Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (21): 4635-4649.doi: 10.3864/j.issn.0578-1752.2021.21.013

• HORTICULTURE • Previous Articles     Next Articles

Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition

YUE YingXiao1,2,HE JinGang2,ZHAO JiangLi2,YAN ZiRu2,CHENG YuDou2,WU XiaoQi2,WANG YongXia1,*(),GUAN JunFeng2,*()   

  1. 1College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, Hebei
    2Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Plant Genetic Engineering Center, Shijiazhuang 050051
  • Received:2021-01-11 Accepted:2021-04-30 Online:2021-11-01 Published:2021-11-09
  • Contact: YongXia WANG,JunFeng GUAN E-mail:wyxhd2004@126.com;guan@263.net

Abstract:

【Objective】The aim of this study was to compare the differences of fruit quality, respiration rate, ethylene production rate, electronic nose characteristics, volatile compounds and related gene expression in Yali pear between cold and cellar storage, and to further analyze the effects of two storage methods on the formation of aroma substances and its mechanism. 【Method】Postharvest Yali pear was stored in cold and cellar condition, and the fruit firmness, soluble solids content (SSC), titratable acid (TA) content, respiration rate and ethylene production rate were measured. The changes of volatile compounds during storage were measured by electronic nose, and the components and contents of volatile substances were determined by GC-MS. The expression of genes related to ethylene biosynthesis (PbACS1 and PbACO2), signal transduction (PbETR1, PbETR2, PbERS1a, PbERS1b, PbEIN3 and PbERF) and volatile compound synthesis (PbAAT1, PbADH2, PbADH3, PbADH5, PbHPL, PbLOX1 and PbLOX8) was analyzed by real-time PCR. 【Result】During cold storage of Yali pear fruit, the firmness had no obvious variation, and the SSC increased, while the TA content decreased. During cellar storage, there was a remarkable decrement in firmness and increment in TA content, but there was no obvious variation in SSC. Compared with cold storage, the respiration rate was higher and the peak of ethylene production rate appeared one month earlier under cellar storage. The results showed that the electronic nose could effectively distinguish the volatile compounds of Yali pear in different storage methods. Four sensors, including W1W, W5S, W2W and W1S, played the critical role in the identification of volatile compounds, and there were more volatile substances in cellar storage. The volatile compounds, such as aldehydes, esters, alcohols, terpenes, alkanes, etc, were found in the peel and flesh of Yali pear, and which contents were higher in peel than that in flesh. 36, 33 and 28, 24 kinds of volatile compounds were detected in peel and flesh of fruit under celler, cold storage, respectively. There were more ester compounds in cellar storage than those in cold one, among which, ethyl caproate, ethyl octanoate, ethyl butyrate, (E, Z) 2,4-decadiene ester were the main aroma substances in the peel, ethyl caproate and ethyl butyrate were the main aroma substances in flesh. The analysis on expression of genes related to ethylene and aroma compound synthesis showed that the expression of ACC oxidase (PbACO2), lipoxygenase (PbLOX1) and alcohol acyltransferase (PbAAT1) genes were significantly increased, and the expression of ethylene insensitive transcriptional regulator gene (PbEIN3) was down regulated in cellar storage in contrast to cold storage. 【Conclusion】Compared with cold storage, cellar storage condition promoted ethylene production and the expression of genes related to ethylene biosynthesis (PbACO2) and aroma compound synthesis (PbLOX1 and PbAAT1), thus, made more kinds and contents of aroma substances, and exhibited more rich aroma in Yali pear.

Key words: Yali pear, quality, volatile compound, electronic nose, ethylene, gene expression

Table 1

PEN3 type electronic nose sensor array"

序列号
Order number
传感器名称
Sensor name
敏感化合物
Sensitive compound
1 W1C 芳香成分 Aromatic components
2 W5S 灵敏度大,氮氧化合物 Broad range, oxynitride
3 W3C 氨类、芳香成分 Ammonia, aromatic components
4 W6S 氢化物 Hydrogen
5 W5C 短链烷烃、芳香成分
Short chain alkanes, aromatic components
6 W1S 甲烷 Methane
7 W1W 硫化物、萜烯类 Sulphur-organic compound, terpenes
8 W2S 醇类、醛酮Alcohol, aldehyde ketone
9 W2W 有机硫化物、芳香成分 Organic sulfur compounds, aromatic components
10 W3S 长链烷烃 Long chain alkanes

Table 2

Real-time PCR primer sequence"

