Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3647-3665.doi: 10.3864/j.issn.0578-1752.2021.17.008

• CLIMATE CHANGE AND MAIZE PRODUCTION IN CHINA • Previous Articles     Next Articles

Effects of Elevated Atmospheric CO2 Concentration and Nitrogen Fertilizer on the Yield of Summer Maize and Carbon and Nitrogen Metabolism After Flowering

LI Ming1(),LI YingChun1,NIU XiaoGuang1,MA Fen1,WEI Na1,HAO XingYu2,DONG LiBing1,2,GUO LiPing1()   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2020-09-10 Accepted:2020-12-18 Online:2021-09-01 Published:2021-09-09
  • Contact: LiPing GUO E-mail:liming3633@163.com;GuoLiping@caas.cn

Abstract:

【Objective】 To provide the theoretical support on the mechanism on the sustainable production of maize under future climate change and give suggestions on associate parameter adjustment for crop models, the effects of elevated atmospheric CO2 concentrations (eCO2) and nitrogen application on the content and dynamics of different carbon and nitrogen metabolites after flowering of summer maize were studied. 【Method】 Based on the free atmospheric CO2 enrichment (FACE) platform, a field experiment was carried out with Nongda 108, a summer maize variety, as the experimental material. Two nitrogen levels (ZN-zero nitrogen and CN-180 kg N·hm-2) were set under the ambient atmospheric CO2 concentration (aCO2) of about (400±15) μmol·mol-1 and high CO2 concentration of (550±20) μmol·mol-1, respectively. The following measurements were monitored in the experiment: the maize yield and its components, accumulation of dry matter, content and dynamics of carbon metabolites, including non-structural carbohydrates (ie. soluble sugar and starch), total carbon and nitrogen metabolites including soluble nitrogen (ie. nitrate nitrogen, free amino acids, and soluble protein), and insoluble nitrogen compounds (ie. cell walls-N, thylakoid-N, and total-N), and the carbon to nitrogen ratio. 【Result】 (1) eCO2 and nitrogen application could promote the accumulation of biomass of summer maize, however the effects on maize yield and yield components were not significant. (2) Under eCO2, the concentration of soluble sugar, one of the components of carbon metabolites, showed significant increase in the functional leaves after the flowering stage, as well as the C/N ration at the late seed-filling stage. (3) Under eCO2, the concentration of essential functional N components did not show obvious variation in the functional leaves after the flowering stage, but the content of some structural nitrogen components were decreased: The content of soluble protein, the functional N component, was not affected by eCO2 in the functional leaves. The concentration of free amino acid, one of the simple N components, only showed increase at the flowering stage and then showed less change at the later growth period compared with that under aCO2. However, the content of cell wall-N and thylakoid-N, the non-soluble N components, were significantly decreased at the late period after flowering stage. (4) Nitrogen fertilizer application could increase the concentration of non-structural carbohydrates (soluble sugars) and nitrate-N significantly in functional leaves from tasseling to the later stage of filling, as well as the content of cell wall-N and thylacoid-N. However, the content of soluble protein was not affected in functional leaves without nitrogen application under the medium soil fertility. In comparison, the content of thylakoid-N and cell wall-N showed decrease in the functional leaves in the treatment without nitrogen fertilizer application, implying that nitrogen was usually preferentially supplied for the soluble protein to meet the necessary requirement of crop growth. (5) The interaction function of eCO2 and nitrogen fertilizer showed difference for varied components of the carbon and nitrogen metabolites, usually exhibited at different stages: combination of N application and eCO2 improved the concentration of simple carbon and nitrogen components, such as soluble sugars and nitrate nitrogen in the later stage of maize functional leaves, and increased the C/N ration. The content of cell wall nitrogen could be increased at the early stage of grouting for summer maize. For total nitrogen content in functional leaves, it showed decreased only at the later stage of seed filling grouting, and there was no other impact on the total nitrogen at other stages in summer maize growth period. 【Conclusion】 eCO2 had a certain effect on the biomass increase of summer maize, and the carbon nitrogen ratio of ear to leaf increase significantly in some stages, but had no significant effect on the yield. Under eCO2, the content of unstructured carbohydrates in ear leaves increased, but the total nitrogen and insoluble nitrogen compounds decreased to different degrees after flowering. Therefore, it was important to increase nitrogen application level rationally under the future climate change scenarios in which eCO2 would be one of the characteristics.

