Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (8): 1378-1387.doi: 10.3864/j.issn.0578-1752.2017.08.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Karyotypic Analysis of Aegilops speltoides Revealed by FISH

DONG Lei1, 2, DONG Qing1, ZHANG Wenli1, HU Xiaolong1, WANG Honggang2, WANG Yuhai1   

  1. 1Zaozhuang University, Zaozhuang 277160, Shandong; 2Agronomy College, Shandong Agricultural University/State Key Laboratory of Crop Biology of Shandong Agricultural University, Tai’an 271018, Shandong
  • Received:2017-01-03 Online:2017-04-16 Published:2017-04-16

Abstract: 【Objective】The objective of this study is to reveal the karyotypic polymorphism of Aegilops speltoides (Aegilops short for Ae. hereafter) and the karyotypic difference between common wheat and Ae. speltoides via the establishment of FISH karyotype of Ae. speltoides.【Method】Multicolor fluorescence in situ hybridization (mc-FISH) was employed to detect the distribution of Oligo-pSc119.2 and Oligo-pTa535 in chromosomes of Ae. speltoides; centromere-specific oligonucleotide CCS1 was used to identify the location of centromeres on chromosomes; FISH karyotype comparison was conducted to show the karyotypic differences between Ae. speltoides and wheat.【Result】In wheat, oligo-pTa535 signals were observed mainly on chromosomes in A and D genomes, and only very sporadic signals were found in B genome. However, oligo-pTa535 signals were absent in Ae. speltoides of five accessions. Oligo-pSc119.2, compared to a little distribution in A and D genomes, shined plentiful fluorescence in the whole genome B in wheat, and especially in S genomes in Ae. speltoides of five accessions used in this study. Different pairs of chromosomes in wheat could be distinguished from each other according to the distribution of Oligo-pSc119.2 and Oligo-pTa535 on chromosomes of wheat. FISH patterns produced by Oligo-pSc119.2 in wheat showed similarity among wheat materials whether of different ploidy or of different varieties of same ploidy, and that in Ae. speltoides varied depending on accessions. Even homologous chromosomes in one cell in Ae. speltoides exhibited differences in FISH pattern. Oligo-pSc119.2 FISH patterns of five accessions each showed obvious differences from that of B genomes in wheat. Four of five Ae. speltoides accessions possess six pairs of metacentric chromosomes except for homologous pairs 4S of submetacentric chromosomes, which were involved in the karyotype formula 2n = 14 = 12m + 2sm, and the rest one, PI542238, however, houses seven pairs of metacentric chromosomes which resulted in the karyotype formula 2n = 14 = 14m. 【Conclusion】 Chromosomes of Ae. speltoides house rich repetitive DNA sequences highly homologous to pSc119.2 and lack that highly homologous to pTa53. The distribution of pSc119.2 on chromosomes of Ae. speltoides showed differences between accessions, between plants of one accession and even between homologous chromosomes in one plant. FISH patterns produced by Oligo-pSc119.2 on Ae. speltoides chromosomes exhibited significant difference from that on chromosomes of B genomes in wheat. FISH analysis, using Oligo-pSc119.2 and Oligo-pTa535 as probes, not only could differentiate the chromosomes in wheat from that in Ae. speltoides, but also could dishtinguish the chromosomes from each other whether in wheat or in Ae. speltoides.

Key words: Triticum aestivum, Aegilops speltoides, karyotypic analysis, FISH, oligonucleotides

