Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3623-3631.doi: 10.3864/j.issn.0578-1752.2021.17.006

• CLIMATE CHANGE AND MAIZE PRODUCTION IN CHINA • Previous Articles     Next Articles

Combined Effects of High Temperature and Drought on Yield and Stem Microstructure of Summer Maize

SHAO JingYi(),LI XiaoFan(),YU WeiZhen,LIU Peng,ZHAO Bin,ZHANG JiWang(),REN BaiZhao()   

  1. College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, Shandong
  • Received:2020-12-14 Accepted:2021-04-08 Online:2021-09-01 Published:2021-09-09
  • Contact: JiWang ZHANG,BaiZhao REN E-mail:328479886@qq.com;1014154724@qq.com;jwzhang@sdau.edu.cn;renbaizhao@sina.com

Abstract:

【Objective】 With the continuous change of climate, the extreme weather events occurred frequently, such as high temperature, drought and their combined stress, which posed a severe challenge to maize production. This study was conducted to explore the effects of high temperature, drought and their combined stress on microstructure of stem, dry matter accumulation and distribution and grain yield of summer maize. 【Method】 Denghai 605 (DH605) was used as the experimental material. Three treatments were conducted as high temperature (T), drought (D), and the compound stress (T+D) during the flowering period for 6 days, and the natural temperature and normal moisture management as control treatment (CK). The effects of high temperature, drought and the compound stress on stem microstructure, dry matter accumulation and distribution, photosynthetic characteristics, pollen activity and yield of summer maize were investigated. 【Result】 The thickness of the cortex, the thickness of the hard skin, the total number of vascular bundles and the number of small vascular bundles in summer maize were significantly reduced after the combined stress of high temperature and drought, which decreased by 8.8%, 14.1%, 9.4%, and 13.7%, respectively, compared with CK. In addition, after high temperature and drought stress, the pollen viability, the net photosynthetic rate and total dry weight of summer maize decreased significantly, the pollen viability and net photosynthetic rate of T, D and T+D treatments decreased by 23.1%, 8.3%, 30.7% and 23.7%, 16.6%, 37.5%, respectively, compared with CK; The total dry matter accumulation of T, D and T+D at the maturity stage was decreased by 19.7%, 5.1%, and 26.6%, respectively, compared with CK, which led to a significant yield decrease of 63.2%, 13.2%, and 71.7%, respectively, compared with CK. 【Conclusion】 High temperature, drought, and the compound stress significantly caused abnormal stem development of summer maize, the decrease of dry matter accumulation, and a significant decrease of maize yield. The combined effect of high temperature and drought on the yield and resistance of summer maize was greater than the single stress of high temperature or drought.

Key words: summer maize, high temperature and drought, stalk microstructure, yield

Fig. 1

Temperature and soil water content of each treatment"

Table 1

Effects of high temperature and drought on summer maize yield and its components"

年份
Year
处理
Treatment
穗粒数
Grains
per ear
千粒重
1000-grain
weight (g)
产量
Yield
(kg·hm-2)
2019 CK 671.3a 362.0a 18808.2a
T 261.0c 351.2c 7425.0c
D 507.3b 366.0a 15499.4b
T+D 268.0c 334.0d 6095.3d
2020 CK 687.0a 338.9a 18272.3a
T 252.7c 314.2c 6237.2c
D 640.7b 331.7b 16678.6b
T+D 220.0c 295.3d 4419.4d

Table 2

Effects of high temperature and drought on pollen fertility of summer maize (2019)"

处理
Treatment
高活力
High activity (%)
低活力
Low activity (%)
失活力
Debility (%)
CK 90.3a 6.1d 3.6c
T 69.4c 24.1b 6.5b
D 82.8b 12.7c 3.8c
T+D 62.6d 30.2a 7.2a

Table 3

Effects of high temperature and drought on photosynthesis of summer maize (2019)"

时期
Stage
处理
Treatment
气孔导度
Stomatal
Conductance (Gs)
(mmol·m-2·s-1)
净光合速率
Net photosynthetic
rate (Pn)
(µmol CO2·m-2·s-1)
蒸腾作用
Transpiration rate (Tr)
(mmol H2O·m-2·s-1)
VT+7 d CK 312.3a 32.5a 5.7a
T 200.3c 24.8c 4.1c
D 293.7b 27.1b 4.8b
T+D 138.3d 20.3d 3.0d
R3 CK 164.0a 26.5a 6.7a
T 112.5c 25.1b 6.0b
D 143.0b 25.9b 5.4c
T+D 91.0d 22.4c 5.0d