Key words: maize(Zea mays L.), elevated CO2 concentration, nitrogen fertilizer, production, carbon and nitrogen metabolism

Fig. 1

Mean value of CO2 concentration in the FACE plot and ambient atmospheric CO2 concentrations during maize growth stage"

Fig. 2

Mean daily temperature and precipitation during maize growth stage (June-September)"

Fig. 3

The above-ground biomass of summer maize under different treatments ZN and CN mean the treatments of no nitrogen and control nitrogen. aCO2 and eCO2 mean the CO2 treatment of control concentration and elevated concentration. V6: 6-leaf stage; V12: 12-leaf stage; VT: Silking stage; R2: 14 days after silking stage; R3: 28 days after silking stage; R6: Physiological maturity. Different lowercase letters indicate a 5% significant difference between different treatments in the same stage. ns means not significant among different treatments at 5% level. The same as below"

Table 1

The yield and associated compositional elements of summer maize under different treatments"

处理 Treatment 穗重 Ear weight (g) 穗粒重 Kernel weight (g) 千粒重 1000-kernel weight (g) 产量 Grain yield (t·hm-2)
ZN-aCO2 185.2±14.7a 129.6±8.2a 264.6±8.3a 8.64±0.55a
ZN-eCO2 184.6±14.4a 129.8±0.3a 264.0±2.8a 8.65±0.02a
CN-aCO2 202.9±6.4a 132.7±0.2a 270.0±0.7a 8.85±0.01a
CN-eCO2 203.9±8.3a 135.6±5.9a 272.0±4.5a 9.04±0.40a
差异显著性
Significance
CO2 ns ns ns ns
N ns ns ns ns
CO2×N ns ns ns ns

Fig. 4

The concentration of soluble sugar in the functional leaves after flowering during summer maize growth stage ** indicate significant effects of CO2, nitrogen fertilizer and their interaction during the same growth stage at P<0.01. The same as below"

Fig. 5

The concentration of starch in the functional leaves after flowering during summer maize growth stage"

Fig. 6

The concentration of total carbon in the functional leaves after flowering during summer maize growth stage * indicate significant effects of CO2, nitrogen fertilizer and their interaction during the same growth stage at P<0.05. The same as below"

Fig. 7

The concentration of nitrate in the functional leaves after flowering during summer maize growth stage"

Fig. 8

The concentration of amino acid in the functional leaves after flowering during summer maize growth stage"

Fig. 9

The content of soluble protein in the functional leaves after flowering during summer maize growth stage"

Fig. 10

The content of cell wall nitrogen in the functional leaves after flowering during summer maize growth stage"

Fig. 11

The content of thylakoid nitrogen in the functional leaves after flowering during summer maize growth stage"

Fig. 12

The concentration of total nitrogen in the functional leaves after flowering during summer maize growth stage"

Fig. 13

The C/N at the functional leaves after flowering during summer maize growth stage"

