Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 3042-3049.doi: 10.3864/j.issn.0578-1752.2022.15.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Evaluating the Application Effect of Single-Step Genomic Selection in Pig Populations

ZHOU Jun(),LIN Qing,SHAO BaoQuan,REN DuanYang,LI JiaQi,ZHANG Zhe,ZHANG Hao()   

  1. College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642
  • Received:2021-04-07 Accepted:2022-06-08 Online:2022-08-01 Published:2022-08-02
  • Contact: Hao ZHANG E-mail:zj13416297035@163.com;zhanghao@scau.edu.cn

Abstract:

【Background】The contribution of genetic breeding is the highest in improving the efficiency of animal production. Through breeding, the animal husbandry enterprises can improve production efficiency and obtain maximum economic benefits. Genome selection has been widely used in plant and animal breeding. Genomic selection can estimate breeding values (EBV) by using high density markers covering the whole genome. Compared with pedigree information, the average relationship between individuals obtained by using these markers is more accurate, so that breeding values can be more accurately estimated, and the individuals can be selected. In practical breeding program, all individuals are not genotyped, especially for pigs, whose economic values are not high enough, hence the application of genomic selection is limited in pig breeding. The single-step genomic best linear unbiased prediction (ssGBLUP) can utilize both pedigree and genotypes information, allowing part of individuals are genotyped, thus greatly reducing genotyping costs while maintaining high prediction accuracy. At present, many studies have shown that the use of genomic selection in pig breeding can improve the accuracy of prediction, but in actual breeding, the breeding cost is also an important issue in livestock enterprises to consider. Therefore, how to implement breeding program economically and effectively is of great research value.【Objective】The effect of one-step genome selection on the population evaluation of Duroc was investigated, so as to provide the basis for genome selection breeding program.【Method】 In this study, three important economic traits of duroc pig born from 2009 to 2018 in a pig farm in Fujian province were studied. The accuracy of BLUP, GBLUP, and ssGBLUP was compared in calculating the estimated breeding value on reproductive and growth traits of Duroc pigs. The impacts of genotyped individuals with different proportions in the reference population on the ssGBLUP prediction abilities were explored, and the influence of different chip density on GBLUP prediction abilities was also studied. 【Result】 (1) The heritability of the age at 100 kg, the backfat, and eye muscle area was 0.257±0.038, 0.250±0.039 and 0.399±0.040, respectively; (2) Compared with BLUP, the accuracy of ssGBLUP was improved by 14.7%-51.1%; compared with GBLUP, the accuracy increased by 13.4%-45.7%; (3) When 10%-30% of individuals was genotyped, the prediction accuracy of ssGBLUP could exceed that of BLUP; the prediction accuracy reached a plateau when 40%-60% of individuals genotyped. 【Conclusion】Based on the above results, it was concluded that: (1) Compared with BLUP, ssGBLUP could improve the accuracy and reliability of EBV for each trait; compared with the GBLUP, ssGBLUP was slightly lower than the GBLUP with only pedigree information of those ungenotyped, but ssGBLUP performed better than the GBLUP method after the addition of phenotypes of the ungenotyped individuals. (2) As the proportion of genotyped individuals in the reference population increased, no matter which selection method was used to determine genotyped individuals (random selection and selection the key individuals), the prediction ability of ssGBLUP was gradually improved. The results showed that the ssGBLUP could improve the prediction ability of individual breeding value even if only a proportion of individuals was genotyped when the breeding budget was limited.

Key words: duroc, genomic selection, ssGBLUP, the proportion of individuals genotyped

Table 1

Populations used in different validation schemes"

方法
Method
使用群体 Using population
有基因型个体
Individuals with
genotyping
无基因型个体
Individuals without genotyping
BLUP
ssGBLUP
BLUPsub
GBLUP
ssGBLUPsub

Table 2

Descriptive statistics and genetic parameter estimation"

记录数(条)
Record number (piece)
平均数±标准差
Mean±S.D.
变异系数
CV
遗传力±标准误
Heritability±SE
AGE/d 2462 152.74±5.01 3.28% 0.257±0.038
BF/mm 2462 12.90±2.53 19.63% 0.250±0.039
LEA/cm2 2462 43.42±3.82 8.80% 0.399±0.040

Table 3

Prediction accuracy under different models (mean ± SE)"

全部个体 All the individuals 有基因型个体 Individuals with genotyping
BLUP ssGBLUP BLUPsub GBLUP ssGBLUPsub
LEA 0.258 ±0.009 0.296 ± 0.009 0.239 ±0.009 0.261 ±0.008 0.256 ±0.008
BF 0.176 ±0.010 0.266 ± 0.010 0.126 ±0.010 0.246 ±0.009 0.246 ±0.009
AGE 0.098 ±0.008 0.118 ± 0.007 0.069 ±0.008 0.081 ±0.007 0.098 ±0.007

Table 4

Prediction reliability under different models (mean ± S.D.)"

