemistry, 2016, 194: 12-19. doi: 10.1016/j.foodchem.2015.07.134.
doi: 10.1016/j.foodchem.2015.07.134
[39] SABIKUN N, BAKHSH A, RAHMAN M S, HWANG Y H, JOO S T. Volatile and nonvolatile taste compounds and their correlation with umami and flavor characteristics of chicken nuggets added with milkfat and potato mash. Food Chemistry, 2021, 343: 128499. doi: 10.1016/j.foodchem.2020.128499.
doi: 10.1016/j.foodchem.2020.128499
[40] 罗玉龙, 靳志敏, 刘夏炜, 段艳, 王柏辉, 程海星, 靳烨. 肉制品中香味物质形成原因研究进展. 食品与发酵工业, 2015, 41(2): 254-258. doi: 10.13995/j.cnki.11-1802/ts.201502045.
doi: 10.13995/j.cnki.11-1802/ts.201502045
LUO Y L, JIN Z M, LIU X W, DUAN Y, WANG B H, CHENG H X, JIN Y. Development of research on aroma of mechanism in meat products. Food and Fermentation Industries, 2015, 41(2): 254-258. doi: 10.13995/j.cnki.11-1802/ts.201502045. (in Chinese)
doi: 10.13995/j.cnki.11-1802/ts.201502045
[41] DAMERAU A, KAMLANG-EK P, MOISIO T, LAMPI A M, PIIRONEN V. Effect of SPME extraction conditions and humidity on the release of volatile lipid oxidation products from spray-dried emulsions. Food Chemistry, 2014, 157: 1-9. doi: 10.1016/j.foodchem.2014.02.032.
doi: 10.1016/j.foodchem.2014.02.032
[42] MA Q L, HAMID N, BEKHIT A E D, ROBERTSON J, LAW T F. Evaluation of pre-rigor injection of beef with proteases on cooked meat volatile profile after 1 day and 21 days post-mortem storage. Meat Science, 2012, 92(4): 430-439. doi: 10.1016/j.meatsci.2012.05.006.
doi: 10.1016/j.meatsci.2012.05.006
[43] 李伟, 罗瑞明, 李亚蕾, 杨波. 宁夏滩羊肉的特征香气成分分析. 现代食品科技, 2013, 29(5): 1173-1177. doi: 10.13982/j.mfst.1673-9078.2013.05.010.
doi: 10.13982/j.mfst.1673-9078.2013.05.010
LI W, LUO R M, LI Y L, YANG B. Analysis of characteristic aroma compounds of Ningxia tan mutton. Modern Food Science and Technology, 2013, 29(5): 1173-1177. doi: 10.13982/j.mfst.1673-9078.2013.05.010. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2013.05.010
[44] WANG F, GAO Y Q, WANG H B, XI B, HE X N, YANG X L, LI W H. Analysis of volatile compounds and flavor fingerprint in Jingyuan lamb of different ages using gas chromatography-ion mobility spectrometry (GC-IMS). Meat Science, 2021, 175: 108449. doi: 10.1016/j.meatsci.2021.108449.
doi: 10.1016/j.meatsci.2021.108449
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[3] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[4] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[5] ZHU Yin,ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi. Enantiomeric Analysis of Free Amino Acids in Different Teas [J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819.
[6] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[7] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[8] YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649.
[9] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[10] XU Yunbi,YANG QuanNü,ZHENG HongJian,XU YanFen,SANG ZhiQin,GUO ZiFeng,PENG Hai,ZHANG Cong,LAN HaoFa,WANG YunBo,WU KunSheng,TAO JiaJun,ZHANG JiaNan. Genotyping by Target Sequencing (GBTS) and Its Applications [J]. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004.
[11] QIN YanHong,WANG YongJiang,WANG Shuang,QIAO Qi,TIAN YuTing,ZHANG DeSheng,ZHANG ZhenChen. Complete Nucleotide Sequence Analysis and Genetic Characterization of the Sweet potato feathery mottle virus O and RC Strains Isolated from China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2207-2218.
[12] ZHANG Fang,WEI ZhiSheng,WANG Peng,LI KaiXuan,ZHAN Ping,TIAN HongLei. Using Neural Network Coupled Genetic Algorithm to Optimize the SPME Conditions of Volatile Compounds in Korla Pear [J]. Scientia Agricultura Sinica, 2018, 51(23): 4535-4547.
[13] CAO XueTao, PEI ShengWei, ZHANG Jin, LI FaDi, LI Gang, LI WanHong, YUE XiangPeng. Screening of Y Chromosome Specific Primers and Y-SNPs in Sheep [J]. Scientia Agricultura Sinica, 2018, 51(15): 2990-2999.
[14] DONG Lei, DONG Qing, ZHANG WenLi, HU XiaoLong, WANG HongGang, WANG YuHai. Karyotypic Analysis of Aegilops speltoides Revealed by FISH [J]. Scientia Agricultura Sinica, 2017, 50(8): 1378-1387.
[15] ZHANG Hui, WU ShengYong, WANG XiaoQing, LEI ZhongRen. Changes in the Contents of Proteins and Free Amino Acid in haemolymph of Delia antique Adult Infected by Beauveria bassiana
 
[J]. Scientia Agricultura Sinica, 2017, 50(3): 591-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!