[1] 中国气象局科技与气候变化司. 2017年中国温室气体公报. 北京, 2019.
Department of Science, Technology and Climate Change, China Meteorological Administration. 2017 China Greenhouse Gases Bulletin. Beijing, 2019. (in Chinese)
[2] 王阳, 高士杰, 李继洪, 胡喜连. 大气CO2浓度升高对作物形态生理及育种的影响. 华北农学报, 2009, 24(B08): 126-130.
WANG Y, GAO S J, LI J H, HU X L. The influence of crop’s morphological characters and breeding by elevated atmospheric CO2 concentrations. Acta Agriculturae Boreali-Sinica, 2009, 024(B08): 126-130. (in Chinese)
[3] 宗毓铮. 大气二氧化碳浓度升高对玉米幼苗碳氮资源分配的影响[D]. 北京: 中国科学院, 2013.
ZONG Y Z. Respones of C and N allocation of maize seedlings under elevated CO2[D]. Beijing: Chinese Academy of Sciences, 2013. (in Chinese)
[4] 母小焕. 叶片水平上玉米氮素高效利用的生理机制[D]. 北京: 中国农业大学, 2017.
MU X H. The physiological mechanism of efficient nitrogen use in maize at leaves[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[5] 潘庆民, 韩兴国, 白永飞, 杨景成. 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 2002, 19(1): 30-38.
PAN Q M, HAN X G, BAI Y F, YANG J C. Advances in physiological and ecological studies on stored non-structure carbohydrates in plants. Bulletin of Botany, 2002, 19(1): 30-38. (in Chinese)
[6] 申丽霞, 王璞. 玉米穗位叶碳氮代谢的关键指标测定. 中国农学通报, 2009, 25(24): 155-157.
SHEN L X, WANG P. Determination of C-N metabolism indices in ear-leaf of maize (Zeamays L.). Chinese Agricultural Sciences Bulletin, 2009, 25(24): 155-157. (in Chinese)
[7] 阳剑, 时亚文, 李宙炜, 陶优生, 唐启源. 水稻碳氮代谢研究进展. 作物研究, 2011, 25(4): 383-387.
YANG J, SHI Y W, LI Z W, TAO Y S, TANG Q Y. Research progress of carbon and nitrogen metabolismin rice. Crop Research, 2011, 25(4): 383-387. (in Chinese)
[8] 王强, 钟旭华, 黄农荣, 郑海波. 光、氮及其互作对作物碳氮代谢的影响研究进展. 广东农业科学, 2006(2): 37-40.
WANG Q, ZHONG X H, HUANG N R, ZHENG H B. Interactions of nitrogen with light in the photosynthetic traits and metabolism of carbon and nitrogen of crop. Guangdong Agricultural Sciences, 2006(2): 37-40. (in Chinese)
[9] 戴明宏, 赵久然, 杨国航, 王荣焕, 陈国平. 不同生态区和不同品种玉米的源库关系及碳氮代谢. 中国农业科学, 2011, 44(8): 1585-1595.
DAI M H, ZHAO J R, YANG G H, WANG R H, CHEN G P. Source-sink relationship and carbon-nitrogen metabolism of maize in different ecological regions and varieties. Scientia Agricultura Sinica, 2011, 44(8): 1585-1595. (in Chinese)
[10] ELIZABETH A A, STEPHEN P L. What have we learned from 15 years of free-air CO2 enrichment (FACE)? a meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 2005, 165(2): 351-372.
doi: 10.1111/nph.2005.165.issue-2
[11] 李伏生, 康绍忠. CO2浓度升高、氮和水分对春小麦养分吸收和土壤养分的效应. 植物营养与肥料学报, 2002, 8(3): 303-309.
LI F S, KANG S Z. Effects of CO2 concentration enrichment, nitrogen and water on soil nutrient content and nutrient uptake of spring wheat. Journal of Plant Nutrition and Fertilizers, 2002, 8(3): 303-309. (in Chinese)
[12] QIAO Y Z, ZHANG H Z, DONG B D, SHI C H, LI Y X, ZHAI H M, LIU M Y. Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes. Agricultural Water Management, 2010, 97(11): 1742-1748.
doi: 10.1016/j.agwat.2010.06.007
[13] 孙立军. 春玉米中后期管理技术. 农民致富之友, 2014(7): 105.
