Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 5110-5124.doi: 10.3864/j.issn.0578-1752.2021.23.015

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time

HOU ChengLi1(),HUANG CaiYan1,ZHENG XiaoChun1,LIU WeiHua2,YANG Qi2(),ZHANG DeQuan1()   

  1. 1Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193
    2Ningxia Veterinary Drugs and Fodder Inspection Institute, Yinchuan 750011
  • Received:2021-05-17 Accepted:2021-08-10 Online:2021-12-01 Published:2021-12-06
  • Contact: Qi YANG,DeQuan ZHANG E-mail:houchengli@caas.cn;yangqmz@163.com;dequan_zhang0118@126.com

Abstract:

【Objective】The aim of this study was to explore the changes of antioxidant activity of Tan sheep meat at different time points after slaughter, and to explain its mechanism from the perspective of free amino acids and proteome, so as to provide the data support for the quality maintenance of fresh mutton. 【Method】Six 6-month-old healthy stall-feeding male lambs (18.30±1.41 kg) were selected in this study. The longissimus dorsi of the lambs was collected at 0.5, 3, 6, 12 and 48 h after slaughter to determine the ferric ion reducing antioxidant power (FRAP), free radical scavenging capacity of 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen-radical absorbance capacity (ORAC) of DPPH, total antioxidant capacity of N,N-dimethyl-p-phenylendiamine (DMPD), content of free amino acids and the changes of proteomic. 【Result】The results showed that within 48 h postmortem, the FRAP total antioxidant capacity decreased first and then increased. While the free radical scavenging capacity of ABTS increased first and then tended to be stable. The free radical scavenging capacity and ORAC of DPPH and DMPD all showed an upward trend. Total antioxidant capacity of FRAP, free radical scavenging capacity and ORAC of ABTS, DPPH, DMPD of Tan sheep meat at 48 h after slaughter were all significantly higher than those at 0.5 and 3 h after slaughter (P<0.05). No significant difference was found in total content of free amino acids (P>0.05), but the contents of Cys, Leu, Tyr, Ile, Phe and Arg in Tan sheep meat were significantly different among different time points after slaughter (P<0.05), and showed an increase trend. There were 7 free amino acids positively correlated with FRAR, including o-phosphoserine (r = 0.489, P<0.01), leucine (r=0.566, P<0.01), tyrosine (r=0.596, P<0.01), isoleucine (r=0.374, P<0.05), phenylalanine (r=0.499, P<0.01), lysine (r=0.375, P<0.05) and arginine (r=0.376, P<0.05). Among them, Leu, Tyr, Phe and Arg were significantly positively correlated with FRAP, ABTS, DPPH, ORAC and DMPD (P<0.05). Twenty differential proteins in Tan sheep meat at different time points after slaughter were screened and identified by proteomic. There were 12 differential proteins significantly correlated with FRAP (P<0.05). Calpain inhibitor protein and unknown protein 2 were significantly negatively correlated with FRAP, ABTS, DPPH, ORAC and DMPD (P<0.05). Glycogen protein 1 and protein kinase domain proteins were significantly positively correlated with FRAP, ABTS, DPPH, ORAC and DMPD (P<0.05). 【Conclusion】This research indicated that the total antioxidant capacity of Tan sheep meat increased within 48 h after slaughter, which was related to the release of free amino acids such as Leu, Tyr, Phe and Arg in the postmortem muscle. The decrease protein expression of calpain inhibitor protein and unknown protein 2, and the increased protein expression of glycogen protein 1 and protein kinase domain protein in muscle were significantly correlated with the changes of antioxidant capacity of Tan sheep meat after slaughter.

Key words: postmortem, antioxidant activity, free amino acids, proteome, lamb

Fig. 1

FRAP activity of Tan lamb in different postmortem time Different lowercase letters indicate significant difference between treatments (P<0.05). The same as below"

Fig. 2

Radical scavenging activity of Tan lamb in different postmortem time"

Table 1

Free amino acid contents of Tan lamb in different postmortem time"

