Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 2026-2037.doi: 10.3864/j.issn.0578-1752.2022.10.012

• HORTICULTURE • Previous Articles     Next Articles

Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma

ZHANG YuanYuan1(),LIU WenJing1,2,ZHANG BinBin1,CAI ZhiXiang1,SONG HongFeng1,YU MingLiang1,MA RuiJuan1()   

  1. 1Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014
    2School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu
  • Received:2021-09-07 Accepted:2022-01-21 Online:2022-05-16 Published:2022-06-02
  • Contact: RuiJuan MA E-mail:20190021@jaas.ac.cn;marj311@163.com

Abstract:

【Objective】 The objective of this study was to conduct a systematical analysis of the lactone volatile compounds in different types of ripe peach fruit (Prunus persica L.) and to evaluate the contributions of each lactone compound to peach fruit aroma. 【Method】 Multiple peach cultivars with different flesh textures, flesh colors and fruit growth periods were used in this study. The gas chromatography-mass spectrometry system was employed to identify and quantify the lactone volatile compounds in peach fruit, and the odor activity value was used to evaluate the contributions of each lactone compound to the fruit aroma of respective cultivars. 【Result】 Lactone volatile compounds were detected in ripe fruit of all peach cultivars, and a total of ten lactone volatile compounds were identified in peach fruit, including γ-hexalactone, γ-octalactone, γ-heptalactone, γ-decalactone, δ-deca-2, 4-dienolactone, δ-decalactone, γ-undecalactone, δ-octalactone, jasmine lactone, and cis-4-hydroxydodec-6-enoic acid lactone. Each lactone compound was of specific odor notes, and the lactone compounds predominantly emit fruity (reminiscent of coconut and peach), sweet, dairy, caramel, floral, and herbaceous smells. The common lactone compound shared by all cultivars was γ-hexalactone, the frequently detected lactone compounds were γ-decalactone and δ-decalactone, and some lactone compounds were specific to individual cultivars, such as cis-4-hydroxydodec-6-enoic acid lactone in Shenzhoumitao. Relatively higher numbers of lactone volatile compounds were detected in ripe fruit of melting peach cultivars, including Baihuashuimi, Shenzhoumitao, Chengxiang, Fenghuayulu (wan), and Feichenghonglidatao, while the lower numbers of lactone volatile compounds were present in stony hard peach cultivars including Xiacui, Qinwang and Huayu. The analysis of the odor activity values of the lactone volatile compounds revealed the universal contribution of γ-decalactone to the aroma of the majority of cultivars due to its low odor threshold value and high concentrations in fruit. γ-Decalactone conferred the strong characteristic peach-like odor to melting peach cultivars, including Shenzhoumitao, Chengxiang, Fenghuayulu (wan), and Baihuashuimi, while plain peach-like odor was observed in melting peach Achutao and stony hard peach Huayu due to the lower odor activity values of γ-decalactone, and the characteristic peach-like odor note was absent in stony hard peach Qinwang and Xiacui fruit as no γ-decalactone was detected. Besides, γ-octalactone contributed to the coconut and very sweet odors of specific cultivars, such as Chengxiang and Shenzhoumitao. 【Conclusion】 Lactones constituted an essential chemical group of the volatile compounds of peach fruit, and the mature peach fruit presented at least ten lactone volatile compounds. Various lactone volatile compounds and their different concentrations showed the aroma characteristics of different types of peach cultivars, especially the cultivars of different flesh textures, while not the ones of different flesh colors or fruit growth periods. γ-Hexalactone was the common lactone shared by all cultivars, γ-decalactone and δ-decalactone were frequently detected lactone compounds, and cis-4-hydroxydodec-6-enoic acid lactone and other lactones were specific to individual cultivars. γ-Decalactone, γ-octalactone and other lactones made important contributions to the characteristic peach-like odor and other unique odor notes in different peach cultivars.