[1]    周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广 军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30(6): 531-535.
ZHOU Y, HE Z H, ZHANG G S, XIA L Q, CHEN X M, GAO Y C, JING Z B, YU G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agrinomica Sinica, 2004, 30(6): 531-535. (in Chinese)
[2]    张丽, 张怀渝, 任正隆, 罗培高. 小麦-黑麦1BL/1RS易位系在小麦遗传改良中的应用现状及前景分析. 分子植物育种, 2010, 8(14): 1-8.
ZHANG L, ZHANG H Y, REN Z L, LUO P G. The progress and prospect of 1BL/RS translocation line in wheat genetic improvement. Molecular Plant Breeding, 2010, 8(14): 1-8. (in Chinese)
[3]    钟冠昌, 穆素梅, 张正斌. 麦类远缘杂交. 北京: 科学出版社, 2002: 92-97.
ZHONG G C, MU S M, ZHANG Z B. Wide hybridization in Triticeae. Beijing: China Science Press, 2002: 92-97. (in Chinese)
[4]    MAESTRA B, NARANJO T. Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theoretical and Applied Genetics, 1998, 97: 181-186.
[5]    SALSE J, CHAGUÉ V, BOLOT S, MAGDELENAT G, HUNEAU C, PONT C, BELCRAM H, COULOUX A, GARDAIS S, EVRARD A, SEGURENS B, CHARLES M, RAVEL C, SAMAIN S, CHARMET G, BOUDET N, CHALHOUB B. New insights into the origin of the B genome of hexaploid wheat: Evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics, 2008, 9: 555.
[6]    PETERSEN G, SEBERG O, YDE M, BERTHELSEN K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Molecular Phylogenetics and Evolution, 2006, 39(1): 70-82.
[7]    MAGO R, VERLIN D, ZHANG P, BANSAL U, BARIANA H, JIN Y, ELLIS J, HOXHA S, DUNDAS I. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theoretical and Applied Genetics, 2013, 126: 2943-2955.
[8]    JIA J, DEVOS K M, CHAO S, MILLER T E, READER S M, GALE M D. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theoretical and Applied Genetics, 1996, 92: 559-565.
[9]    NAIK S, GILL K S, PRAKASA RAO V S, GUPTA V S, TAMHANKAR S A, PUJAR S, GILL B S, RANJEKAR P K. Identification of a STS marker linked to the Aegilops speltoides- derived leaf rust resistance gene Lr28 in wheat. Theoretical and Applied Genetics, 1998, 97: 535-540.
[10]   PETERSEN S, LYERLY J H, WORTHINGTON M L, PARKS W R, COWGER C, MARSHALL D S, BROWN-GUEDIRA G, MURPHY J P. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theoretical and Applied Genetics, 2015, 128: 303-312.
[11]   YU G T, KLINDWORTH D L, FRIESEN T L, FARIS J D, ZHONG S B, RASMUSSEN J B, XU S S. Development of a diagnostic co-dominant marker for stem rust resistance gene Sr47 introgressed from Aegilops speltoides into durum wheat. Theoretical and Applied Genetics, 2015, 128: 2367-2374.
[12]   DUBCOVSKY J, LUKASZEWSKI A J, ECHAIDE M, ANTONELLI E F, PORTER D R. Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Science, 1998, 38: 1655-1660.
[13]   NOORI S A S. Assessment for salinity tolerance through intergeneric hybridisation: Triticum durum × Aegilops speltoides. Euphytica, 2005, 146: 149-155.
[14]   YUDINA R S, LEONOVA I N, SALINA E A, KHLESTKINA E K. Change in salt tolerance of bread wheat as a result of the introgression of the genetic material of Aegilops speltoides and Triticum timopheevii. Russian Journal of Genetics: Applied Research, 2016, 6(3): 244-248.
[15]   PSHENICHNIKOVA T A, SIMONOV A V, ERMAKOVA M F, CHISTYAKOVA A K, SHCHUKINA L V, MOROZOVA E V. The effects on grain endosperm structure of an introgression from Aegilops speltoides Tausch. into chromosome 5A of bread wheat. Euphytica, 2010, 175: 315-322.
[16]   AWLACHEW Z T, SINGH R, KAUR S, BAINS N S, CHHUNEJA P. Transfer and mapping of the heat tolerance component traits of Aegilops speltoides in tetraploid wheat Triticum durum. Molecular Breeding, 2016, 36: 78.
[17]   FRIEBE B, BADAEVA E D, KAMMER K, GILL B S. Standard karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa subspecies comosa and heldreichii (Poaceae). P1ant Systematics Evolution, 1996, 202: 199-210.
[18]   FERNÁNDEZ-CALVIN B, ORELLANA J. Metaphase-I bound-arm frequency and genome analysis in wheat-Aegilops hybrids. 2. Cytogenetical evidence for excluding Ae. sharonensis as the donor of the B genome of polyploid wheats. Theoretical and Applied Genetics, 1993, 85(5): 587-592.
[19]   FRIEBE B, QI L L, NASUDA S, ZHANG P, TULEEN N A, GILL B S. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theoretical and Applied Genetics, 2000, 101: 51-58.
[20]   TEOH S B, MILLER T E, READER S M. Intraspecific variation in C-banded chromosomes of Aegilops comosa and Ae. Speltoides. Theoretical and Applied Genetics, 1983, 65: 343-348.
[21]   FRIEBE B, SCHUBERT V, BLIITHNER W D, HAMMER K. C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum-Ae. caudata and six derived chromosome addition lines. Theoretical and Applied Genetics, 1992, 83: 589-596.
[22]   FRIEBE B, JIANG J, TULEEN N, GILL B S. Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theoretical and Applied Genetics, 1995, 90: 150-156.