氨基酸含量
Amino acid (mg/100 g fresh meat)
宰后时间Postmortem time (h) P
P value
0.5 3 6 12 48
邻磷酸丝氨酸 o-Phospho-serine 4.16±0.29b 4.14±0.31b 4.19±0.64b 4.45±0.41ab 4.85±0.65a 0.08
牛磺酸 Taurine 79.10±41.24a 92.20±32.03a 80.19±28.93a 73.62±27.64a 70.26±36.18a 0.83
邻苯二乙醇胺 o-Phsophoethanolamine 3.25±0.68a 3.18±0.34a 2.95±0.39a 2.80±0.42a 3.09±0.71a 0.60
天冬氨酸 Aspartic acid 0.76±1.19a 0.50±1.23a 0.05±0.13a 0.00±0.00a 0.04±0.09a 0.33
苏氨酸 Threonine 4.33±1.53a 5.03±1.19a 4.74±1.69a 5.05±1.33a 5.22±1.24a 0.82
丝氨酸 Serine 6.63±0.47a 6.68±0.71a 6.76±0.63a 6.92±1.18a 6.78±0.72a 0.97
谷氨酸 Glutamic acid 120.10±15.06a 111.63±19.4a 108.09±22.41a 111.07±25.38a 108.38±24.75a 0.87
甘氨酸 Glycine 20.13±3.15a 21.22±2.50a 20.69±2.42a 21.40±1.18a 20.88±1.92a 0.90
丙氨酸 Alanine 49.53±6.12a 51.46±4.48a 51.76±4.34a 52.07±2.27a 51.04±2.23a 0.85
缬氨酸 Valine 1.39±0.85a 0.92±0.44a 0.97±1.31a 1.30±0.82a 1.37±0.28a 0.77
蛋氨酸 Methionine 0.04±0.02a 0.03±0.01a 0.04±0.02a 0.05±0.03a 0.05±0.05a 0.84
胱氨酸 Cystine 1.04±0.10b 1.17±0.10ab 1.14±0.14b 1.09±0.17b 1.31±0.16a 0.02
亮氨酸 Leucine 1.81±0.30c 2.13±0.17bc 2.20±0.13b 2.27±0.19b 2.66±0.46a 0.00
酪氨酸 Tyrosine 4.97±0.67c 5.78±0.75bc 6.17±0.66b 6.42±0.72b 7.55±1.05a 0.00
异亮氨酸 Isoleucine 1.99±0.29b 2.40±0.43ab 2.43±0.37ab 2.47±0.31ab 2.79±0.53a 0.03
苯丙氨酸 Phenylalanine 2.00±0.40c 2.33±0.31bc 2.41±0.27bc 2.49±0.32ab 2.89±0.43a 0.00
γ-氨基丁酸 γ-Amino-n-butyric acid 0.90±0.16a 0.85±0.17a 0.88±0.14a 0.86±0.10a 0.80±0.07a 0.78
氨 Ammonia 18.83±4.17a 20.57±2.66a 20.99±2.15a 21.08±1.71a 21.75±1.94a 0.42
鸟氨酸 Ornithine 1.70±0.53a 1.38±0.34bc 1.27±0.34bc 1.10±0.12b 1.49±0.42bc 0.10
赖氨酸 Lysine 2.56±0.91b 3.12±0.58ab 3.21±0.66ab 3.31±0.57ab 3.79±0.89a 0.10
组氨酸 Histidine 2.57±0.36a 2.80±0.73a 2.84±0.92a 3.14±0.69a 3.32±0.70a 0.40
鹅肌肽 Anserine 197.54±25.69a 200.95±24.56a 208.89±18.77a 213.93±18.28a 202.07±28.81a 0.76
肌肽 Carnosine 499.15±27.17a 530.58±65.12a 533.56±85.88a 555.97±34.04a 528.04±65.02a 0.60
精氨酸 Arginine 6.03±1.02c 7.03±0.81bc 7.53±1.41ab 7.13±1.05ab 8.51±0.63a 0.01
脯氨酸 Proline 5.63±0.89ab 4.88±1.62b 5.29±1.07ab 5.20±0.62ab 6.32±0.89a 0.15
合计 Total 1086.05±62.03a 1100.05±78.03a 1081.83±70.54a 1100.43±15.42a 1085.16±57.00a 0.97

Table 2

Person’s correlation between amino acids contents and antioxidant activity in Tan lamb"