Table 4

The effect of high temperature and drought on dry matter accumulation and distribution of summer maize at the maturity stage"

年份
Year
处理
Treatment
茎Stem 叶Leaf 轴Cob 籽粒Grain 总干重
Total dry matter
(g/plant)
(g/plant) (%) (g/plant) (%) (g/plant) (%) (g/plant) (%)
2019 CK 139.4c 31.7c 47.5a 10.8b 32.2c 7.3d 221.1a 50.2a 440.2a
T 159.5a 39.4a 39.0b 9.6c 38.4a 9.5b 168.1c 41.5c 405.1c
D 152.0b 36.1b 39.9b 9.5c 35.2b 8.4c 193.6b 46.0b 420.7b
T+D 132.6d 36.3b 46.6a 12.8a 40.6a 11.1a 145.1d 39.8d 364.9d
2020 CK 178.8b 38.8c 61.0a 13.1c 44.4a 8.9b 186.2a 39.8a 467.4a
T 183.1a 57.2b 59.5c 18.6b 39.7b 12.4a 37.8c 11.8c 320.1c
D 171.4d 38.9c 60.1b 13.6c 39.5b 9.0b 169.4b 38.5b 440.4b
T+D 176.9c 59.2a 59.4c 19.9a 36.1c 12.1a 26.4d 8.8d 298.8d

Table 5

Effects of high temperature and drought on stalk microstructure of summer maize (2019)"

处理
Treatment
皮层厚度
Cortex thickness
(μm)
硬皮组织厚度
Rind thickness
(mm)
维管束总数
Total No. of vascular bundle
大维管束数目
Total No. of big vascular bundle
小维管束数目
Total No. of small vascular bundle
CK 94.3a 1.84a 280.5a 90.5a 190.0a
T 93.5a 1.70b 271.0b 92.0a 179.0b
D 89.1b 1.62c 257.0c 91.5a 166.0c
T+D 86.0c 1.58d 254.0c 90.0a 164.0c

Fig. 2

The structure of center vascular bundle of the 3rd basal internodes of stem in high temperature and drought a, b, c and d represent CK, T, D and T+D, respectively (×40); e, f, g and h represent CK, T, D and T+D, respectively (×100) "

Table 6

Effects of high temperature and drought on vascular bundle structure of summer maize (2019)"