基因 Gene 序列号 Genbank ID 引物序列 Primer sequence
PbACS1 XM_018643584.1 5′-GGGCACCACAATGACCAGA-3′
5′-GTGAACTCGCTGCCAAAC-3′
PbACO2 XM_009357643.1 5′-GGTTCAAGGAAATGGTGGC-3′
5′-AGCCTTCTTTAGATAGCCCTTC-3′
PbETR1a XM_009367968.2 5′-AGTCTAAGCAGCCTTTTGCACC-3′
5′-TGCTGACCCCATTATCATCC-3′
PbETR1b XM_009350325.2 5′-GATCCTGGAGAATCATCAGAGC-3′
5′-GCAGTTACAATGCAACCAAGC-3′
PbERS1 XM_009380469.1 5′-CGTTGCATTCATCGTCAAACTG-3′
5′-TCGATGAACTTGCGCCAAATCG-3′
PbERS2 KF188466.1 5′-CGTTGCATTCATCGTCCAACTA-3′
5′-TTCGACGAAGTTACTCCGAAAC-3′
PbEIN3 XM_009340977.2 5′-CCCGTGACATCTTCTTCCTG-3′
5′-TGACTTTCTTTCGGCTCCC-3′
PbERF XM_009380720.2 5′-TTGAAAGAGTCCGCAAATCG-3′
5′-CCAAGTAATCCGTTCCCAAA-3′
PbAAT1 XM_018649523.1 5′-TGGTGCCAAGGAGATGAGAGTC-3′
5′-TTGTGGTGCTTTCCCCGTG-3′
PbADH2 KU507380.1 5′-CGGAAACTACAAGACTCGAA-3′
5′-CGGATTATGCAACGAAGAC-3′
PbADH3 XM_009362449.1 5′-TGTGACCTCCTCAGGATAAA-3′
5′-GCCAAGGGATTGATCTTAG-3′
PbADH5 XM_009379426.2 5′-CGCCGACATCAACAAAGCAT-3′
5′-TGCAATACCCTCAAAATCCATGT-3′
PbHPL XM_009348862.2 5′-CGGTGTTCCGCACAAATA-3′
5′-AAGCGCAGGTCCTCAAGTC-3′
PbLOX1 XM_009378388.2 5′-TGAGCCATTTGTGATAGCGG-3′
5′-TGTGAGAACTTGTCGTGCGG-3′
PbLOX8 XM_009378384.2 5′-GCCACAAACAGGCAACTAA-3′
5′-CTCGGTGAAATTCCAATCC-3′
PbAcitin2 GU830959 5′-GGACATTCAACCCCTCGTCT-3′
5′-ATCCTTCTGACCCATACCAACC-3′

Table 3

Changes of firmness, SSC and TA content of Yali pear during cellar and cold storage condition"

贮藏时间(月)
Storage time (Month)
硬度 Firmness (kg·cm-2) 可溶性固形物 SSC (%) 可滴定酸 TA (%)
窖藏
Cellar storage
冷藏
Cold storage
窖藏
Cellar storage
冷藏
Cold storage
窖藏
Cellar storage
冷藏
Cold storage
0 6.25±0.28bc 6.25±0.28bc 12.81±0.40d 12.81±0.40d 1.32±0.03c 1.32±0.03c
1 6.81±0.05a 6.21±0.24bc 13.73±0.22abc 13.35±0.09bcd 1.50±0.02a 1.14±0.02d
2 6.49±0.13ab 6.17±0.26bc 13.15±0.31cd 13.86±0.37ab 1.38±0.01b 1.10±0.02de
3 5.75±0.25c 6.53±0.12ab 13.80±0.52abc 14.24±0.31a 1.49±0.03a 1.09±0.03f

Fig. 1

Changes of respiration rate and ethylene production rate of Yali pear during cellar and cold storage Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 2

PCA result of volatile components based on electronic nose in Yali pear during cellar and cold storage Cold storage-1, cold storage-2 and cold storage-3 indicate 1, 2 and 3 months after cold storage, respectively; Cellar storage-1, cellar storage-2 and cellar storage-3 indicate 1, 2 and 3 months after cellar storage, respectively. 0 indicates initial storage. The same as below"

Fig. 3

LDA analysis of volatile components based on electronic nose in Yali pear during cellar and cold storage condition"

Fig. 4

The response radar chart of electronic nose sensor in Yali pear during cellar and cold storage condition"

Table 4

Changes of volatile components in the peel of Yali pear during cellar and cold storage (μg·kg-1)"