Key words: peach, volatile compounds, lactones, odor activity values, aroma characteristics, flesh textures

Fig. 1

Picture of the peach fruit materials used in this study"

Table 1

Peach fruit materials used in this study"

品种名称
Cultivar name
缩写
Abbreviation
肉质
Flesh texture
果实成熟期
Fruit growth period
果肉颜色
Flesh color
采样时间
Fruit harvest date
橙香 Chengxiang CX 溶质 Melting 早熟 Early 黄 Yellow 88 DAFB
银花露 Yinhualu YHL 溶质 Melting 早熟 Early 白 White 86 DAFB
珲春桃3号 Hunchuntao 3 HCT3H 溶质 Melting 中熟 Medium 白 White 125 DAFB
湖景蜜露 Hujingmilu HJML 溶质 Melting 中熟 Medium 白 White 129 DAFB
锦园 Jinyuan JY 溶质 Melting 晚熟 Late 黄 Yellow 126 DAFB
阿初桃 Achutao ACT 溶质 Melting 晚熟 Late 白 White 121 DAFB
奉化玉露(晚) Fenghuayulu (wan) FHYL(W) 溶质 Melting 晚熟 Late 白 White 142 DAFB
白花水蜜 Baihuashuimi BHSM 溶质 Melting 晚熟 Late 白 White 144 DAFB
霞晖8号 Xiahui 8 XH8H 溶质 Melting 晚熟 Late 白 White 143 DAFB
晚硕蜜 Wanshuomi WSM 溶质 Melting 晚熟 Late 白 White 141 DAFB
深州蜜桃 Shenzhoumitao SZMT 溶质 Melting 晚熟 Late 白 White 142 DAFB
肥城白里大桃 Feichengbailidatao FCBLDT 溶质 Melting 极晚熟 Very late 白 White 153 DAFB
肥城红里大桃 Feichenghonglidatao FCHLDT 溶质 Melting 极晚熟 Very late 白 White 153 DAFB
霞脆 Xiacui XC 硬质 Stony hard 中熟 Medium 白 White 117 DAFB
秦王 Qinwang QW 硬质 Stony hard 晚熟 Late 白 White 138 DAFB
华玉 Huayu HY 硬质 Stony hard 晚熟 Late 白 White 141 DAFB

Table 2

Lactones in peach fruit materials in this study"

内酯名称 Lactone name 化学名称 Chemical name 芳香特征描述 Odor note description[15]
γ-己内酯
γ-Hexalactone
5-乙基二氢-2(3H)-呋喃酮
2(3H)-Furanone, 5-ethyldihydro-
甜的、奶油的、乳糖的、烟草气味和香豆素气味,带有绿色椰子气味
Sweet, creamy, lactonic, tobacco and coumarin-like with green coconut nuances
γ-辛内酯
γ-Octalactone
5-丁基二氢-2(3H)-呋喃酮
2(3H)-Furanone, 5-butyldihydro-
使人联想到椰果,非常甜的气味
Fruity odor reminiscent of coconut and a very sweet taste
γ-庚内酯
γ-Heptalactone
5-丙基二氢-2(3H)-呋喃酮
2(3H)-Furanone, dihydro-5-propyl-
甜的、椰子味、焦糖和麦芽味、草本味
Sweet, coconut-like, caramel and a malty, caramel, sweet odor and herbaceous taste
γ-癸内酯
γ-Decalactone
5-己基二氢-2(3H)-呋喃酮
2(3H)-Furanone, 5-hexyldihydro-
怡人的、果香的、桃子般的气味
Pleasant, fruity, peach-like odor
5-羟基-2, 4-癸二烯酸-δ-内酯
δ-Deca-2, 4-dienolactone
6-戊基-2H-吡喃-2-酮
2H-Pyran-2-one, 6-pentyl-
蘑菇的、蓝奶酪内酯或奶制品气味
A mushroom, blue cheese lactone or dairy odor
δ-癸内酯
δ-Decalactone
四氢-6-戊基-2H-吡喃-2-酮
2H-Pyran-2-one, tetrahydro-6-pentyl-
油腻的桃子的气味
An oily peach odor and taste
γ-十一内酯
γ-Undecalactone
5-庚基二氢-2(3H)-呋喃酮
2(3H)-Furanone, 5-heptyldihydro-
一种辛辣而甜美的气味,也类似于桃子
A pungent and sweet ?avor, also similar to peach
δ-辛内酯
δ-Octalactone
四氢-6-丙基-2H-吡喃-2-酮
2H-Pyran-2-one, tetrahydro-6-propyl-
一种甜的、油腻的、椰子的、热带的、乳制品的气味
A sweet, fatty, coconut, tropical, dairy odor
茉莉内酯
Jasmine lactone
顺式-四氢-6-(2-戊烯基)-2H-吡喃-2-酮
2H-Pyran-2-one, tetrahydro-6-(2-pentenyl)-, (Z)-
具有花香,茉莉花瓣样香气特征,并伴有精致的果香,酷似桃子,杏仁及椰汁的香气
The characteristic floral and jasmine petal-like aroma, accompanied by exquisite fruit aroma, which is similar to the aroma of peach, almond and coconut milk
顺式-4-羟基-6-十二烯酸内酯
cis-4-Hydroxydodec-6-enoic acid lactone
顺式-二氢-5-(2-辛烯基) -2(3H)-呋喃酮
2(3H)-Furanone, dihydro-5-(2-octenyl)-, (Z)-
奶制的、奶油般的特点
Milky, buttery note