氨基酸名称
Amino acid name
相关系数 Correlation coefficients
FRAP ABTS DPPH ORAC DMPD
邻磷酸丝氨酸 o-Phospho-serine 0.480** 0.208 0.420* 0.417* 0.417*
牛磺酸 Taurine -0.226 -0.091 -0.188 -0.227 -0.235
邻苯二乙醇胺 o-Phsophoethanolamine -0.106 -0.236 -0.222 -0.132 -0.181
天冬氨酸 Aspartic acid -0.252 -0.393* -0.378* -0.246 -0.268
苏氨酸 Threonine 0.128 0.213 0.135 0.192 0.241
丝氨酸 Serine 0.114 0.175 0.120 0.143 0.137
谷氨酸 Glutamic acid -0.034 -0.129 -0.162 -0.117 -0.110
甘氨酸 Glycine 0.063 0.083 0.062 -0.040 0.086
丙氨酸 Alanine 0.077 0.182 0.113 0.076 0.098
缬氨酸 Valine 0.168 -0.109 0.111 0.208 0.082
蛋氨酸 Methionine 0.270 -0.022 0.168 0.247 0.080
胱氨酸 Cystine 0.313 0.227 0.296 0.226 0.312
亮氨酸 Leucine 0.566** 0.487** 0.597** 0.471** 0.629**
酪氨酸 Tyrosine 0.596** 0.493** 0.656** 0.532** 0.679**
异亮氨酸 Isoleucine 0.374* 0.391* 0.456* 0.324 0.425*
苯丙氨酸 Phenylalanine 0.499** 0.405* 0.545** 0.445* 0.569**
γ-氨基丁酸 γ-Amino-n-butyric acid -0.234 -0.171 -0.144 -0.193 -0.153
氨 Ammonia 0.235 0.371* 0.289 0.230 0.258
鸟氨酸 Ornithine -0.010 -0.402* -0.274 -0.117 -0.091
赖氨酸 Lysine 0.375* 0.265 0.410* 0.271 0.391*
组氨酸 Histidine 0.333 0.252 0.337 0.300 0.372*
鹅肌肽 Anserine 0.075 0.269 0.157 0.073 0.095
肌肽 Carnosine 0.040 0.370* 0.187 0.110 0.170
精氨酸 Arginine 0.376* 0.486** 0.493** 0.384* 0.536**
脯氨酸 Proline 0.324 -0.078 0.212 0.285 0.370*
合计 Total -0.089 -0.014 -0.016 -0.116 -0.078

Fig. 3

Overall difference analysis among the Tan lamb in different postmortem time"

Fig. 4

Hierarchical clustering and heatmap of differentially abundant proteins in Tan lamb in different postmortem time Different columns represent different samples (LD represents the longissimus dorsi and the number represents postmortem time), and different rows represent different proteins. The color represents the relative abundance of the proteins (Deeper red represents higher intensity, deeper blue represents lower intensity, and white represents middle intensity)"

Fig. 5

GO enrichment analysis diagram of differentially abundant proteins in Tan lamb in different postmortem time The ordinate is the GO entry, and the abscissa indicates the enrichment of the differential protein in the corresponding function entry. The larger the value of -LOG 10 P-Value, the more relevant the differential protein and the function"

Table 3

Person’s correlation between differentially abundant proteins and antioxidant activity in Tan lamb"