种类
Kind
化合物名称
Compound name
贮藏初期
Initial storage
窖藏时间(月)Cellar storage time (Month) 冷藏时间(月)Cold storage time (Month)
1 2 3 1 2 3
醛类
Aldehyde
己醛 Hexanal 610.83±176.46a 571.58±255.42ab - - 473.64±35.71ab 381.78±44.51ab 240.45±19.71b
(E)-2-己烯醛 (E)-2-Hexenal 128.13±29.39d 401.05±60.10a 352.44±64.79ab 435.08±76.48a 397.47±35.38a 265.22±26.89bc 234.52±11.08c
壬醛 Nonanal 20.93±6.37c 54.78±5.43a 32.92±1.63b 23.42±4.00c 32.81±3.86b 20.73±0.66c 17.48±0.96c
1,1-二甲氧基己烷 1,1-dimethoxyhexane 4.82±2.49b 23.69±5.92a 7.94±3.45b - 3.36±1.34b - -
癸醛 Decanal 1.63±0.46c 18.93±5.60b 29.01±3.99a 20.12±3.54b 3.09±0.92c 3.10±0.02c 3.16±1.34c
(E,Z)-2,4-癸二烯醛 (E,Z)- 2,4-Decadienal - 13.05±4.17a 3.98±0.89b 10.09±2.22ab - - -
总量 Total 766.34 1083.08 426.29 488.70 910.38 670.83 495.61
酯类
Esters
丁酸甲酯Butanoic acid methyl ester - - - - 17.09±2.59a 10.97±2.96a 11.49±4.56a
己酸甲酯 Hexanoic acid methyl ester - 14.80±1.46b 35.84±1.56a 29.13±6.36a - - -
辛酸甲酯 Octanoic acid methyl ester 2.77±0.87c 149.02±22.37b 402.74±61.97a 319.80±69.75a - 4.97±2.05c -
水杨酸甲酯 Salicylic acid methyl ester 3.66±0.30 - - - - - -
3-甲硫基-(E)-2-丙烯酸乙酯
3-(methylthio)-(E)-2-propenoate- ethyl ester
- 174.72±13.53a 158.19±20.90a 75.61±12.99b - - -
丁酸乙酯 Butanoic acid ethyl ester - 861.78±127.76b 2234.49±246.21a 1211.75±174.70b - - -
(E)-2-甲基-2-丁烯酸乙酯 (E)-2-Methyl-2-butenoic acid ethyl ester - 27.85±2.98a 26.73±5.05a 11.51±4.56b - - -
戊酸乙酯 Pentanoic acid ethyl ester - 26.85±2.19 51.50±5.19 - - - -
己酸乙酯 Hexanoic acid ethyl ester - 4615.33±100.96c 8448.46±307.96a 6463.16±710.28b - 86.30±29.03d -
2-己烯酸乙酯 2-Hexenoic acid ethyl ester - 91.16±1.61c 271.51±9.38a 171.49±20.07b - - -
庚酸乙酯 Heptanoic acid ethyl ester - 45.29±3.59b 95.29±7.35a 85.59±14.12a - - -
辛酸乙酯 Octanoic acid ethyl ester - 1774.77±279.96b 2746.27±345.26a 2411.39±412.61a 1.18±0.13c 15.35±0.73c -
4-辛烯酸乙酯 4-Octenoic acid ethyl ester - 15.49±2.21c 37.35±5.86b 67.77±12.05a - 2.36±0.48c -
癸酸乙酯 Decanoic acid ethyl ester - 45.03±8.91b 199.58±248.81a 251.87±29.21a - - -
(E)-2-癸烯酸乙酯 (E)-2-Decenoic acid ethyl ester - - 8.03±5.79 - - -
(E)-4-癸烯酸乙酯 (E)-4-Decenoic acid ethyl ester - - 35.05±6.68 41.69±12.71 - - -
(E,Z)-2,4-癸二烯酸乙酯 (E,Z)-2,4-Decadienoic acid ethyl ester - 80.09±11.23c 1123.28±114.87b 1482.82±208.68a - - -
苯甲酸乙酯 Benzoic acid ethyl ester - 6.21±1.18 - - - 3.48±0.15 -
苯乙酸乙酯 Benzene-acetic acid ethyl ester - - - 5.25±1.12 - - -
2,2,4-三甲基-1,3-戊二醇二异丁酸酯
2,2,4-Trimethyl-1,3-pentanediol di-isobutyrate
2.68±1.90b - - - 50.79±4.43a 32.39±20.10a 27.55±16.89ab
种类
Kind
化合物名称
Compound name
贮藏初期
Initial storage
窖藏时间(月)Cellar storage time (Month) 冷藏时间(月)Cold storage time (Month)
1 2 3 1 2 3
己二酸二异丁酯 Hexanedioic acid di-isobutyl ester - - - - - - 4.72±1.66
乙酸己酯 Acetic acid hexyl ester 19.51±3.21f 426.39±5.87a 285.42±9.13b 65.37±8.27e 79.11±6.79e 140.07±18.12c 101.87±8.44d
丁酸己酯 Butanoic acid hexyl ester - - - - - 5.73±1.34 -
乙酸庚酯 Acetic acid heptyl ester - 22.87±3.35 - - - - -
乙酸辛酯 Acetic acid octyl ester - 317.87±44.09a 179.21±22.90b 64.47±8.75c - 5.97±0.72d 1.88±0.40d
乙酸癸酯 Acetic acid decyl ester - - 5.54±0.70 - - - -
总量Total 28.62 8695.51 16336.46 12766.68 148.17 307.59 147.51
烷烃类
Alkanes
癸烷 Decane 1014.95±681.18a - - - 1191.52±414.35a 567.77±39.08a 631.00±134.43a
十一烷 Undecane 3.65±2.56 - - - - - -
十三烷 Tridecane - - - - - - 1.14±0.19
十四烷 Tetradecane 6.24±1.84 - - - 6.13±1.24 - -
十五烷 Pentadecane 6.15±2.34 - - - - - -
十六烷 Hexadecane 4.92±2.59 - - - - - -
二十烷 Eicosane 0.76±0.42b - - - 7.11±0.55b 24.96±6.46a 3.90±0.49b
总量 Total 1036.66 0.00 0.00 0.00 1204.75 592.73 636.04
醇类
Alcohols
正辛醇 1-Octanol 3.91±1.12d 206.41±12.57a 181.77±10.68b 91.63±9.57c - 8.38±1.00d -
正癸醇 1-Decanol - 143.13±18.99c 510.37±44.30a 257.50±22.23b - - -
2,4-癸二烯醇 2,4-Decadienol - 78.90±10.39a 57.93±9.67b 18.61±1.33c 2.47±0.49d 5.87±0.82d 1.85±0.05d
(Z)-4-癸烯-醇 (Z)-4-Decenol - 163.83±28.42c 671.34±52.60a 501.19±63.90b 3.41±0.91d 11.02±1.50d 4.95±0.54d
1,10-癸二醇 1,10-Decanediol - - - 25.25±0.59 - - -
总量 Total 3.91 592.27 1421.41 894.18 5.88 25.28 6.80
萜类
Terpenoids