全部个体 All the individuals 有基因型个体 Individuals with genotyping
BLUP ssGBLUP BLUPsub GBLUP ssGBLUPsub
LEA 0.366±0.009 0.453±0.008 0.253±0.012 0.420±0.013 0.339±0.012
BF 0.297±0.009 0.408±0.008 0.202±0.012 0.434±0.013 0.350±0.012
AGE 0.227±0.012 0.271±0.014 0.141±0.022 0.218±0.025 0.157±0.022

Fig. 1

he influence of different proportion of individuals with genotypes on the prediction effect A: Key individuals were selected for genotyping; B: Individuals were randomly selected for genotyping; C: Select key individuals to determine genotypes; D: Individuals were randomly selected to determine genotypes"

[1] MEUWISSEN T H E, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829. doi: 10.1093/genetics/157.4.1819.
doi: 10.1093/genetics/157.4.1819
[2] DAETWYLER H D, VILLANUEVA B, BIJMA P, WOOLLIAMS J A. Inbreeding in genome-wide selection. Journal of Animal Breeding and Genetics, 2007, 124(6): 369-376. doi: 10.1111/j.1439-0388.2007.00693.x.
doi: 10.1111/j.1439-0388.2007.00693.x.
[3] SCHAEFFER L R. Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 2006, 123(4): 218-223. doi: 10.1111/j.1439-0388.2006.00595.x.
doi: 10.1111/j.1439-0388.2006.00595.x.
[4] VANRADEN P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91(11): 4414-4423. doi: 10.3168/jds.2007-0980.
doi: 10.3168/jds.2007-0980
[5] LEGARRA A, AGUILAR I, MISZTAL I. A relationship matrix including full pedigree and genomic information. Journal of Dairy Science, 2009, 92(9): 4656-4663. doi: 10.3168/jds.2009-2061.
doi: 10.3168/jds.2009-2061
[6] GAO N, TENG J Y, PAN R Y, LI X J, YE S P, LI J Q, ZHANG H, ZHANG X Q, ZHANG Z. Accuracy of whole genome prediction with single-step GBLUP in a Chinese yellow-feathered chicken population. Livestock Science, 2019, 230: 103817. doi: 10.1016/j.livsci.2019.103817.
doi: 10.1016/j.livsci.2019.103817
[7] LOPEZ B I, VITERBO V, SONG C W, SEO K S. Estimation of genetic parameters and accuracy of genomic prediction for production traits in Duroc pigs. Czech Journal of Animal Science, 2019, 64(4): 160-165. doi: 10.17221/150/2018-cjas.
doi: 10.17221/150/2018-cjas
[8] SONG H L, ZHANG J X, ZHANG Q, DING X D. Using different single-step strategies to improve the efficiency of genomic prediction on body measurement traits in pig. Frontiers in Genetics, 2019, 9: 730. doi: 10.3389/fgene.2018.00730.
doi: 10.3389/fgene.2018.00730
[9] CHANG C C, CHOW C C, TELLIER L C, VATTIKUTI S, PURCELL S M, LEE J J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 2015, 4(1): s13742-15. doi: 10.1186/s13742-015-0047-8.
doi: 10.1186/s13742-015-0047-8
[10] BROWNING B L, BROWNING S R. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. The American Journal of Human Genetics, 2009, 84(2): 210-223. doi: 10.1016/j.ajhg.2009.01.005.
doi: 10.1016/j.ajhg.2009.01.005
[11] R CORE TEAM. R: A Language and Environment for Statistical Computing[DB/CD]. R Foundation for Statistical Computing, Vienna, Austria URL Http://Www R-Project Org/, 2013.
[12] VITEZICA Z G, AGUILAR I, MISZTAL I, LEGARRA A. Bias in genomic predictions for populations under selection. Genetics Research, 2011, 93(5): 357-366. doi: 10.1017/s001667231100022x.