SUN L J. Management technology of spring maize in middle and late stage. Friends of Farmers Getting Rich, 2014(7): 105. (in Chinese)
[14] ZONG Y Z, SHANGGUAN Z P. Nitrogen deficiency limited the improvement of photosynthesis in maize by elevated CO2 under drought. Journal of Integrative Agriculture, 2014, 13(1): 73-81.
doi: 10.1016/S2095-3119(13)60349-4
[15] REICH P B, HUNGATE B A, LUO Y Q. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics, 2006, 37: 611-636.
doi: 10.1146/annurev.ecolsys.37.091305.110039
[16] 王帅. 长期不同施肥对玉米叶片光合作用及光系统功能的影响[D]. 沈阳: 沈阳农业大学, 2014.
WANG S. Effects of long-term different fertilization on photosynthesis and photosystem function of maize leaves[D]. Shenyang: Shenyang Agricultural University, 2014. (in Chinese)
[17] 唐美玲, 肖谋良, 袁红朝, 王光军, 刘守龙, 祝贞科, 葛体达, 吴金水. CO2倍增条件下不同生育期水稻碳氮磷含量及其计量比特征. 环境科学, 2018, 39(12): 5708-5716.
TANG M L, XIAO M L, YUAN H C, WANG G J, LIU S L, ZHU Z K, GE T D, WU J S. Effect of CO2 Doubling and different plant growth stages on rice carbon, nitrogen, and phosphorus and their stoichiometric Ratios. Environmental Science, 2018, 39(12): 5708-5716. (in Chinese)
[18] 梁煜, 常翠翠, 郝兴宇, 张东升, 王卫峰, 高志强, 宗毓铮. CO2浓度升高与氮素胁迫对谷子光合特性和产量因素的影响. 山西农业科学, 2020, 48(3): 401-406, 410.
LIANG Y, CHANG C C, HAO X Y, ZHANG D S, WANG W F, GAO Z Q, ZONG Y Z. Effects of elevated CO2 concentration and nitrogen stress on the physiological characteristics and yield components of foxtail millet. Shanxi Agricultural Sciences, 2020, 48(3): 401-406, 410. (in Chinese)
[19] 王小娟, 王文明, 张振华, 张力, 杨春, 宋海星, 官春云. 大气CO2浓度和供氮水平对油菜前期生长及氮素吸收利用的影响. 生态学杂志, 2014, 33(1): 83-88.
WANG X J, WANG W M, ZHANG Z H, ZHANG L, YANG C, SONG H X, GUAN C Y. Effects of atmospheric CO2 concentration and N application levels on the growth, N uptake and utilization of oilseed rape during vegetative stage. Journal of Ecology, 2014, 33(1): 83-88. (in Chinese)
[20] LI X, ZHANG L, AHAMMED G J, LI Z X, WEI J P, SHEN C, YAN P, ZHANG L P, HAN W Y. Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L. Scientific reports, 2017, 7(1): 81-89.
doi: 10.1038/s41598-017-00116-9
[21] LI L K, WANG M F, SABIN S P, LI C X, MEGHA N P, CHEN F J, FANG W P. Effects of elevated CO2 on foliar soluble nutrients and functional components of tea, and population dynamics of tea aphid, Toxoptera aurantii. Plant Physiology and Biochemistry, 2019, 145: 84-94.
doi: 10.1016/j.plaphy.2019.10.023
[22] 蒋跃林, 张庆国, 张仕定. 大气CO2浓度对茶叶品质的影响. 茶叶科学, 2006(4): 299-304.
JIANG Y L, ZHANG Q G, ZHANG S D. Effects of atmospheric CO2 concentration on tea quality. Tea Science, 2006(4): 299-304. (in Chinese)
[23] LEAKEY A D B, XU F X, GILLESPIE K M, MCGRATH J M, AINSWORTH E A, ORT D R, OGREN W L. Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3597-3602.
[24] 牛晓光, 杨荣全, 李明, 段碧华, 刁田田, 马芬, 郭李萍. 大气CO2浓度升高与氮肥互作对玉米光合特性及产量的影响. 中国生态农业学报, 2020(2): 255-264.
NIU X G, YANG R Q, LI M, DUAN B H, DIAO T T, MA F, GUO L P. Effects of interaction between elevated atmospheric CO2 concentration and nitrogen fertilizer on photosynthetic characteristic and yield of maize. Chinese Journal of Ecological Agriculture, 2020(2): 255-264. (in Chinese)