登记号
Accession
蛋白名称
Protein name
相关系数 Correlation coefficient
FRAP ABTS DPPH ORAC DMPD
C3V6M4 钙蛋白酶抑制蛋白 Calpastatin -0.556* -0.587* -0.638** -0.573* -0.589*
W5NRQ5 载脂蛋白B mRNA编辑酶催化亚基2
Apolipoprotein B mRNA editing enzyme catalytic subunit 2
-0.432 -0.544* -0.584* -0.409 -0.599**
W5NS65 H15结构域蛋白 H15 domain-containing protein 0.471* -0.155 0.142 0.396 0.375
W5NTS5 辅酶Q8A Coenzyme Q8A -0.223 -0.372 -0.448 -0.289 -0.359
W5NUA0 脯氨酸/精氨酸丰富端亮氨酸丰富重复蛋白
Proline and arginine rich end leucine rich repeat protein
0.052 0.541* 0.422 0.126 0.169
W5P5C5 糖原蛋白1 Glycogenin 1 0.642** 0.655** 0.800** 0.637** 0.818**
W5P8Z2 亲联蛋白1 Junctophilin 1 -0.786** -0.467 -0.632** -0.817** -0.630**
W5P9K6 蛋白酶体26S亚基ATP合酶 Proteasome 26S subunit, ATPase 3 -0.738** -0.384 -0.558* -0.722** -0.651**
W5PA76 亮氨酸拉链和CTNNBIP1结构域
Leucine zipper and CTNNBIP1 domain containing
-0.465* -0.296 -0.527 -0.487* -0.572*
W5PCH1 胞膜窖相关蛋白4 Caveolae associated protein 4 -0.442 0.168 -0.100 -0.333 -0.305
W5PFV9 伴肌动蛋白 Nebulin 0.627** 0.253 0.539* 0.587* 0.596**
W5PHT7 肽基脯氨酰异构酶 Peptidylprolyl isomerase 0.562* -0.027 0.256 0.508* 0.416
W5PID4 未知蛋白1 Uncharacterized protein 1 0.025 -0.502* -0.319 -0.056 -0.151
W5PP64 未知蛋白2 Uncharacterized protein 2 -0.557* -0.674** -0.674** -0.627** -0.673**
W5PQJ1 真核细胞翻译起始因子4H Eukaryotic translation initiation factor 4H -0.521* -0.056 -0.376 -0.505* -0.443
W5Q466 电压门控钙离子通道辅助亚基α2δ-1
Calcium voltage-gated channel auxiliary subunit alpha 2 delta 1
0.183 0.742** 0.555* 0.284 0.334
W5Q922 泛素羧基末端水解酶 Ubiquitin carboxyl-terminal hydrolase 0.447 -0.040 0.230 0.403 0.465
W5QG38 蛋白激酶结构域蛋白 Protein kinase domain-containing protein 0.611** 0.489* 0.584* 0.607** 0.539*
W5QGI4 苯丙氨酰-tRNA合成酶β Phenylalanyl-tRNA synthetase subunit beta 0.261 0.634** 0.499* 0.456 0.406
W5QGM7 H1组蛋白家族成员0 H1 histone family member 0 0.716** 0.058 0.454 0.574* 0.626**
[1] GÖKMEN V, SERPEN A, FOGLIANO V. Direct measurement of the total antioxidant capacity of foods: The ‘QUENCHER’ approach. Trends in Food Science & Technology, 2009, 20(6):278-288.
[2] SHAHIDI F. Nutraceuticals and functional foods: Whole versus processed foods. Trends in Food Science & Technology, 2009, 20(9):376-387.
[3] 张德权, 侯成立. 热鲜肉与冷却肉品质差异之管见. 肉类研究, 2020, 34(5):83-90.
ZHANG D Q, HOU C L. Humble opinion on the quality difference between hot meat and chilled meat. Meat Research, 2020, 34(5):83-90. (in Chinese)
[4] 肖雄, 侯成立, 李欣, 陈丽, 张德权, 任驰, 摆玉蔷, 刘登勇. 宰后不同时间蒙寒杂交羔羊霖肉的营养品质分析. 食品科学技术学报, 2020, 38(2):99-106.
XIAO X, HOU C L, LI X, CHEN L, ZHANG D Q, REN C, BAI Y Q, LIU D Y. Nutritional quality analysis of knuckle muscle in Mongolian and small-tailed Han crossbreed lamb at different postmortem times. Journal of Food Science and Technology, 2020, 38(2):99-106. (in Chinese)
[5] 肖雄, 侯成立, 李欣, 郑晓春, 张德权, 任驰, 摆玉蔷, 颜统晶, 刘登勇. 宰后贮藏过程中羔羊肉食用品质的变化. 肉类研究, 2019, 33(9):53-58.
XIAO X, HOU C L, LI X, ZHENG X C, ZHANG D Q, REN C, BAI Y Q, YAN T J, LIU D Y. Changes in eating quality of lamb during postmortem storage. Meat Research, 2019, 33(9):53-58. (in Chinese)
[6] XIAO X, HOU C L, ZHANG D Q, LI X, REN C, IJAZ M, HUSSAIN Z, LIU D Y. Effect of pre- and post-rigor on texture, flavor, heterocyclic aromatic amines and sensory evaluation of roasted lamb. Meat Science, 2020, 169:108220.
doi: 10.1016/j.meatsci.2020.108220