Table 3

Distribution of lactones in peach fruit"

品种名称
Cultivar name
γ-己内酯
γ-Hexalac-tone
γ-癸内酯
γ-Decalac-
tone
δ-癸内酯
δ-Decalac-
tone
茉莉内酯
Jasmine lactone
γ-辛内酯
γ-Octalac-
tone
5-羟基-2,4-癸
二烯酸-δ-内酯
δ-Deca-2,4-
dienolac-tone
γ-十一内酯
γ-Undeca-
lactone
γ-庚内酯
γ-Hepta-
lactone
δ-辛内酯
δ-Octalac-
tone
顺式-4-羟基-6-
十二烯酸内酯
cis-4-hydroxydodec-6-enoic acid lactone
橙香 Chengxiang + + + + + nd + + + nd
银花露 Yinhualu + + + + nd + nd + nd nd
珲春桃3号
Hunchuntao 3
+ + + + nd + nd nd nd nd
湖景蜜露 Hujingmilu + + + + nd + nd nd nd nd
锦园 Jinyuan + + + + + + nd nd nd nd
阿初桃 Achutao + + + nd nd nd nd nd nd nd
霞晖8号 Xiahui 8 + + + nd nd nd nd nd nd nd
晚硕蜜 Wanshuomi + + + nd nd + + nd + nd
奉化玉露(晚) Fenghuayulu (wan) + + + + + + + + nd nd
白花水蜜 Baihuashuimi + + + + + + + + + nd
深州蜜桃 Shenzhoumitao + + + + + nd + + + +
肥城红里大桃 Feichenghonglidatao + + + + + nd + nd + nd
肥城白里大桃 Feichengbailidatao + + + + + nd nd nd nd nd
霞脆 Xiacui + nd nd nd nd nd nd nd nd nd
秦王 Qinwang + nd nd nd nd nd nd nd nd nd
华玉 Huayu + + nd nd nd nd nd nd nd nd

Fig. 2

Heatmap of the concentrations of lactones in peach fruits"

Table 4

Odor activity values of lactones in peach fruits"

品种名称
Cultivar name
γ-辛内酯
γ-Octalactone
γ-癸内酯
γ-Decalactone
橙香 Chengxiang 1.12 144.5
银花露 Yinhualu < 47.08
珲春桃3号 Hunchuntao 3 < 37.89
湖景蜜露 Hujingmilu < 17.38
锦园 Jinyuan < 26.24
阿初桃 Achutao < 3.45
霞晖8号 Xiahui 8 < 11.42
晚硕蜜 Wanshuomi < 36.22
奉化玉露(晚) Fenghuayulu (wan) < 104.72
白花水蜜 Baihuashuimi < 96.02
深州蜜桃 Shenzhoumitao 2.77 352.26
肥城白里大桃 Feichengbailidatao < 25.13
肥城红里大桃 Feichenghonglidatao < 48.62
霞脆 Xiacui < <
秦王 Qinwang < <
华玉 Huayu < 2.17

Fig. 3

Concentrations of γ-Octalactone and γ-Decalactone in peach fruits Se values were calculated from three replicates, and LSD values were calculated at P=0.05"