doi: 10.1017/s001667231100022x
[13] CHEN C Y, MISZTAL I, AGUILAR I, LEGARRA A, MUIR W M. Effect of different genomic relationship matrices on accuracy and scale. Journal of Animal Science, 2011, 89(9): 2673-2679. doi: 10.2527/jas.2010-3555.
doi: 10.2527/jas.2010-3555
[14] FORNI S, AGUILAR I, MISZTAL I. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics, Selection, Evolution: GSE, 2011, 43(1): 1. doi: 10.1186/1297-9686-43-1.
doi: 10.1186/1297-9686-43-1
[15] CHRISTENSEN O F, MADSEN P, NIELSEN B, OSTERSEN T, SU G. Single-step methods for genomic evaluation in pigs. Animal, 2012, 6(10): 1565-1571. doi: 10.1017/S1751731112000742.
doi: 10.1017/S1751731112000742
[16] MRODE R A. Linear Models for the Prediction of Animal Breeding Values. Oxford: Oxford University Press, 2006.
[17] DRUET T, MACLEOD I M, HAYES B J. Toward genomic prediction from whole-genome sequence data: Impact of sequencing design on genotype imputation and accuracy of predictions. Heredity, 2014, 112(1): 39-47. doi: 10.1038/hdy.2013.13.
doi: 10.1038/hdy.2013.13
[18] 赵云翔, 邝伟键, 高宁, 李私丞, 彭兴, 郭金彪, 朱晓萍. 杜洛克公猪背膘厚度、日增重、日采食量和饲料效率相关性状的遗传参数估计. 家畜生态学报, 2019, 40(11): 18-21. doi: 10.3969/j.issn.1673-1182.2019.11.004.
doi: 10.3969/j.issn.1673-1182.2019.11.004
ZHAO Y X, KUANG W J, GAO N, LI S C, PENG X, GUO J B, ZHU X P. Estimation of genetic parameters of growth and feed efficiency related traits in YX China-line duroc specialized strain. Acta Ecologae Animalis Domastici, 2019, 40(11): 18-21. doi: 10.3969/j.issn.1673-1182.2019.11.004. (in Chinese)
doi: 10.3969/j.issn.1673-1182.2019.11.004
[19] 叶健, 傅金銮, 张锁宇, 叶道武, 李庆岗, 陈景明, 金娉婷, 张士媛, 王爱国. 安徽省猪育种核心群场间联系性和遗传参数估计. 中国畜牧杂志, 2015, 51(18): 62-67. doi: 10.3969/j.issn.0258-7033.2015.18.013.
doi: 10.3969/j.issn.0258-7033.2015.18.013
YE J, FU J L, ZHANG S Y, YE D W, LI Q G, CHEN J M, JIN P T, ZHANG S Y, WANG A G. Estimation of genetic parameters and connectedness in pig breeding nucleus herds of AnHui Province. Chinese Journal of Animal Science, 2015, 51(18): 62-67. doi: 10.3969/j.issn.0258-7033.2015.18.013. (in Chinese)
doi: 10.3969/j.issn.0258-7033.2015.18.013
[20] BIDANEL J P, DUCOS A, LABROUE F, GUÉBLEZ R, GASNIER C. Genetic parameters of backfat thickness, age at 100 kg and meat quality traits in Pietrain pigs. Annales De Zootechnie, 1994, 43(2): 141-149. doi: 10.1051/animres:19940204.
doi: 10.1051/animres:19940204
[21] YE J, TAN C, HU X X, WANG A G, WU Z F. Genetic parameters for reproductive traits at different parities in Large White pigs. Journal of Animal Science, 2018, 96(4): 1215-1220. doi: 10.1093/jas/sky066.
doi: 10.1093/jas/sky066
[22] KIM H J. Genetic parameters for productive and reproductive traits of sows in multiplier farms[D]. University Goettingen Repository, 2001. doi: 10.53846/goediss-1851.
doi: 10.53846/goediss-1851
[23] GAO H, KOIVULA M, JENSEN J, STRANDÉN I, MADSEN P, PITKÄNEN T, AAMAND G P, MÄNTYSAARI E A. Short communication: Genomic prediction using different single-step methods in the Finnish red dairy cattle population. Journal of Dairy Science, 2018, 101(11): 10082-10088. doi: 10.3168/jds.2018-14913.