(Z,E)-金合欢烯 (Z,E)-3,7,11-Trimethyl-1,3,6,10-dodecatetraene - - - - 81.19±4.60c 234.64±10.19a 100.92±8.77b
β-法尼烯 β-Farnesene - 18.08±2.96a 15.06±1.77a 17.205±3.90a - 5.09±0.17b 2.00±0.42b
α-法尼烯α-Farnesene 8.06±1.49e 21147.84±1920.87a 16616.83±1260.42b 16321.98±2382.14b 4685.73±547.41d 10898.67±1476.44c 4775.20±407.78d
总量Total 8.06 21165.91 16631.89 16339.19 4766.92 11138.40 4878.12
其他
Others
丁香酚2-Methoxy-3-(2-propenyl)-phenol - - - 8.01±2.80 - - -
4-烯丙基苯酚4-(2-Propenyl)-phenol - - - - 4.70±0.33c 27.93±1.92a 10.29±1.04b
6-甲基-5-庚烯-2-酮 6-Methyl- 5-hepten-2-one 2.91±1.20e 47.97±1.73c 71.86±4.34b 106.19±11.01a 7.51±0.70e 33.18±2.92d 33.43±2.44d
总量 Total 2.91 47.97 71.86 114.19 12.22 61.11 43.72
挥发性成分总量 Total amount of volatile components 1846.50 31584.73 34887.91 30602.95 7048.31 12795.93 6207.79

Table 5

Changes of volatile components in the flesh of Yali pear during cellar and cold storage (μg·kg-1)"

种类
Kind
化合物名称
Compound name
贮藏初期
Initial storage
窖藏时间(月)Cellar storage time (Month) 冷藏时间(月)Cold storage time (Month)
1 2 3 1 2 3
醛类
Aldehydes
己醛 Hexanal 13.77±4.63a - - - 17.43±0.66a 15.82±7.13a 9.59±0.60a
2-已烯醛 2-Hexenal 0.60±0.29c - - - 6.48±0.18a 2.43±1.00b 3.48±0.93b
(E)-2-辛烯醛 (E)-2-Octenal 0.59±0.02c 3.27±0.75b 5.95±0.63a 6.03±0.12a 2.93±0.24b 2.38±0.56b 3.09±0.38b
壬醛 Nonanal 2.72±0.34c 7.76±1.73bc 12.26±5.68a 9.27±0.47b 8.17±0.79ab 5.50±0.57bc 4.14±0.66bc
(E)-2-壬烯醛 (E)-2-Nonenal 0.47±0.10d 3.59±1.19bc 5.75±1.57a 5.81±0.52a 4.55±0.14ab 3.41±0.79bc 1.97±0.30cd
癸醛 Decanal 0.78±0.05d 2.69±0.53bcd 8.72±2.97a 5.61±0.81b 4.26±0.63bc 3.04±0.58bcd 2.49±0.99cd
(E)-2-癸醛 (E)- 2-Decenal 0.12±0.02c 2.47±0.22a - - 0.52±0.07b 0.48±0.05b 0.48±0.11b
(E, E)-2,4-壬二烯醛(E, E)-2,4-Nonadienal - - - - 0.12±0.01 - -
庚醛 Heptanal - - - - 0.54±0.06 - -
2-庚烯醛 2-Heptenal - - - - 1.85±0.11 - -
总量 Total 19.04 19.78 32.69 26.72 46.84 33.05 25.23
酯类
Esters