[7] 樊路杰, 窦鸣乐, 王小宇, 李泽, 史新娥, 李晓. 宰后肌肉抗氧化能力与肉品质的关系. 动物营养学报, 2018, 30(5):1676-1680.
FAN L J, DOU M L, WANG X Y, LI Z, SHI X E, LI X. Relationship between antioxidant capacity of postmortem muscle and meat quality. Chinese Journal of Animal Nutrition, 2018, 30(5):1676-1680. (in Chinese)
[8] PONNAMPALAM E N, BUTLER K L, MCDONAGH M B, JACOBS J L, HOPKINS D L. Relationship between muscle antioxidant status, forms of iron, polyunsaturated fatty acids and functionality (retail colour) of meat in lambs. Meat Science, 2012, 90(2):297-303.
doi: 10.1016/j.meatsci.2011.07.014
[9] 孟彤, 刘源, 仇春泱, 王锡昌. 蛋白质氧化及对肉品品质影响. 中国食品学报, 2015, 15(1):173-181.
MENG T, LIU Y, QIU C Y, WANG X C. Research progress on protein oxidation mechanisms and its effects on meat quality. Journal of Chinese Institute of Food Science and Technology, 2015, 15(1):173-181.(in Chinese)
[10] CHAKRABORTY S, GANGULI S, CHOWDHURY A, IBBA M, BANERJEE R. Reversible inactivation of yeast mitochondrial phenylalanyl-tRNA synthetase under oxidative stress. Biochimica et Biophysica Acta General Subjects, 2018, 1862(8):1801-1809.
doi: 10.1016/j.bbagen.2018.04.023
[11] DESCALZO A M, SANCHO A M. A review of natural antioxidants and their effects on oxidative status, odor and quality of fresh beef produced in Argentina. Meat Science, 2008, 79(3):423-436.
doi: 10.1016/j.meatsci.2007.12.006
[12] QWELE K, HUGO A, OYEDEMI S O, MOYO B, MASIKA P J, MUCHENJE V. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Science, 2013, 93(3):455-462.
doi: 10.1016/j.meatsci.2012.11.009
[13] SERPEN A, GÖKMEN V, FOGLIANO V. Total antioxidant capacities of raw and cooked meats. Meat Science, 2012, 90(1):60-65.
doi: 10.1016/j.meatsci.2011.05.027
[14] 张敏, 张淑二, 朱应民, 冯鑫磊, 于家利, 曾勇庆, 刘展生. 不同品种猪肉质抗氧化性能比较分析. 安徽农业科学, 2018, 46(14):188-190.
ZHANG M, ZHANG S E, ZHU Y M, FENG X L, YU J L, ZENG Y Q, LIU Z S. Comparison and anylsis on the antioxidant properties of meat quality in different pig breeds. Journal of Anhui Agricultural Sciences, 2018, 46(14):188-190. (in Chinese)
[15] 董瑷榕, 苗建军, 彭忠利, 曾钰, 付洋洋, 王鼎, 郭春华. 年龄对舍饲育肥牦牛肉营养价值和抗氧化活性的影响. 食品科学, 2019, 40(19):77-82.
DONG A R, MIAO J J, PENG Z L, ZENG Y, FU Y Y, WANG D, GUO C H. Effect of age on nutritional value and antioxidant activity of house-feeding yak meat. Food Science, 2019, 40(19):77-82. (in Chinese)
[16] OH M, KIM E K, JEON B T, TANG Y J, KIM M S, SEONG H J, MOON S H. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut. Meat Science, 2016, 119:16-21.
doi: 10.1016/j.meatsci.2016.04.016
[17] BENZIE I F F, STRAIN J J. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Analytical Biochemistry, 1996, 239(1):70-76.
doi: 10.1006/abio.1996.0292
[18] FOGLIANO V, VERDE V, RANDAZZO G, RITIENI A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. Journal of Agricultural and Food Chemistry, 1999, 47(3):1035-1040.
doi: 10.1021/jf980496s
[19] ZOU Y H, KANG D C, LIU R, QI J, ZHOU G H, ZHANG W G. Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef. Ultrasonics Sonochemistry, 2018, 46:36-45.
doi: 10.1016/j.ultsonch.2018.04.005
[20] 邹波, 何广捷, 赵迪, 闫静, 张泽, 徐幸莲, 周光宏, 李春保. 蛋白质组学揭示宰前温和驱赶改善猪肉品质的潜在机制. 食品科学, 2020, 41(13):29-37.
ZOU B, HE G J, ZHAO D, YAN J, ZHANG Z, XU X L, ZHOU G H, LI C B. Proteomic analysis of the potential mechanism for improving pork quality by preslaughter mild driving. Food Science, 2020, 41(13):29-37. (in Chinese)