[25] 居辉, 姜帅, 李靖涛, 韩雪, 高霁, 秦晓晨, 林而达. 北方冬麦区CO2浓度增高与氮肥互作对冬小麦生理特性和产量的影响. 中国农业科学, 2015, 48(24): 4948-4956.
JU H, JIANG S, LI J T, HAN X, GAO J, QIN X C, LIN E D. Interactive effects of elevated co2 and nitrogen on the physiology and yield of winter wheat in north winter wheat region of China. Scientia Agricultura Sinica, 2015, 48(24): 4948-4956. (in Chinese)
[26] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 142-148.
GAO J F. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2006: 142-148. (in Chinese)
[27] CATALDO D A, MAROON M, SCHRADER L E, YOUNGS V L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 1975, 6(1): 71-80.
doi: 10.1080/00103627509366547
[28] 蔡永萍. 植物生理学实验指导. 北京: 中国农业大学出版社, 2014: 166-169.
CAI Y P. Experimental Guidance of Plant Physiology. Beijing: China Agricultural University Press, 2014: 166-169. (in Chinese)
[29] ONODA Y, HIKOSAKA K, HIROSE T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 2004, 18: 419-425.
doi: 10.1111/fec.2004.18.issue-3
[30] ZHANG L, PAAKKARINEN V, VAN W K J, ARO E M. Co-translational assembly of the D1 protein into photosystem II. The Journal of Biological Chemistry, 1999, 274(23): 16062-16067.
doi: 10.1074/jbc.274.23.16062
[31] PENG L W, MA J F, CHI W, GUO J K, ZHU S Y, LU Q T, LU C M, ZHANG L X. Low PSII accumulationl is involved in efficient assembly of photosystem II in Arabidopsis thaliana. The Plant Cell, 2006, 18(4): 955-969.
doi: 10.1105/tpc.105.037689
[32] 肖焱波, 段宗颜, 张福锁, 苏凡, 金航, 陈新平, 雷宝坤. 移栽玉米的氮素诊断及追肥推荐研究. 土壤肥料, 2001(6): 16-20.
XIAO Y B, DUAN Z Y, ZHANG F S, SU F, JIN H, CHEN X P, LEI B K. Study on the nitrogen diagnosis of transplanting maize recommenation of nitrogen fertilizer as top dressing. Soil Fertilizer, 2001(6): 16-20. (in Chinese)
[33] LI X N, ULFAT A, LV Z Y, FANG L, DONG J, LIU F L. Effect of multigenerational exposure to elevated atmospheric CO2 concentration on grain quality in wheat. Environmental and Experimental Botany, 2019, 157: 310-319.
doi: 10.1016/j.envexpbot.2018.10.028
[34] 钱蕾, 蒋兴川, 刘建业, 罗丽芬, 桂富荣. 大气CO2浓度升高对西花蓟马生长发育及其寄主四季豆营养成分的影响. 生态学杂志, 2015, 34(6): 1553-1558.
QIAN L, JIANG X C, LIU J Y, LUO L F, GUI F R. Effect of elevated CO2 concentration on development of the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) and nutrients of their host plant, Phaseolus vulgaris. Journal of Ecology, 2015, 34(6): 1553-1558. (in Chinese)
[35] ARANJUELO I, SANZSÁEZ Á, JÁUREGUI I, IRIGOYEN J J, ARAUS J L,SÁNCHEZDÍAZ M, ERICE G. Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. Journal of Experimental Botany, 2013, 64(7): 1879-1892.
doi: 10.1093/jxb/ert081
[36] WATANABE C K, SATO S, YANAGISAWA S, UESONO Y, TERASHIMA I, NOGUCHI K. Effects of elevated CO2 on levels of primary metabolites and transcripts of genes encoding respiratory enzymes and their diurnal patterns in Arabidopsis thaliana: Possible relationships with respiratory rates. Plant & Cell Physiology, 2014, 55(2): 341-357.
[37] 潘彤彤. 氮肥对菠萝蜜碳氮代谢及树体营养水平的影响[D]. 湛江:广东海洋大学, 2019.