[1] STEINGASS C B, DELL C, LIEB V, MAYER-ULLMANN B, CZERNY M, CARLE R. Assignment of distinctive volatiles, descriptive sensory analysis and consumer preference of differently ripened and post-harvest handled pineapple (Ananas comosus [L.] Merr.) fruits. European Food Research and Technology, 2016, 242(1): 33-43. doi: 10.1007/s00217-015-2515-x.
doi: 10.1007/s00217-015-2515-x
[2] LIANG Z J, FANG Z X, PAI A, LUO J Q, GAN R Y, GAO Y, LU J, ZHANG P Z. Glycosidically bound aroma precursors in fruits: a comprehensive review. Critical Reviews in Food Science and Nutrition, 2022, 62(1): 215-243. doi: 10.1080/10408398.2020.1813684.
doi: 10.1080/10408398.2020.1813684
[3] FAN Z, HASING T, JOHNSON T S, GARNER D M, BARBEY C R, COLQUHOUN T A, SIMS C A, RESENDE M F R, WHITAKER V M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Horticulture Research, 2021, 8: 66.
doi: 10.1038/s41438-021-00502-5
[4] ZHANG B, SHEN J Y, WEI W W, XI W P, XU C J, FERGUSON I, CHEN K S. Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening. Journal of Agricultural and Food Chemistry, 2010, 58: 6157-6165.
doi: 10.1021/jf100172e
[5] LI X W, JIANG J, ZHANG L P, YU Y, YE Z W, WANG X M, ZHOU J Y, CHAI M L, ZHANG H Q, ARÚS P, JIA H J, GAO Z S. Identification of volatile and softening-related genes using digital gene expression profiles in melting peach. Tree Genetics & Genomes, 2015, 11(4): 1-15. doi: 10.1007/s11295-015-0891-9.
doi: 10.1007/s11295-015-0891-9
[6] HORVAT R J, CHAPMAN G W, ROBERTSON J A, MEREDITH F I, SCORZA R, CALLAHAN A M, MORGENS P. Comparison of the volatile compounds from several commercial peach cultivars. Journal of Agricultural and Food Chemistry, 1990, 38(1): 234-237. doi: 10.1021/jf00091a051.
doi: 10.1021/jf00091a051
[7] JIA H J, OCAMOTO J. Distribution of volatile compounds in peach fruit. Journal of the Japanese Society for Horticultural Science, 2001, 70: 223-225.
[8] EDUARDO I, CHIETERA G, BASSI D, ROSSINI L, VECCHIETTI A. Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agricultural, 2010, 90: 1146-1154.
doi: 10.1002/jsfa.3932
[9] SÁNCHEZ G, BESADA C, BADENES M L, MONFORTE A J, GRANELL A. A non-targeted approach unravels the volatile network in peach fruit. PLoS ONE, 2012, 7: e38992.
doi: 10.1371/journal.pone.0038992
[10] AUBERT C, MILHET C. Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. Batsch). Food Chemistry, 2007, 102: 375-384.
doi: 10.1016/j.foodchem.2006.05.030
[11] WANG Y J, YANG C X, LI S H, YANG L, WANG Y N, ZHAO J B, JIANG Q. Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS. Food Chemistry, 2009, 116: 356-364.
doi: 10.1016/j.foodchem.2009.02.004
[12] XI W P, ZHANG B, LIANG L, SHEN J Y, WEI W W, XU C J, ALLAN A C, FERGUSON I B, CHEN K S. Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit. Plant, Cell and Environment, 2012, 35(3): 534-545.
doi: 10.1111/j.1365-3040.2011.02433.x
[13] 贾惠娟, 冈本五郎, 平野健. 桃果实品质形成成分与其风味之间的相关性. 果树学报, 2004, 21(1): 5-10. doi: 10.3969/j.issn.1009-9980.2004.01.002.
doi: 10.3969/j.issn.1009-9980.2004.01.002
JIA H J, OKAMOTO G, PING Y J. Studies on the sensory evaluation of juice constituents of peach fruit. Journal of Fruit Science, 2004, 21(1): 5-10. doi: 10.3969/j.issn.1009-9980.2004.01.002. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2004.01.002