[21] SANCHEZ-MORENO C. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Science and Technology International, 2002, 8(3):121-137.
doi: 10.1177/1082013202008003770
[22] 周昇昇. 抗氧化能力体外评价方法的进展和比较. 卫生研究, 2010, 39(2):164-167.
ZHOU S S. Progress and comparison of antioxidant capacity evaluation methods in vitro. Journal of Hygiene Research, 2010, 39(2):164-167. (in Chinese)
[23] HOU C, WU L G, WANG Z Y, SAGUER E, ZHANG D Q. Purification and identification of antioxidant alcalase-derived peptides from sheep plasma proteins. Antioxidants, 2019, 8(12):592.
doi: 10.3390/antiox8120592
[24] THAIPONG K, BOONPRAKOB U, CROSBY K, CISNEROS- ZEVALLOS L, BYRNE D H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 2006, 19(6/7):669-675.
doi: 10.1016/j.jfca.2006.01.003
[25] CHAN K M, DECKER E A. Endogenous muscle antioxidants. Critical Reviews in Food Science and Nutrition, 1994, 34(4):403-426.
doi: 10.1080/10408399409527669
[26] JUNG S, BAE Y S, KIM H J, JAYASENA D D, LEE J H, PARK H B, HEO K N, JO C. Carnosine, anserine, creatine, and inosine 5'-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poultry Science, 2013, 92(12):3275-3282.
doi: 10.3382/ps.2013-03441
[27] 张梦寒, 徐幸莲, 周光宏. 肌肽对肌肉中脂类氧化的抑制作用. 肉类研究, 2001, 15(4):16-18.
ZHANG M H, XU X L, ZHOU G H. Anti-oxidative function of carnosine on muscular lipid. Meat Research, 2001, 15(4):16-18. (in Chinese)
[28] KOHEN R, YAMAMOTO Y, CUNDY K C, AMES B N. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. PNAS, 1988, 85(9):3175-3179.
doi: 10.1073/pnas.85.9.3175
[29] LARSEN R, EILERTSEN K E, M HRE H, JENSEN I J, ELVEVOLL E O. Taurine Content in Marine Foods: Beneficial Health Effects. John Wiley & Sons, Ltd. 2013: 249-268.
[30] PURCHAS R W, RUTHERFURD S M, PEARCE P D, VATHER R, WILKINSON B H P. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Science, 2004, 66(3):629-637.
doi: 10.1016/S0309-1740(03)00181-5
[31] HOU C L, WANG Z Y, WU L G, CHAI J L, ZHANG W T, ZHANG D Q. Effects of breeds on the formation of heterocyclic aromatic amines in smoked lamb. International Journal of Food Science & Technology, 2017, 52(12):2661-2669.
[32] TRIKI M, HERRERO A M, JIM NEZ-COLMENERO F, RUIZ-CAPILLAS C. Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods, 2018, 7(9):132.
doi: 10.3390/foods7090132
[33] SZTERK A. Heterocyclic aromatic amines in grilled beef: The influence of free amino acids, nitrogenous bases, nucleosides, protein and glucose on HAAs content. Journal of Food Composition and Analysis, 2015, 40:39-46.
doi: 10.1016/j.jfca.2014.12.011
[34] FEIDT C, PETIT A, BRUAS-REIGNIER F, BRUN-BELLUT J. Release of free amino-acids during ageing in bovine meat. Meat Science, 1996, 44(1/2):19-25.
doi: 10.1016/S0309-1740(96)00088-5
[35] MOYA V J, FLORES M, ARISTOY M C, TOLDRÁ F. Pork meat quality affects peptide and amino acid profiles during the ageing process. Meat Science, 2001, 58(2):197-206.
doi: 10.1016/S0309-1740(00)00152-2
[36] LAWRIE R A, LEDWARD D. Lawrie's Meat Science. 7th ed. Cambridge: Woodhead Publishing Limited, 2006: 95-101.
[37] WU H C, CHEN H M, SHIAU C Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 2003, 36(9):949-957.
doi: 10.1016/S0963-9969(03)00104-2
[38] ELIAS R J, KELLERBY S S, DECKER E A. Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 2008, 48(5):430-441.