丁酸乙酯
Butanoic acid ethyl ester
- 345.70±150.45b 1164.28±476.33a 339.46±81.35b - - -
乙酸丁酯
Acetic acid butyl ester
- - - - - 6.95±2.99 1.95±0.48
2-甲基丁酸乙酯 2-Methyl-butanoic acid ethyl ester - 58.71±21.63b 179.79±58.74a 70.37±13.25b - - -
(E)-2-甲基-2-丁烯酸乙酯(E)-2-Methyl-2-butenoic acid ethyl ester - 9.67±1.11ab 15.98±5.21a 6.50±0.23c - - -
戊酸乙酯
Pentanoic acid ethyl ester
- 7.64±2.13b 29.56±7.90a 14.31±2.36b - - -
己酸乙酯
Hexanoic acid ethyl ester
- 561.10±113.48c 3681.45±480.26a 2763.89±96.90b - - -
2-己烯酸乙酯
2-Hexenoic acid ethyl ester
- 18.85±3.80c 223.67±10.45a 143.88±5.27b - - -
庚酸乙酯
Heptanoic acid ethyl ester
- 8.75±0.36b 62.29±6.15a 59.06±1.56a - - -
辛酸乙酯
Octanoic acid ethyl ester
0.17±0.04 b 7.50±1.55b 135.59±34.42a 159.95±8.23a 0.24±0.04b - -
(E)-2-辛烯酸乙酯
(E)-2-Octenoate-ethyl ester
- 3.53±0.93b 120.23±31.97a 134.06±5.49a - - -
4-辛烯酸乙酯
4-Octenoic acid ethyl ester
- - 3.33±1.00 6.39±0.43 - - -
(E,Z)-2,4-癸二烯酸乙酯(E,Z)-2,4-Decadienoic acid ethyl ester - 2.42±0.32c 142.47±7.18b 186.42±13.75a - - -
3-羟基己酸乙酯3-Hydroxy-hexanoic acid ethyl ester - - 17.84±5.09 17.98±0.83 - - -
3-甲硫基-2-丙烯酸乙酯3-(Methylthio)-(E)-2-propenoate ethyl ester - 25.46±0.69c 80.42±6.86a 32.55±3.56b - - -
苯乙酸乙酯
Benzeneacetic acid ethyl ester
- 0.61±0.03c 1.94±0.13b 2.59±0.24a - - -
种类
Kind
化合物名称
Compound name
贮藏初期
Initial storage
窖藏时间(月)Cellar storage time (Month) 冷藏时间(月)Cold storage time (Month)
1 2 3 1 2 3
己酸丙酯
Hexanoic acid propyl ester
- - 1.87±0.57 1.47±0.06 - - -
乙酸己酯
Acetic acid hexyl ester
3.02±0.18 f 104.95±7.55b 202.30±4.81a 38.98±2.12c 8.15±0.26ef 24.26±1.49d 12.82±0.67e
乙酸庚酯
Acetic acid heptyl ester
- 4.33±1.02a 6.01±1.35a 1.21±0.20b - 0.41±0.09b -
乙酸辛酯
Acetic acid octyl ester
- 19.35±4.09b 48.95±12.59a 11.92±0.93b - - -
2,2,4-三甲基-1,3-戊二醇二异丁酸酯 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate 0.11±0.04c 9.48±1.17bc 27.55±8.56a 19.65±13.23 ab 6.66±1.89 bc 7.16±4.12 bc 4.23±0.87c
己二酸二异丁酯 Hexanedioic acid di-isobutyl ester - - 3.51±1.56a 3.75±2.61a 0.40±0.19b - -
总量 Total 3.31 1188.05 6149.01 4014.39 15.44 38.77 19.00
烷烃类
Alkanes

癸烷 Decane 91.53±75.84a - - - 118.79±7.39a 164.08±67.55a 86.19±24.54a
十四烷 Tetradecane 0.32±0.04 - - - - - -
十六烷 Hexadecane 0.13±0.03 - - - - - -
总量 Total 91.97 0.00 0.00 118.79 164.08 86.19
醇类
Alcohols