处理
Treatment
小维管束面积
Area of small vascular
bundle (mm2)
大维管束面积
Area of big vascular bundle (mm2)
CK 0.23a 0.31a
T 0.22a 0.30a
D 0.17b 0.29b
T+D 0.16c 0.28c
[1] 刘战东, 肖俊夫, 南纪琴, 冯跃华. 倒伏对夏玉米叶面积、产量及其构成因素的影响. 中国农学通报, 2010, 26(18): 107-110.
LIU Z D, XIAO J F, NAN J Q, FENG Y H. Effects of different levels lodging on leaf area index, yield and its components of summer maize. Chinese Agricultural Science Bulletin, 2010, 26(18): 107-110. (in Chinese)
[2] 刘培. 土壤水分胁迫对作物的生长发育、生理特征及其产量影响的研究[D]. 杨凌: 西北农林科技大学, 2010.
LIU P. Studies on growth development, physiological characteristics and production of crop under soil water stress[D]. Yangling: Northwest A&F University, 2010. (in Chinese)
[3] NIELSEN D C, VIGIL M F, BENJAMIN J G. The variable response of dryland corn yield to soil water content at planting. Agricultural Water Management, 2008, 96(2): 330-336.
doi: 10.1016/j.agwat.2008.08.011
[4] GE T D, SUI F G, BAI L P, LU Y Y, ZHOU G S. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agricultural Sciences in China, 2006, 5(4): 291-298.
doi: 10.1016/S1671-2927(06)60052-7
[5] 齐伟, 王空军, 张吉旺. 干旱对不同耐旱性玉米品种干物质及氮素积累分配的影响. 山东农业科学, 2009(7): 35-38.
QI W, WANG K J, ZHANG J W. Effects of drought on dry matter and nitrogen accumulation and distribution of different drought-tolerant maize varieties. Shandong Agricultural Sciences, 2009(7): 35-38. (in Chinese)
[6] 梁晓玲, 刘文欣, 阿布来提·阿布拉, 王业建, 杨杰, 韩登旭, 李铭东, 郗浩江, 雷志刚, 李冬冬, 陈绍江. 干旱胁迫对玉米杂交种产量及穗部性状的影响. 玉米科学, 2021, 29(2): 75-80.
LIANG X L, LIU W X, A B L T, WANG Y J, YANG J, HAN D X, LI M D, XI H J, LEI Z G, LI D D, CHEN S J. Influence of drought stress on yield and ear traits characters of maize hybrids. Journal of Maize Sciences, 2021, 29(2): 75-80. (in Chinese)
[7] DAS S, KRISHNAN P, NAYAK M, RAMAKRISHMAN B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environmental and Experimental Botany, 2014, 101: 36-46.
doi: 10.1016/j.envexpbot.2014.01.004
[8] RANG Z W, JAGADISH S V K, ZHOU Q M, CRAUFURD P Q, HEUER S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany, 2010, 70(1): 58-65.
doi: 10.1016/j.envexpbot.2010.08.009
[9] GIORNO F, WOLTERS-ARTS M, MARIANI C, RIEU IVO. Ensuring reproduction at high temperatures: The heat stress response during anther and pollen development. Plants, 2013, 2(3): 489-506.
doi: 10.3390/plants2030489
[10] SONG G C, WANG M M, ZENG B, ZHANG J, JIANG C L, HU Q R, GENG G T, TANG C M. Anther response to high-temperature stress during development and pollen thermos tolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta, 2015, 241(5): 1271-1285.
doi: 10.1007/s00425-015-2259-7
[11] 陈朝辉, 王安乐, 王娇娟, 薛建兵, 董喜才, 魏国英. 高温对玉米生产的危害及防御措施. 作物杂志, 2008(4): 90-92.
CHEN Z H, WANG A L, WANG J J, XUE J B, DONG X C, WEI G Y. Influence of high temperature on growth and development of maize. Crops, 2008(4): 90-92. (in Chinese)
[12] 赵丽晓, 雷鸣, 王璞, 陶洪斌. 花期高温对玉米子粒发育和产量的影响. 作物杂志, 2014(4): 6-9.
ZHAO L X, LEI M, WANG P, TAO H B. Effect of high temperature stress during flowering on maize kernel development and grain yield. Crops, 2014(4): 6-9. (in Chinese)
[13] 郭建平, 高素华. 高温、高CO2对农作物影响的试验研究. 中国生态农业学报, 2002, 10(1): 17-20.
GUO J P, GAO S H. The experimental study on impact of high temperature and high CO2 concentration on crops. Chinese Journal of Eco-Agriculture, 2002, 10(1): 17-20. (in Chinese)
[14] 张彬, 芮雯奕, 郑建初, 周博, 杨飞, 张卫建. 水稻开花期花粉活力和结实率对高温的响应特征. 作物学报, 2007(7): 1177-1181.
ZHANG B, RUI W Y, ZHENG J C, ZHOU B, YANG F, ZHANG W J. Responses of pollen activity and seed setting of rice to high temperature of heading period. Acta Agronomica Sinica, 2007(7): 1177-1181. (in Chinese)