doi: 10.1080/10408390701425615
[39] PÉREZ R A, IGLESIAS M T, PUEYO E, GONZÁLEZ M, DE LORENZO C. Amino acid composition and antioxidant capacity of Spanish honeys. Journal of Agricultural and Food Chemistry, 2007, 55(2):360-365.
doi: 10.1021/jf062055b
[40] FU Y, YOUNG J F, THERKILDSEN M. Bioactive peptides in beef: Endogenous generation through postmortem aging. Meat Science, 2017, 123:134-142.
doi: 10.1016/j.meatsci.2016.09.015
[41] LIU D M, CHEN X, HUANG J C, HUANG M, ZHOU G H. Generation of bioactive peptides from duck meat during post-mortem aging. Food Chemistry, 2017, 237:408-415.
doi: 10.1016/j.foodchem.2017.05.094
[42] 师希雄, 罗天林, 余群力. 牦牛肉成熟前后差异蛋白质组学分析. 农业机械学报, 2015, 46(9):251-256.
SHI X X, LUO T L, YU Q L. Analysis of differential proteomics between fresh and aging yak meat. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9):251-256. (in Chinese)
[43] 王颖, 李欣, 李铮, 朱杰, 张社奇, 张德权. 极限pH对羊肉宰后成熟过程中肌原纤维蛋白特型的影响. 食品工业科技, 2019, 40(2):13-18.
WANG Y, LI X, LI Z, ZHU J, ZHANG S Q, ZHANG D Q. Effects of ultimate pH on the properties of myofibrillar proteins from ovine muscle during postmortem aging. Science and Technology of Food Industry, 2019, 40(2):13-18. (in Chinese)
[44] HSU S H, LAI M C, ER T K, YANG S N, HUNG C H, TSAI H H, LIN Y C, CHANG J G, LO Y C, JONG Y J. Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) regulates the level of SMN expression through ubiquitination in primary spinal muscular atrophy fibroblasts. Clinica Chimica Acta, 2010, 411(23):1920-1928.
doi: 10.1016/j.cca.2010.07.035
[45] REIN T. Peptidylprolylisomerases, protein folders, or scaffolders? The example of FKBP51 and FKBP52. BioEssays, 2020, 42(7):1900250.
doi: 10.1002/bies.v42.7
[46] 瞿芳, 陈可之, 陈金军. 电压门控钙通道辅助亚基α2δ-1的结构和分子药理. 中国生物化学与分子生物学报, 2020, 36(8):872-878.
QU F, CHEN K Z, CHEN J J. The structure and molecular pharmacology of voltage-gated calcium channel auxiliary subunits α2δ-1. Chinese Journal of Biochemistry and Molecular Biology, 2020, 36(8):872-878. (in Chinese)
[47] LEAL-GUTIÉRREZ J D, ELZO M A, JOHNSON D D, SCHEFFLER T L, SCHEFFLER J M, MATEESCU R G. Association of μ-calpain and calpastatin polymorphisms with meat tenderness in a Brahman- Angus population. Frontiers in Genetics, 2018, 9:56.
doi: 10.3389/fgene.2018.00056
[48] LI Z, LI X, GAO X, SHEN Q W, DU M T, ZHANG D Q. Phosphorylation prevents in vitro myofibrillar proteins degradation by μ-calpain. Food Chemistry, 2017, 218:455-462.
doi: 10.1016/j.foodchem.2016.09.048
[49] 杜曼婷, 李欣, 李铮, 高星, 张彩霞, 张德权. 不同嫩度羊肉中钙蛋白酶的差异. 中国农业科学, 2016, 49(17):3424-3431.
DU M T, LI X, LI Z, GAO X, ZHANG C X, ZHANG D Q. Analysis and comparison of calpain in mutton with different levels of tenderness. Scientia Agricultura Sinica, 2016, 49(17):3424-3431. (in Chinese)
[50] MURPHY R M, DUTKA T L, HORVATH D, BELL J R, DELBRIDGE L M, LAMB G D. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. The Journal of Physiology, 2013, 591(3):719-729.
doi: 10.1113/jphysiol.2012.243279
[51] SHUKLA S, DUBEY K K. CoQ10 a super-vitamin: Review on application and biosynthesis. 3 Biotech, 2018, 8(5):249.
doi: 10.1007/s13205-018-1271-6
[52] PARTON R G. Caveolae: Structure, function, and relationship to disease. Annual Review of Cell and Developmental Biology, 2018, 34:111-136.
doi: 10.1146/cellbio.2018.34.issue-1