[23]   FRIEBE B, TULEEN N A, GILL B S. Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theoretical and Applied Genetics, 1995, 91: 248-254.
[24]   BADAEVA E D, DEDKOVA O S, ZOSHCHUK S A, AMOSOVA A  V, READER S M, BERNARD M, ZELENIN A V. Comparative analysis of the N-genome in diploid and polyploid Aegilops species. Chromosome Research, 2011, 19: 541-548.
[25]   MIRZAGHADERI G, HOUBEN A, BADAEVA E D. Molecular- cytogenetic analysis of Aegilops triuncialis and dentification of its chromosomes in the background of wheat. Molecular Cytogenetics, 2014, 7: 91.
[26]   TANG Z X, YANG Z J, FU S L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics, 2014, 55: 313-318.
[27]   FERNFINDEZ-CALVFN B, ORELLANA J. Metaphase I-bound arms frequency and genome analysis in wheat-Aegilops hybrids. 3. Similar relationships between the B genome of wheat and S or SLgenomes of Ae. speltoides, Ae. longissima and Ae. sharonensis. Theoretical and Applied Genetics, 1994, 88: 1043-1049.
[28]   王玉海, 何方, 鲍印广, 明东风, 董磊, 韩庆典, 李莹莹, 王洪刚. 高抗白粉病小麦-山羊草新种质TA002的创制和遗传研究. 中国农业科学, 2016, 49(3): 418-428.
WANG Y H, HE F, BAO Y G, MING D F, DONG L, HAN Q D, LI Y Y, WANG H G. Development and genetic analysis of a novel wheat-Aegilops germplasm TA002 resistant to powdery mildew. Scientia Agricultura Sinica, 2016, 49(3): 418-428. (in Chinese)
[29]   WANG Y H, WANG H G. Characterization of three novel wheat-Thinopyrum intermedium addition lines with novel storage protein subunits and resistance to both powdery mildew and stripe rust. Journal of Genetics and Genomics, 2016, 43: 45-48.
[30]   KRUPPA K, TÜRKÖSI E, MAYER M, TÓTH V, VIDA G, SZAKÁCS É, MOLNÁR-LÁNG M. McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross. Journal of Applied Genetics, 2016, 57: 427-437.
[31]   LI G R, WANG H J, LANG T, LI J B, LA S X, YANG E N, YANG Z J. New molecular markers and cytogenetic probes enable chromosome identification of wheat-Thinopyrum intermedium introgression lines for improving protein and gluten contents. Planta, 2016, 244: 865-876.
[32]   陈雷, 李萌, 王洋洋, 邱玲, 汤述尧, 唐宗祥, 符书兰. 小麦-黑麦1BL/1RS 易位系中的染色体结构变异. 麦类作物学报, 2015, 35(8): 1038-1043.
CHEN L, LI M, WANG Y Y, QIU L, TANG S Y, TANG Z X, FU S L. Structural variation of chromosomes in wheat-rye 1BL/1RS translocation lines. Journal of Triticeae Crops, 2015, 35(8): 1038-1043. (in Chinese)
[33]   SCHNEIDER A, RAKSZEGI M, MOLNÁR-LÁNG M, SZAKÁCS  É. Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theoretical and Applied Genetics, 2016, 129: 1045-1059.
[34]   ZHUANG L F, LIU P,LIU Z Q, CHEN T T, WU N, SUN L, QI Z J. Multiple structural aberrations and physical mapping of rye chromosome 2R introgressed into wheat. Molecular Breeding, 2015, 35: 133.
[35]   FU S L, REN Z L, CHEN X M, YAN B J, TAN F Q, FU T H, TANG Z X. New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance. Journal of Plant Research, 2014, 127: 743-753.
[36]   DELGADO A, CARVALHO A, MARTÍN A C, MARTÍN A, LIMA-BRITO J. Use of the synthetic Oligo-pTa535 and Oligo-pAs1 probes for identification of Hordeum chilense-origin chromosomes in hexaploid Tritordeum. Genetic Resources and Crop Evolution, 2016, 63: 945-951.
[37]   CUADRADO A, JOUVE N. Evolutionary trends of different repetitive DNA sequences during speciation in the genus secale. The Journal of Heredity, 2002, 93(5): 339-345.
[38]   KATO A, JONATHAN C L, BIRCHLER J A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proceedings of the National Academy of Sciences of the USA, 2004, 101(37): 13554-13559.
[39]   MOLNÁR I, KUBALÁKOVÁ M, ŠIMKOVÁ H, FARKAS A, CSEH A, MEGYERI M, VRÁNA J, MOLNÁR-LÁNG M, DOLE?EL J. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. Tauschii. Theoretical and Applied Genetics, 2014, 127: 1091-1104.
[40]   BADAEVA E D, AMOSOVA A V, MURAVENKO O V, SAMATADZE T E, CHIKIDA N N, ZELENIN A V, FRIEBE B, GILL B S. Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Systematics and Evolution, 2002, 231: 163-190.
[41]   BADAEVA E D, AMOSOVA A V, SAMATADZE T E, ZOSHCHUK S A, SOSHTAK N G, CHIKIDA N N, ZELENIN A V, RAUPP W J, FRIEBE B, GILL B S. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Systematics Evolution, 2004, 246: 45-76.
[42]   LINC G, SEPSI A, MOLNÁR-LÁNG M. A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome. Cytogenetic and Genome Research, 2012, 136: 138-144.
[43]   颜济, 杨俊良. 小麦族生物系统学(第一卷第二版), 小麦-山羊草复合群. 北京: 中国农业出版社, 2013: 43-53.
YAN J, YANG J L. Triticeae Systematics (volume 1 2nd edition), Triticum- Aegilops complx. Beijing: China Agriculture press, 2013: 43-53. (in Chinese)
[44]   董玉琛, 郑殿升. 中国小麦遗传资源. 北京: 中国农业出版社,2000: 152.
DONG Y C, ZHENG D S. The wheat genetic resource in China. Beijing: China Agriculture Press, 2000: 152. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!