[15] 张保仁. 高温对玉米产量和品质的影响及调控研究[D]. 泰安: 山东农业大学, 2003.
ZHANG B R. Studies on effect of high temperature on yield and quality and regulation in maize (Zea mays L.)[D]. Taian: Shandong Agricultural University, 2003. (in Chinese)
[16] 赵霞, 穆心愿, 马智艳, 刘天学, 齐红志, 丁勇, 张凤启, 张君, 赵发欣, 邢健伟, 吴东洪, 唐保军. 不同玉米杂交种对花期高温、干旱复合胁迫的响应. 河南农业科学, 2017, 46(8): 32-37.
ZHAO X, MU X Y, MA Z Y, LIU T X, QI H Z, DING Y, ZHANG F Q, ZHANG J, ZHAO F X, XING J W, WU D H, TANG B J. Response of different maize hybrids to high temperature and drought stresses at flowering stage. Journal of Henan Agricultural Science, 2017, 46(8): 32-37. (in Chinese)
[17] REN B Z, ZHANG J W, DONG S T, LIU P, ZHAO B. Root and shoot responses of summer maize to waterlogging at different stages. Agronomy Journal, 2016, 108(3): 1060-1069.
doi: 10.2134/agronj2015.0547
[18] 何启平, 董树亭, 高荣岐. 不同类型玉米品种果穗维管束的比较研究. 作物学报, 2007, 33(7): 1187-1196.
HE Q P, DONG S T, GAO R Q. Comparison of ear vascular bundles in different maize cultivars. Acta Agronomica Sinica, 2007, 33(7): 1187-1196. (in Chinese)
[19] 侯昕芳, 王媛媛, 黄收兵, 董昕, 陶洪斌, 王璞. 花期前后高温对玉米花粉发育及结实率的影响. 中国农业大学学报, 2020, 25(3): 10-16.
HOU X F, WANG Y Y, HUANG S B, DONG X, TAO H B, WANG P. Effects of high temperature during flowering on pollen development and seed setting rate of maize (Zea mays L.). Journal of China Agricultural University, 2020, 25(3): 10-16. (in Chinese)
[20] SINGH R P, PRASAD P V V, SUNITA K, GIRI S N, REDDY K R. Influence of high temperature and breeding for heat tolerance in cotton: A review. Advances in Agronomy, 2007, 93: 313-385.
[21] ZANDALINAS S I, MITTLER R, BALFAGON D, ARBONA V, GOMEZ-CADENAS A. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 2018, 162(1): 2-12.
doi: 10.1111/ppl.2018.162.issue-1
[22] 刘源. 玉米花期耐高温品种的筛选与综合评价[D]. 郑州: 河南农业大学, 2015.
LIU Y. Screening and comprehensive evaluation of high temperature resistant varieties of corn in blossom period[D]. Zhengzhou: Henan Agricultural University, 2015. (in Chinese)
[23] 于康珂, 孙宁宁, 詹静, 顾海靖, 刘刚, 潘利文, 刘天学. 高温胁迫对不同热敏型玉米品种雌雄穗生理特性的影响. 玉米科学, 2017, 25(4): 84-91.
YU K K, SUN N N, ZHAN J, GU H J, LIU G, PAN L W, LIU T X. Effect of high temperature stress on physiological characteristics of tassel and ear in different maize varieties. Journal of Maize Sciences, 2017, 25(4): 84-91. (in Chinese)
[24] BAI L P, SUI F G, SUN Z H, BOTANY I O. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere, 2006, 16(3): 326-332.
doi: 10.1016/S1002-0160(06)60059-3
[25] YANG J, ZHANG J, WANG Z Q, LIU L. Water deficit induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agronomy Journal, 2001, 93(1): 196-206.
doi: 10.2134/agronj2001.931196x
[26] 张仁和, 郭东伟, 张兴华, 路海东, 刘建超, 李凤艳, 郝引川, 薛吉全. 吐丝期干旱胁迫对玉米生理特性和物质生产的影响. 作物学报, 2012, 38(10): 1884-1890.
doi: 10.3724/SP.J.1006.2012.01884
ZHANG R H, GUO D W, ZHANG X H, LU H D, LIU J C, LI F Y, HAO Y C, XUE J Q. Effects of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agronomica Sinica, 2012, 38(10): 1884-1890. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01884
[27] ZUBER M S, GROGAN C O. A new technique for measuring stalk strength in maize. Crop Science, 1961, 1(5): 378-380.
[28] MARTIN M J, RUSSELL W A. Correlated responses of yield and other agronomic traits to recurrent selection for stalk quality in a maize synthetic. Crop Science, 1984, 24(4): 746-750.
doi: 10.2135/cropsci1984.0011183X002400040028x
[29] 刘唐兴, 官春云, 雷冬阳. 作物抗倒伏的评价方法研究进展. 中国农学通报, 2007, 23(5): 203-206.