[53] 王丰, 施一公. 26S蛋白酶体的结构生物学研究进展. 中国科学(生命科学), 2014, 44(10):965-974.
WANG F, SHI Y G. Progress in structural biology of 26S proteasome. Science in China (Series C), 2014, 44(10):965-974.(in Chinese)
[54] YOSHIDA M, MUNEYUKI E, HISABORI T. ATP synthase: A marvellous rotary engine of the cell. Nature Reviews Molecular Cell Biology, 2001, 2(9):669-677.
doi: 10.1038/35089509
[55] CAO W, WU W. Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like gene expression, RNA editing, and microRNAs regulation//MicroRNA and Cancer: Methods and Protocols. Springer New York: New York, NY, 2018: 75-81.
[56] RICHTER-COOK N J, DEVER T E, HENSOLD J O, MERRICK W C. Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. The Journal of Biological Chemistry, 1998, 273(13):7579-7587.
doi: 10.1074/jbc.273.13.7579
[57] 王磊. 基于肌浆蛋白质组学研究宰后初期不同极限pH值牛肉颜色的差异机制[D]. 泰安: 山东农业大学, 2017.
WANG L. Beef color difference mechanism of different ultimate pH values during early postmortem based on sarcoplasmic proteomics[D]. Taian: Shandong Agricultural University, 2017. (in Chinese)
[1] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[2] YAN TongJing,ZHANG DeQuan,LI Xin,LIU Huan,FANG Fei,LIU ShanShan,WANG Su,HOU ChengLi. Effects of Very Fast Chilling on Flavor Quality in Chilled Lamb [J]. Scientia Agricultura Sinica, 2022, 55(15): 3029-3041.
[3] WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684.
[4] ZHU Yin,ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi. Enantiomeric Analysis of Free Amino Acids in Different Teas [J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819.
[5] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[6] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[7] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[8] YANG NingZhi,LI Ting,WANG Yan,CHEN Zhuo,MA YiCheng,REN QiangLin,LIU JiaJia,YANG HuiGuo,YAO Gang. Comparison of Growth Physiology and Gut Microbiota Between Healthy and Diarrheic Lambs in Pre- and Post-Weaning Period [J]. Scientia Agricultura Sinica, 2021, 54(2): 422-434.
[9] HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202.
[10] HUANG WenQin,LÜ XiaoKang,ZHUANG YiMin,CUI Kai,WANG ShiQing,DIAO QiYu,ZHANG NaiFeng. The Effects of Early Weaning and NDF Levels of Finishing Diets on Growth Performance, Nutrient Digestion and Metabolism of Hu Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2217-2228.
[11] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
[12] ZHENG Chen,LI FaDi,LI Fei,ZHOU JuWang,DUAN PengWei,LIU HuiHui,FAN HaiMiao,ZHU WeiLi,LIU Ting. Effects of Adding Mannan Oligosaccharides to Milk Replacer on the Development of Gastrointestinal Tract of 7-28 Days Old Hu Lambs [J]. Scientia Agricultura Sinica, 2020, 53(2): 398-408.
[13] LI YanJun,NIU XiaoLin,ZHANG Qian,WANG GuoXiu,LI FaDi,LI Fei,LI Chong,PANG Xin,JIA Li,FAN HaiMiao. Effects of Milk Replacer Feeding Level on Hematology Index and Gut Barrier Function in Lambs [J]. Scientia Agricultura Sinica, 2020, 53(2): 409-417.
[14] WANG ShiQin,BI YanLiang,ZHAO GuoHong,CUI Kai,HUANG WenQin,ZHANG NaiFeng,LI FaDi,TU Yan,DIAO QiYu. Growth Performance, Nutrient Digestibility and Serum Parameters in 0-2 Months Old Hu Lambs [J]. Scientia Agricultura Sinica, 2020, 53(2): 451-460.
[15] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!