2-乙基己醇 2-Ethyl hexanol 0.09±0.08b 0.98±0.37a - - 1.03±0.23a 1.01±0.59a 0.56±0.18ab
正辛醇 Octanol 0.19±0.06d 9.56±1.73b 26.29±1.45a 6.63±0.75c 0.28±0.04d 0.95±0.06d 0.25±0.08d
正癸醇 Decanol - 2.62±0.10c 79.54±5.92a 19.52±2.12b - - -
(Z)-4-癸烯醇 (Z)-4-Decenol - 3.75±0.15c 45.83±1.36a 27.86±1.26b - - -
2,4-癸二烯醇 2,4-Decadienol - 1.85±0.29 2.07±0.23 - - - -
总量 Total 0.28 18.76 153.73 54.01 1.31 1.96 0.81
萜类
Terpenoids
(Z,E)-金合欢烯
(Z,E)-3,7,11-Trimethyl-1,3,6,10-Dodecatetraene
- 5.68±0.60c 34.83±7.47a 18.50±4.74b 0.15±0.05c 1.36±0.48c 0.49±0.14c
α-法尼烯α-Farnesene - 192.30±9.99b 513.13±117.75a 470.72±94.19a 3.90±0.76c 32.67±14.62c 14.34±4.48c
总量 Total 0.00 197.99 547.96 489.22 4.05 34.03 14.83
其他
Others


乙酸-2-甲氧基-4-(2-丙烯基)苯酚Acetate-2-methoxy-4-(2-propenyl)-phenol - - - - - - 0.19±0.01
2-烯丙基苯酚 2-Allylphenol - - - - - 1.12±0.12 0.41±0.04
(Z)-6,10-二甲基-5,9-十一碳二烯-2-酮(Z)-6,10-Dimethyl-5,9-Undecadien-2-one 0.17±0.03a - - - 0.23±0.01a 0.46±0.22a 0.46±0.19a
6-甲基-5-庚烯-2-酮6-Methyl-5-Hepten-2-one - 1.14±0.24b 3.59±1.28a 4.45±0.27a - - -
总量 Total 0.17 1.14 3.59 4.45 0.23 1.57 1.06
挥发性成分总量
Total amount of volatile components
114.77 1425.71 6886.97 4588.78 186.65 273.46 147.12

Fig. 5

Heatmap of expression of genes associated with ethylene biosynthesis and signal transduction, aroma compound synthesis in Yali pear during cellar and cold storage"

Table 6

Correlation analysis of expression quantity of genes related to ethylene biosynthesis and signal transduction, aroma compound synthesis in Yali pear during cellar and cold storage condition"