PAN T T. Effects of nitrogen fertilizer on carbon and nitrogen metabolism and tree nutrition of jackfruit[D]. Zhanjiang: Guangdong Ocean University, 2019. (in Chinese)
[38] 刘娜, 宋柏权, 闫志山, 范有君, 杨骥. 氮肥施用量对甜菜蔗糖代谢关键酶和可溶性糖含量的影响. 中国农学通报, 2015, 31(27): 183-189.
LIU N, SONG B Q, YAN Z S, FAN Y J, YANG J. Effect of nitrogen application on the content of soluble sugar and key enzyme activities in sugar metabolism of sugar beet. Chinese Agricultural science bulletin, 2015, 31(27): 183-189. (in Chinese)
[39] SAGE R F, KUBIEN D S. The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment, 2007, 30(9): 1086-1106.
doi: 10.1111/pce.2007.30.issue-9
[40] 陈法军, 戈峰, 刘向辉. 棉花对大气CO2浓度升高的响应及其对棉蚜种群发生的作用. 生态学报, 2004, 24(5): 991-996.
CHEN F J, GE F, LIU X H. Responses of cotton to elevated CO2 and the effects on cotton aphid occurrences. Ecologica Sinica, 2004, 24(5): 991-996. (in Chinese)
[41] MU X H, CHEN Q W, CHEN F J, YUAN L X, MI G H. Dynamic remobilization of leaf nitrogen components in relation to photosynthetic rate during grain filling in maize. Plant Physiology and Biochemistry, 2018, 129: 27-34.
doi: 10.1016/j.plaphy.2018.05.020
[42] 红艳. 氮素添加对荒漠区5种植物氮素代谢的影响[D]. 呼和浩特:内蒙古师范大学, 2018.
HONG Y. Effect of nitrogen addition on nitrogen metabolism of 5 species in desert area[D]. Hohhot: Inner Mongolia Normal University, 2018. (in Chinese)
[43] 于华荣, 郭园, 朱爱民, 鲁富英, 王乐, 张玉霞. 氮素水平对沙地燕麦叶片非结构性碳氮代谢的影响. 草业学报, 2018, 27(5): 61-72.
YU H R, GUO Y, ZHU A M, LU F Y, WANG L, ZHANG Y X. Effects of nitrogen fertilizer level on non-structural carbon and nitrogen metabolite levels in oats grown in sandy desert soil. Acta Prataculturae Sinica, 2016, 27(5): 61-72. (in Chinese)
[44] 黄茹, 吴玉萍, 夏振远, 王正银, 李银科. 氮素水平对红花大金元烟叶游离氨基酸和蛋白质含量的影响. 中国烟草科学, 2017, 38(5): 50-55.
HUANG R, WU Y P, XIA Z Y, WANG Z Y, LI Y K. Effect of nitrogen level on free amino acid and protein contents of Honghuadajinyuan tobacco leaves. China tobacco science, 2017, 38(5): 50-55. (in Chinese)
[45] 梁晓红. 不同供氮水平对烤烟碳氮代谢及烟叶品质的影响[D]. 福州: 福建农林大学, 2009.
LIANG X H. Effects of various nitrogen levels on carbon-nitrogen metabolism and leaves quality of flue-cured tobacco[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese)
[46] 刘备. 不同施氮量对木薯氮素营养特性的影响及氮素营养诊断指标初探[D]. 海口: 海南大学, 2016.
LIU B. Research on nitrogen nutrition characteristics under different N applying levels and preliminary study on nitrogen nutrition diagnose on cassava[D]. Haikou: Hainan University, 2016. (in Chinese)
[47] 胡紫璟. 不同氮素水平对酿酒葡萄‘蛇龙珠’植株碳氮代谢影响的研究[D]. 兰州: 甘肃农业大学, 2016.
HU Z J. The study on the influence of different nitrogen levels on metabolism of carbon and nitrogen in wine grape ‘Cabernet Gernischet’ tree[D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese)
[48] 田飞飞, 纪鸿飞, 王乐云, 郑西来, 辛佳, 能惠. 施肥类型和水热变化对农田土壤氮素矿化及可溶性有机氮动态变化的影响. 环境科学, 2018, 39(10): 4717-4726.
TIAN F F, JI H F, WANG L Y, ZHENG X L, XIN J, NENG H. Effects of various combinations of fertilizer, soil moisture, and temperature on nitrogen mineralization and soluble organic nitrogen in agricultural soil. Environmental Science, 2018, 39(10): 4717-4726. (in Chinese)