[14] CANO-SALAZAR J, LÓPEZ M L, ECHEVERRÍA G. Relationships between the instrumental and sensory characteristics of four peach and nectarine cultivars stored under air and CA atmospheres. Postharvest Biology and Technology, 2013, 75: 58-67.
doi: 10.1016/j.postharvbio.2012.08.003
[15] BURDOCK G A. Fenaroli's handbook of flavor ingredients (6th ed.). CRC PRESS, TALOR & Francis Group. 2010.
[16] PINO J, MOO-HUCHIN V, SOSA-MOGUEL O, SAURI-DUCH E, CUEVAS-GLORY L. Characterization of aroma-active compounds in choch (Lucuma hypoglauca Standley) fruit. International Journal of Food Properties, 2017, 20: S444-S448. doi: 10.1080/10942912.2017.1297954.
doi: 10.1080/10942912.2017.1297954
[17] KIM M K, JANG H W, LEE K G. Characterization of key aroma-activecompounds isolated from omija fruit treated differently based on odor activity values and descriptive sensory analysis. Foods, 2020, 9: 638.
doi: 10.3390/foods9050638
[18] LIU H C, AN K J, SU S Q, YU Y S, WU J J, XIAO G S, XU Y J. Aromatic characterization of mangoes (Mangifera indica L.) using solid phase extraction coupled with Gas Chromatography-Mass Spectrometry and olfactometry and sensory analyses. Foods, 2020, 9: 75.
doi: 10.3390/foods9010075
[19] NIU Y M, DENG J M, XIAO Z B, ZHU J C. Characterization of the major aroma-active compounds in peach (Prunus persica L. Batsch) by gas chromatography-olfactometry, flame photometric detection and molecular sensory science approaches. Food Research International, 2021, 147: 110457.
doi: 10.1016/j.foodres.2021.110457
[20] YILMAZTEKIN M. Characterization of potent aroma compounds of cape gooseberry (Physalis peruviana L.) fruits grown in Antalya through the determination of odor activity values. International Journal of Food Properties, 2014, 17(3): 469-480. doi: 10.1080/10942912.2011.642446.
doi: 10.1080/10942912.2011.642446
[21] LAN Y B, GUO J X, QIAN X, ZHU B Q, SHI Y, WU GF, DUAN C Q. Characterization of key odor-active compounds in sweet Petit Manseng (Vitis vinifera L.) wine by gas chromatography-olfactometry, aroma reconstitution, and omission tests. Journal of Food Science, 2021, 86: 1258-1272.
doi: 10.1111/1750-3841.15670
[22] VOGEL J T, TIEMAN D M, SIMS C A, ODABASI A Z, CLARK D G, KLEE H J. Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture, 2010, 90: 2233-2240.
doi: 10.1002/jsfa.4076
[23] LEWINSOHN E, SITRIT Y, BAR E, AZULAY Y, MEIR A, ZAMIR D, TADMOR Y. Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. Journal of Agricultural and Food Chemistry, 2005, 53(8): 3142-3148. doi: 10.1021/jf047927t.
doi: 10.1021/jf047927t
[24] SUN H Y, CHEN W W, JIANG Y, HE Q, LI X L, GUO Q G, XIANG S Q, XI W P, LIANG G L. Characterization of volatiles in red- and white-fleshed loquat (Eriobotrya japonica) fruits by electronic nose and headspace solid-phase microextraction with gas chromatography- mass spectrometry. Food Science and Technology, 2020, 40: 21-32. doi: 10.1590/fst.27318.
doi: 10.1590/fst.27318
[25] LI W Y, LIU C H, HE M, LI J Q, CAI Y Q, MA Y H, XU J. Largely different contents of terpenoids in beef red-flesh tangerine and its wild type. BMC Plant Biology, 2017, 17: 36.
doi: 10.1186/s12870-017-0988-4
[26] RAFFO A, NARDO N, TABILIO M R, PAOLETTI F. Effects of cold storage on aroma compounds of white- and yellow-fleshed peaches. European Food Research and Technology, 2008, 226(6): 1503-1512. doi: 10.1007/s00217-007-0682-0.
doi: 10.1007/s00217-007-0682-0