PbACS1 PbACO2 PbETR1 PbETR2 PbERS1 PbERS2 PbEIN3 PbERF PbAAT1 PbADH2 PbADH3 PbADH5 PbHPL PbLOX1 PbLOX6 PbLOX8
PbACS1 1.000
PbACO2 0.879** 1.000
PbETR1 0.091 0.106 1.000
PbETR2 0.867** 0.914** 0.100 1.000
PbERS1 0.466 0.372 0.419 0.410 1.000
PbERS2 0.779** 0.619* 0.307 0.652** 0.764** 1.000
PbEIN3 -0.077 -0.428 0.369 -0.307 0.230 0.118 1.000
PbERF 0.189 -0.027 0.212 0.056 0.796** 0.442 0.463 1.000
PbAAT1 0.097 0.442 0.251 0.301 0.389 0.118 -0.575* 0.130 1.000
PbADH2 -0.319 -0.555* 0.133 -0.513* -0.242 -0.035 0.463 -0.186 -0.693** 1.000
PbADH3 -0.192 -0.487 -0.059 -0.389 -0.230 0.027 0.472 -0.115 -0.847** 0.923** 1.000
PbADH5 0.622* 0.319 -0.024 0.469 0.304 0.549* 0.392 0.254 -0.540* 0.233 0.395 1.000
PbHPL 0.667** 0.549* 0.431 0.558* 0.805** 0.838** 0.118 0.652** 0.245 -0.180 -0.136 0.469 1.000
PbLOX1 0.448 0.699** -0.056 0.720** 0.398 0.319 -0.537* 0.127 0.690** -0.870** -0.802** -0.053 0.369 1.000
PbLOX6 -0.419 -0.118 0.227 -0.257 0.000 -0.416 -0.330 0.012 0.720** -0.501* -0.681** -0.823** -0.165 0.336 1.000
PbLOX8 0.413 0.540* 0.215 0.457 0.743** 0.652** -0.174 0.460 0.602* -0.513* -0.525* 0.044 0.684** 0.708** 0.227 1.000
r0.05=0.514, r0.01= 0.641
[26] GÜNTHER C S, MARSH K B, WINZ R A, HARKER R F, WOHLERS M W, WHITE A, GODDARD M R. The impact of cold storage and ethylene on volatile ester production and aroma perception in ‘Hort16A’ kiwifruit. Food Chemistry, 2015, 169:5-12.
doi: 10.1016/j.foodchem.2014.07.070
[27] AUBERT C, BONY P, CHALOT G, LANDRY P, LUROL S. Effects of storage temperature, storage duration, and subsequent ripening on the physicochemical characteristics, volatile compounds, and phytochemicals of Western Red nectarine (Prunus persica L. Batsch). Journal of Agricultural and Food Chemistry, 2014, 62:4707-4724.
doi: 10.1021/jf4057555
[28] HUI W, NIU J P, XU X Y, GUAN J F. Evidence supporting the involvement of MHO in the formation of superficial scald in ‘Dangshansuli’ pears. Postharvest Biology and Technology, 2016, 121:43-50.
doi: 10.1016/j.postharvbio.2016.07.005
[29] 惠伟, 牛瑞雪, 宋要强, 李德英. 1-MCP和DPA对砀山酥梨黑皮病的抑制效果. 中国农业科学, 2010, 43(6):1212-1219.
HUI W, NIU R X, SONG Y Q, LI D Y. Inhibitory effects of 1-MCP and DPA on superficial scald of ‘Dangshansuli’ pear. Scientia Agricultura Sinica, 2010, 43(6):1212-1219. (in Chinese)
[30] FARNETI B, BUSATTO N, KHOMENKO I, CAPPELLIN L, GUTIERREZ S, SPINELLI F, VELASCO R, BIASIOLI F, COSTA G, COSTA F. Untargeted metabolomics investigation of volatile compounds involved in the development of apple superficial scald by PTR-ToF-MS. Metabolomics, 2015, 11(2):341-349.
doi: 10.1007/s11306-014-0696-0
[1] EL HADI M A M, ZHANG F J, WU F F, ZHOU C H, TAO J. Advances in fruit aroma volatile research. Molecules, 2013, 18(7):8200-8229.
doi: 10.3390/molecules18078200
[2] HEINZ D E, JENNINGS W G. Volatile components of Bartlett pear. Journal of Food Science, 2010, 31(1):69-80.
doi: 10.1111/jfds.1966.31.issue-1
[3] LI G P, JIA H J, LI J H, WANG Q, ZHANG M J, TENG Y W. Emission of volatile esters and transcription of ethylene- and aroma-related genes during ripening of ‘Pingxiangli’ pear fruit (Pyrus ussuriensis Maxim). Scientia Horticulturae, 2014, 170:17-23.
doi: 10.1016/j.scienta.2014.03.004
[4] ZHOU X, DONG L, LI R, ZHOU Q, WANG J W, JI S J. Low temperature conditioning prevents loss of aroma-related esters from ‘Nanguo’ pears during ripening at room temperature. Postharvest Biology and Technology, 2015, 100:23-32.
doi: 10.1016/j.postharvbio.2014.09.012
[5] ZHOU X, DONG L, ZHOU Q, WANG J W, CHANG N, LIU Z Y, JI S J. Effects of intermittent warming on aroma-related esters of 1-methylcyclopropene-treated ‘Nanguo’ pears during ripening at room temperature. Scientia Horticulturae, 2015, 185:82-89.
doi: 10.1016/j.scienta.2015.01.021
[6] LI G P, JIA H J, LI J H, LI H X, TENG Y W. Effects of 1-MCP on volatile production and transcription of ester biosynthesis related genes under cold storage in ‘Ruanerli’ pear fruit (Pyrus ussuriensis Maxim.). Postharvest Biology and Technology, 2016, 111:168-174.
doi: 10.1016/j.postharvbio.2015.08.011
[7] WEI S W, TAO S T, QIN G H, WANG S M, TAO J H, WU J, ZHANG S L. Transcriptome profiling reveals the candidate genes associated with aroma metabolites and emission of pear (Pyrus ussuriensis cv. ‘Nanguoli’). Scientia Horticulturae, 2016, 206:33-42.
doi: 10.1016/j.scienta.2016.04.019
[8] SHI F, ZHOU X, ZHOU Q, TAN Z, YAO M M, WEI B D, JI S J. Membrane lipid metabolism changes and aroma ester loss in low-temperature stored Nanguo pears. Food Chemistry, 2018, 245:446-453.
doi: 10.1016/j.foodchem.2017.10.091
[9] SHI F, ZHOU X, ZHOU Q, TAN Z, YAO M M, WEI B D, JI S J. Transcriptome analyses provide new possible mechanisms of aroma ester weakening of ‘Nanguo’ pear after cold storage. Scientia Horticulturae, 2018, 237:247-256.