[49] 葛晓敏, 王瑞华, 唐罗忠, 贾志远, 朱玲, 李勇. 不同温湿度条件下杨树人工林土壤氮矿化特征研究. 中国农学通报, 2015, 31(10): 208-213.
GE X M, WANG R H, TANG L Z, JIA Z Y, ZHU L, LI Y. Study on the effects of temperature and moisture on nitrogen mineralization of soil in poplar plantations. Chinese Agricultural Science Bulletin, 2015, 31(10): 208-213. (in Chinese)
[50] 郭李萍, 王兴仁, 张福锁, 陈新平, 毛达如. 不同年份施肥对作物增产效应及肥料利用率的影响. 中国农业气象, 1999(4): 3-5.
GUO L P, WANG X R, ZHANG F S, CHEN X P, MAO D R. Effect of fertilizer application in different years on crop yields and fertilizer recovery. Chinese Journal of Agrometeorology, 1999(4): 3-5. (in Chinese)
[51] 黄亿, 李廷轩, 张锡洲, 戢林, 吴沂珀. 氮高效利用基因型大麦氮素转移及氮形态组分特征. 中国农业科学, 2015, 48(6): 1151-1161.
HUANG Y, LI T X, ZHANG X Z, JI L, WU Y P. Characteristics of nitrogen transportation and fractions in different organs of barley genotype with high nitrogen utilization efficiency. Scientia Agricultura Sinica, 2015, 48(6): 1151-1161. (in Chinese)
[52] CLAVER I P, ZHOU H. Enzymatic hydrolysis of defatted wheat germ by proteases and the effect on the functional properties of resulting protein hydrolysates. Journal of Food Biochemistry, 2005, 29(1): 13-26.
doi: 10.1111/jfbc.2005.29.issue-1
[53] RHODES D I, STONE B A. Proteins in walls of wheat aleurone cells. Journal of Cereal Science, 2002, 36(1): 83-101.
doi: 10.1006/jcrs.2001.0450
[54] DELUCIA E H, SASEK T W, STRAIN B R. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynthesis Research, 1985, 7(2): 175-184.
doi: 10.1007/BF00037008
[55] STITT M. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell & Environment, 2006, 14(8): 741-762.
[56] SAWADA S, KUNINAKA M, WATANABE K, STATO A, KAWAMURA H, KOMINE K, SAKAMOTO T, KASAI M. The mechanism to suppress photosynthesis through end-product inhibition in single-rooted soybean leaves during acclimation to CO2 enrichment. Plant & Cell Physiology, 2001, 42(10): 1093-1102.
[57] 张立极, 潘根兴, 张旭辉, 李恋卿, 郑经伟, 郑聚峰, 俞欣妍, 王家芳. 大气CO2浓度和温度升高对水稻植株碳氮吸收及分配的影响. 土壤, 2015, 47(1): 26-32.
ZHANG L J, PAN G X, ZHANG X H, LI L Q, ZHENG J W, ZHENG J F, YU X Y, WANG J F. Effect of experimental CO2 enrichment and warming on uptake and distribution of C and N in rice plant. soils, 2015, 47(1): 26-32. (in Chinese)
[58] ZHU C W, ZISKA L, ZHU J G, ZENG Q, XIE Z B, TANG H Y, JIA X D, HASEGAWA T. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide. Physiologia Plantarum, 2012, 145(3): 395-405.
doi: 10.1111/ppl.2012.145.issue-3
[59] LI P, HAN X, ZONG Y Z, LI H Y, LIN E D, HAN Y H, HAO X Y. Effects of free-air CO2 enrichment (FACE) on the uptake and utilization of N, P and K in Vigna radiata. Agriculture, Ecosystems and Environment, 2015, 202: 120-125.
doi: 10.1016/j.agee.2015.01.004
[60] KIMBALL B A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current Opinion in Plant Biology, 2016, 31: 36-43.
doi: 10.1016/j.pbi.2016.03.006
[61] LONG S P, AINSWORTH E A, LEAKEY A D B, NÖSBERGER J, ORT D R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 2006, 312(5782): 1918-1921.