[27] XIN R, LIU X H, WEI C Y, YANG C, LIU H R, CAO X M, WU D, ZHANG B, CHEN K S. E-Nose and GC-MS reveal a difference in the volatile profiles of white- and red-fleshed peach fruit. Sensors (Basel), 2018, 18: 765.
doi: 10.3390/s18030765
[28] 周慧娟, 杜纪红, 苏明申, 陈翅宏, 张夏南, 叶正文, 李雄伟. 水蜜桃果皮中色素和芳香物质变化与其内在品质的相关性. 经济林研究, 2019, 37(1): 1-10. doi: 10.14067/j.cnki.1003-8981.2019.01.001.
doi: 10.14067/j.cnki.1003-8981.2019.01.001
ZHOU H J, DU J H, SU M S, CHEN C H, ZHANG X N, YE Z W, LI X W. Relationship of content changes of pigments and aromatic compounds in pericarp with internal quality of honey peach fruits. Non-Wood Forest Research, 2019, 37(1): 1-10. doi: 10.14067/j.cnki.1003-8981.2019.01.001. (in Chinese)
doi: 10.14067/j.cnki.1003-8981.2019.01.001
[29] 朱运钦, 李庆伟, 曾文芳, 牛良, 潘磊, 蔡祖国, 鲁振华, 崔国朝, 王志强. 白肉型油桃中油桃9号及其黄肉芽变的挥发性香气物质分析. 江苏农业科学, 2018, 46(13): 172-177. doi: 10.15889/j.issn.1002-1302.2018.13.041.
doi: 10.15889/j.issn.1002-1302.2018.13.041
ZHU Y Q, LI Q W, ZENG W F, NIU L, PAN L, CAI Z G, LU Z H, CUI G C, WANG Z Q. Analysis of volatile aromatic compounds of CN9 nectarine and its yellow-fleshed mutant. Jiangsu Agricultural Sciences, 2018, 46(13): 172-177. doi: 10.15889/j.issn.1002-1302.2018.13.041. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2018.13.041
[30] 严娟, 蔡志翔, 张明昊, 徐子媛, 沈志军, 马瑞娟, 俞明亮. 利用电子鼻评价桃果实香气. 植物遗传资源学报, 2021, 22(1): 274-282. doi: 10.13430/j.cnki.jpgr.20200616002.
doi: 10.13430/j.cnki.jpgr.20200616002
YAN J, CAI Z X, ZHANG M H, XU Z Y, SHEN Z J, MA R J, YU M L. Evaluation of aroma in peach fruit by electronic nose. Journal of Plant Genetic Resources, 2021, 22(1): 274-282. doi: 10.13430/j.cnki.jpgr.20200616002. (in Chinese)
doi: 10.13430/j.cnki.jpgr.20200616002
[31] 俞明亮, 马瑞娟, 许建兰, 沈志军, 宋宏峰, 蔡志翔, 张妤艳, 张斌斌, 杜平. 晚熟桃新品种‘霞晖8号’. 园艺学报, 2014, 41(3): 593-594. doi: 10.16420/j.issn.0513-353x.2014.03.020.
doi: 10.16420/j.issn.0513-353x.2014.03.020
YU M L, MA R J, XU J L, SHEN Z J, SONG H F, CAI Z X, ZHANG Y Y, ZHANG B B, DU P. A new late-ripening peach cultivar ‘Xiahui 8’. Acta Horticulturae Sinica, 2014, 41(3): 593-594. doi: 10.16420/j.issn.0513-353x.2014.03.020. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2014.03.020
[32] 侯佳迪, 朱丽娟, 王军萍, 刘少伟, 郁志芳. 1-MCP处理期不同成熟度‘霞晖8号’桃果实贮藏中品质和生理生化特性的影响. 食品工业科技, 2021, 42(17): 326-334. doi: 10.13386/j.issn1002-0306.2020110201.
doi: 10.13386/j.issn1002-0306.2020110201
HOU J D, ZHU L J, WANG J P, LIU S W, YU Z F. Effect of 1-MCP on peach fruit quality and physio-biochemical characteristics of ‘Xiahui 8’ with different maturity during storage. Science and Technology of Food Industry, 2021, 42(17): 326-334. doi: 10.13386/j.issn1002-0306.2020110201. (in Chinese)
doi: 10.13386/j.issn1002-0306.2020110201
[33] PENG B, YU M L, ZHANG B B, XU J L, MA R J. Differences in PpAAT1 activity in high- and low-aroma peach varieties affect γ-decalactone Production1. Plant Physiology, 2020, 182(4): 2065-2080. doi: 10.1104/pp.19.00964.
doi: 10.1104/pp.19.00964
[34] YOSHIDA M. Genetical studies on the fruit quality of peach varieties. 3: Texture and keeping quality. Bulletin of the fruit tree research station. Series A. Hiratsuka, 1976.
[35] PAN L, ZENG W F, NIU L, LU Z H, WANG X B, LIU H, CUI G C, ZHU Y Q, CHU J F, LI W P, FANG W C, CAI Z G, LI G H, WANG Z Q. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. Journal of Experimental Botany, 2015, 66: 7031-7044.
doi: 10.1093/jxb/erv400