doi: 10.1016/j.scienta.2018.04.013
[10] SHI F, ZHOU X, YAO M M, ZHOU Q, JI S J, WANG Y. Low-temperature stress-induced aroma loss by regulating fatty acid metabolism pathway in ‘Nanguo’ pear. Food Chemistry, 2019, 297:124927.
doi: 10.1016/j.foodchem.2019.05.201
[11] CHERVIN C, SPEIRS J, LOVEYS B, PATTERSON B D. Influence of low oxygen storage on aroma compounds of whole pears and crushed pear flesh. Postharvest Biology and Technology, 2000, 19(3):279-285.
doi: 10.1016/S0925-5214(00)00096-X
[12] LARA I, MIRÓ R M, FUENTES T, SAYEZ G, LÓPEZ M L. Biosynthesis of volatile aroma compounds in pear fruit stored under long-term controlled-atmosphere conditions. Postharvest Biology and Technology, 2003, 29(1):29-39.
doi: 10.1016/S0925-5214(02)00230-2
[13] YAO M M, ZHOU X, ZHOU Q, SHI F, WEI B D, CHENG S C, TAN Z, JI S J. Low temperature conditioning alleviates loss of aroma- related esters of ‘Nanguo’ pears by regulation of ethylene signal transduction. Food Chemistry, 2018, 264:263-269.
doi: 10.1016/j.foodchem.2018.05.024
[14] ZLATI E, ZADNIK V, FELLMAN J, DEMŠAR L, HRIBAR J, CEJI Ž, VIDRIH R. Comparative analysis of aroma compounds in ‘Bartlett’ pear in relation to harvest date, storage conditions, and shelf-life. Postharvest Biology and Technology, 2016, 117:71-80.
doi: 10.1016/j.postharvbio.2016.02.004
[15] SUN H J, LUO M L, ZHOU X, ZHOU Q, SUN Y Y, GE W Y, WEI B D, CHENG S C, JI S J. Exogenous glycine betaine treatment alleviates low temperature-induced pericarp browning of ‘Nanguo’ pears by regulating antioxidant enzymes and proline metabolism. Food Chemistry, 2020, 306:125626.
doi: 10.1016/j.foodchem.2019.125626
[16] ZHANG B, YIN X R, LI X, YANG S L, FERGUSON I B, CHEN K S. Lipoxygenase gene expression in ripening kiwifruit in relation to ethylene and aroma production. Journal of Agricultural and Food Chemistry, 2009, 57(7):2875-2881.
doi: 10.1021/jf9000378
[17] ZHANG B, XI W P, WEI W W, SHEN J Y, FERGUSON I, CHEN, K S. Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf life of peach fruit. Postharvest Biology and Technology, 2011, 60(1):7-16.
doi: 10.1016/j.postharvbio.2010.09.012
[18] CHEN J L, YAN S, FENG Z, XIAO L, HU X S. Changes in the volatile compounds and chemical and physical properties of ‘Yali’ pear (Pyrus bertschneideri Reld) during storage. Food Chemistry, 2006, 97:248-255.
doi: 10.1016/j.foodchem.2005.03.044
[19] INFANTE R, FARCUH M, MENESES C. Monitoring the sensorial quality and aroma through an electronic nose in peaches during cold storage. Journal of the Science of Food and Agriculture, 2010, 88(12):2073-2078.
doi: 10.1002/jsfa.v88:12
[20] CHEN Y Y, YIN H, WU X, SHI X J, QI K J, ZHANG S L. Comparative analysis of the volatile organic compounds in mature fruits of 12 Occidental pear (Pyrus communis L.) cultivars. Scientia Horticulturae, 2018, 240:239-248.
doi: 10.1016/j.scienta.2018.06.014
[21] GASIC K, HERNANDEZ A, KORBAN S S. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Molecular Biology Reporter, 2004, 22(4):437-438.
doi: 10.1007/BF02772687
[22] CHENG Y D, LIU L Q, ZHAO G Q, SHEN C G, YAN H B, GUAN J F, YANG K. The effects of modified atmosphere packaging on core browning and the expression patterns of PPO and PAL genes in ‘Yali’ pears during cold storage. LWT-Food Science and Technology, 2015, 60(2):1243-1248.
doi: 10.1016/j.lwt.2014.09.005
[23] DEFILIPPI B G, KADER A A, DANDEKAR A M. Apple aroma: Alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Science, 2005, 168:1199-1210.
doi: 10.1016/j.plantsci.2004.12.018
[24] YANG X T, SONG J, DU L N, FORNEY C, CAMPBELL-PALMER L, FILLMORE S, WISMER P, ZHANG Z Q. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit. Food Chemistry, 2016, 194:325-336.
doi: 10.1016/j.foodchem.2015.08.018
[25] DEFILIPPI B G, DANDEKAR A M, KADER A A. Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. Journal of Agricultural and Food Chemistry, 2005, 53(8):3133-3141.
doi: 10.1021/jf047892x
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[4] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[5] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[6] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[7] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[8] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[9] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[10] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[11] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[12] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[13] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[14] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[15] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!