doi: 10.3168/jds.2018-14913
[24] GUILLAUME F, BOICHARD D, DUCROCP V. Genomic selection in dairy cattle. Productions Animales, 2011, 24(4): 363-368.
[25] CESARANI A, GASPA G, CORREDDU F, CELLESI M, DIMAURO C, MACCIOTTA N P P. Genomic selection of milk fatty acid composition in Sarda dairy sheep: Effect of different phenotypes and relationship matrices on heritability and breeding value accuracy. Journal of Dairy Science, 2019, 102(4): 3189-3203. doi: 10.3168/jds.2018-15333.
doi: 10.3168/jds.2018-15333
[26] 唐振双, 殷东, 尹立林, 马云龙, 项韬, 朱猛进, 余梅, 刘小磊, 李新云, 邱小田, 赵书红. 猪基因组选择 “两步走” 策略的计算机模拟评估. 中国农业科学, 2021, 54(21): 4677-4684. doi: 10.3864/j.issn.0578-1752.2021.21.016.
doi: 10.3864/j.issn.0578-1752.2021.21.016
TANG Z S, YIN D, YIN L L, MA Y L, XIANG T, ZHU M J, YU M, LIU X L, LI X Y, QIU X T, ZHAO S H. To evaluate the “two-step” genomic selection strategy in pig by simulation. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684. doi: 10.3864/j.issn.0578-1752.2021.21.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.21.016
[27] 张金鑫, 唐韶青, 宋海亮, 高虹, 蒋尧, 江一凡, 弥世荣, 孟庆利, 于凡, 肖炜, 云鹏, 张勤, 丁向东. 北京地区大白猪基因组联合育种研究. 中国农业科学, 2019, 52(12): 2161-2170. doi: 10.3864/j.issn.0578-1752.2019.12.013.
doi: 10.3864/j.issn.0578-1752.2019.12.013
ZHANG J X, TANG S Q, SONG H L, GAO H, JIANG Y, JIANG Y F, MI S R, MENG Q L, YU F, XIAO W, YUN P, ZHANG Q, DING X D. Joint genomic selection of Yorkshire in Beijing. Scientia Agricultura Sinica, 2019, 52(12): 2161-2170. doi: 10.3864/j.issn.0578-1752.2019.12.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.12.013
[28] LI X, ZHANG Z, LIU X, CHEN Y. Impact of genotyping strategy on the accuracy of genomic prediction in simulated populations of purebred swine. Animal, 2019, 13(9): 1804-1810. doi: 10.1017/S1751731118003567.
doi: 10.1017/S1751731118003567
[29] KARIMI K, SARGOLZAEI M, PLASTOW G S, WANG Z Q, MIAR Y. Opportunities for genomic selection in American mink: A simulation study. PLoS ONE, 2019, 14(3): e0213873. doi: 10.1371/journal.pone.0213873.
doi: 10.1371/journal.pone.0213873
[1] ZHU Mo,ZHENG MaiQing,CUI HuanXian,ZHAO GuiPing,LIU Yang. Comparison of Genomic Prediction Accuracy for Meat Type Chicken Carcass Traits Based on GBLUP and BayesB Method [J]. Scientia Agricultura Sinica, 2021, 54(23): 5125-5131.
[2] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[3] ZHANG JinXin, TANG ShaoQing, SONG HaiLiang, GAO Hong, JIANG Yao, JIANG YiFan, MI ShiRong, MENG QingLi, YU Fan, XIAO Wei, YUN Peng, ZHANG Qing, DING XiangDong. Joint Genomic Selection of Yorkshire in Beijing [J]. Scientia Agricultura Sinica, 2019, 52(12): 2161-2170.
[4] ZHU Bo, WANG Yan-hui, NIU Hong, CHEN Yan, ZHANG Lu-pei, GAO Hui-jiang, GAO Xue, LI Jun-ya, SUN Shao-hua. The Strategy of Parameter Optimization of Bayesian Methods for Genomic Selection in Livestock [J]. Scientia Agricultura Sinica, 2014, 47(22): 4495-4505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!