LIU T X, GUAN C Y, LEI D Y. The research progress on evaluation methods of lodging resistance in crops. Chinese Agricultural Science Bulletin, 2007, 23(5): 203-206. (in Chinese)
[30] 于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2): 62-71.
YU K K, LIU Y, LI Y M, SUN N N, ZHAN J, YOU D L, NIU L, LI C H, LIU T X. Screening and comprehensive evaluation of heat-tolerance of maize hybrids in flowering stage. Journal of Maize Science, 2016, 24(2): 62-71. (in Chinese)
[31] 傅晓艺, 史占良, 曹巧, 单子龙, 高振贤, 韩然, 付艺伟, 何明琦. 返青至拔节期高温对小麦农艺性状和产量的影响. 河北农业科学, 2020, 24(2): 31-34, 53.
FU X Y, SHI Z L, CAO Q, SHAN Z L, GAO Z X, HAN R, FU Y W, HE M Q. Effect of high temperature from regreening stage to jointing stage on agronomic characters and yield of wheat. Journal of Hebei Agricultural Sciences, 2020, 24(2): 31-34, 53. (in Chinese)
[32] 谭国波, 赵立群, 张丽华, 赵洪祥, 方向前, 孟祥盟, 闫伟平, 徐长洪, 韩喜国, 边少锋. 玉米拔节期水分胁迫对植株性状, 光合生理及产量的影响. 玉米科学, 2010, 18(1): 96-98.
TAN G B, ZHAO L Q, ZHANG L H, ZHAO H X, FANG X Q, MENG X M, YAN W P, XU C H, HAN X G, BIAN S F. Effects of different water stresses on plant character, photosynthetic physiology and yield in maize jointing stage. Journal of Maize Science, 2010, 18(1): 96-98. (in Chinese)
[33] 程倩, 任丽雯, 丁文魁, 王鹤龄, 杨华, 李兴宇. 不同发育阶段干旱胁迫对玉米株高、果穗性状及产量的影响. 中国农学通报, 2020, 36(9): 19-23.
CHENG Q, REN L W, DING W K, WANG H L, YANG H, LI X Y. Drought stress affects height, ear characteristics and yield of maize at different growth stages. Chinese Agricultural Science Bulletin, 2020, 36(9): 19-23. (in Chinese)
[34] 杨帆, 苗灵凤, 胥晓, 李春阳. 植物对干旱胁迫的响应研究进展. 应用与环境生物学报, 2007(4): 586-591.
YANG F, MIAO L F, XU X, LI C Y. Progress in research of plant responses to drought stress. Chinese Journal of Applied and Environmental Biology, 2007(4): 586-591. (in Chinese)
[35] PELLERIN S, TRENDEL R, DUPARQUE A. Relationship between morphological characters and root lodging susceptibility of maize(Zea mays L.). Agronomie, 1990, 10: 439-446.
doi: 10.1051/agro:19900601
[36] MITRA R, BHATIA C R. Bioenergetic cost of heat tolerance in wheat crop. Current Science, 2008, 94(8): 1049-1053.
[37] WISE R R, OLSON A J, SCHRADER S M, SGARKEY T D. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell and Environment, 2004, 27(6): 717-724.
doi: 10.1111/pce.2004.27.issue-6
[38] WANG Y Y, TAO H B, TIAN B J, SHENG D C, XU C C, ZHOU H M, HUANG S B, WANG P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 2019, 158: 80-88.
doi: 10.1016/j.envexpbot.2018.11.007
[39] LIU J Z, FENG L L, LI J M, HE Z H. Genetic and epigenetic control of plant heat responses. Frontiers in Plant Science, 2015, 6: 267.
[40] GUO C K, GE X C, MA H. The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Molecular Biology, 2013, 82(3): 239-253.
doi: 10.1007/s11103-013-0057-9
[41] HE H, SERRAJ R. Involvement of peduncle elongation, anther dehiscence and spikelet sterility in upland rice response to reproductive-stage drought stress. Environment and Experimental Botany, 2012, 75: 120-127.
doi: 10.1016/j.envexpbot.2011.09.004
[42] O'TOOLE J C, NAMUCO O S. Role of panicle exsertion in water stress induced sterility. Crop Science, 1983, 23(6): 1093-1097.
doi: 10.2135/cropsci1983.0011183X002300060017x
[43] 降志兵, 陶洪斌, 吴拓, 王璞, 宋庆芳. 高温对玉米花粉活力的影响. 中国农业大学学报, 2016, 21(3): 25-29.
XIANG Z B, TAO H B, WU T, WANG P, SONG Q F. Effects of high temperature on maize pollen viability. Journal of China Agricultural University, 2016, 21(3): 25-29. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!