[36] 曾文芳, 丁义峰, 潘磊, 王小贝, 牛良, 鲁振华, 崔国朝, 王志强. 桃硬质性状可能源于PpYUC11基因启动子区域CACTA型转座子的插入. 果树学报, 2017, 34(10): 1239-1248. doi: 10.13925/j.cnki.gsxb.20170060.
doi: 10.13925/j.cnki.gsxb.20170060
ZENG W F, DING Y F, PAN L, WANG X B, NIU L, LU Z H, CUI G C, WANG Z Q. A CACTA transposable element in a PpYUC11 gene promoter is associated with the stony hard phenotype in peach. Journal of Fruit Science, 2017, 34(10): 1239-1248. doi: 10.13925/j.cnki.gsxb.20170060. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20170060
[37] TATSUKI M, SOENO K, SHIMADA Y, SAWAMURA Y, SUESADA Y, YAEGAKI H, SATO A, KAKEI Y, NAKAMURA A, BAI S, MORIGUCHI T, NAKAJIMA N. Insertion of a transposon-like sequence in the 5'-flanking region of the YUCCA gene causes the stony hard phenotype. Plant Journal, 2018, 96: 815-827.
doi: 10.1111/tpj.14070
[38] 范霞, 崔心平. 基于HS-SPME-GC-MS和电子鼻技术研究不同肉质桃子采后贮藏期的香气成分. 食品科学, 2021, 42(20): 222-229. doi: 10.7506/spkx1002-6630-20201026-261.
doi: 10.7506/spkx1002-6630-20201026-261
FAN X, CUI X P. Analysis of aroma compounds of different peach flesh types during postharvest storage by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and electronic nose. Food Science, 2021, 42(20): 222-229. doi: 10.7506/spkx1002-6630-20201026-261. (in Chinese)
doi: 10.7506/spkx1002-6630-20201026-261
[39] 陈学森, 宋君, 高利平, 冀晓昊, 张宗营, 毛志泉, 张艳敏, 刘大亮, 张芮, 李敏. ‘乔纳金’苹果及其脆肉芽变果实质地发育机理. 中国农业科学, 2014, 47(4): 727-735. doi: 10.3864/j.issn.0578-1752.2014.04.013.
doi: 10.3864/j.issn.0578-1752.2014.04.013
CHEN X S, SONG J, GAO L P, JI X H, ZHANG Z Y, MAO Z Q, ZHANG Y M, LIU D L, ZHANG R, LI M. Developing mechanism of fruits texture in ‘jonagold’ apple and its crisp flesh sport. Scientia Agricultura Sinica, 2014, 47(4): 727-735. doi: 10.3864/j.issn.0578-1752.2014.04.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.04.013
[1] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[2] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[3] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[4] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[5] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[6] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[7] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[8] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
[9] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[10] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[11] ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044.
[12] LU ZhenHua,SHEN ZhiJun,NIU Liang,PAN Lei,CUI GuoChao,ZENG WenFang,WANG ZhiQiang. Molecular Marker-Assisted Identification of Yellow/White Flesh Trait for 122 Peach Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(14): 2929-2940.
[13] TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892.
[14] Chen LI,XueHui ZHAO,QingJie WANG,XuXu WANG,Wei XIAO,XiuDe CHEN,XiLing Fu,Ling LI,DongMei LI. Genome Identification of PpGRAS Family and Expression Pattern Analysis of Responding to UV-B in Peach [J]. Scientia Agricultura Sinica, 2019, 52(24): 4567-4581.
[15] WANG GuoDong,XIAO YuanSong,PENG FuTian,ZHANG YaFei,GAO HuaiFeng,SUN XiWu,HE Yue. Effects of Urea Application Combined with Different Amounts of Nano-Carbon on Plant Growth Along with Nitrogen Absorption and Utilization in Young Peach Trees [J]. Scientia Agricultura Sinica, 2018, 51(24): 4700-4709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!