doi: 10.1126/science.1114722
[62] 马丽. 气候变化和CO2浓度升高对森林影响的探讨. 林业资源管理, 2014(5): 28-34.
MA L. Study on the effects of climate changes and CO2 concentration increase on forest ecosystem. Forest Resources Management, 2014(5): 28-34. (in Chinese)
[63] 解海翠. 大气CO2浓度升高对“玉米—害虫—天敌”系统的影响[D]. 北京: 中国农业大学, 2014.
XIE H C. Effects of elevated atmospheric CO2 on “maize-pest-enemy” system[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[64] FRANCES C, BUNCE J A. Elevated atmospheric carbon dioxide concentration affects interactions between spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors. Environmental Entomology, 1994(4): 999-1005.
[65] 杨苏苏. 高浓度CO2环境下番茄应答TMV侵染的转录组分析[D]. 太谷: 山西农业大学, 2018.
YANG S S. The transcriptome analysis of tomato response to TMV infection under high concentration of CO2[D]. Taigu: Shanxi Agricultural University, 2018. (in Chinese)
[66] ORLA D, BRIDGET F O, ARTHUR R Z, MAY R B, EVAN H D. Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem. Arthropod-Plant Interactions, 2008, 2(3): 125-135.
doi: 10.1007/s11829-008-9045-4
[67] 陈法军, 吴刚, 戈峰. 春小麦对大气CO2浓度升高的响应及其对麦长管蚜生长发育和繁殖的影响. 应用生态学报, 2006, 17(1): 91-96.
CHEN F J, WU G, GE F. Responses of spring wheat to elevated CO2 and their effects on Sitobion avenae aphid growth, development and reproduction. Chinese Journal of Applied Ecology, 2006, 17(1): 91-96. (in Chinese)
[68] KOBAYASHI T, ISHIGURO K, NAKAJIMA T, KIM H Y, OKADA M, KOBAYASHI K. Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. Phytopathology, 2006, 96(4): 425-431.
doi: 10.1094/PHYTO-96-0425
[69] 刘紫娟, 李萍, 宗毓铮, 董琦, 郝兴宇. 大气CO2浓度升高对谷子生长发育及玉米螟发生的影响. 中国生态农业学报, 2017, 25(1): 55-60.
LIU Z J, LI P, ZONG Y Z, DONG Q, HAO X Y. Effect of elevated [CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica). Chinese Journal of Eco-Agriculture, 2017, 25(1): 55-60. (in Chinese)
[70] 李雪涛. 玉米倒伏成因及预防. 河南农业, 2015(18): 46-50.
LI X T. Causes and prevention of maize lodging. Henan Agriculture, 2015(18): 46-50. (in Chinese)
[71] 孟战赢, 林同保, 王育红. 水肥效应对夏玉米产量及氮代谢相关指标的影响. 玉米科学, 2009, 17(5): 100-103.
MENG Z Y, LIN T B, WANG Y H. Effects of water-fertilizer on summer corn nitrogen metabolism. Maize Science, 2009, 17(5): 100-103. (in Chinese)
[72] LEAKEY A D B, URIBELARREA M, AINSWORTH E A, NAIDU S L, ROGERS A, ORT D R, LONG S P. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, 2006, 140(2): 779-790.
[1] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[2] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[3] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[4] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[5] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[6] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[7] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[8] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[9] ZHU Lei,ZHANG HaiLiang,CHEN ShaoKan,AN Tao,LUO HanPeng,LIU Lin,HUANG XiXia,WANG YaChun. Impacts of Somatic Cell Count in Early Lactation on Production Performance over the Whole Lactation and Its Genetic Parameters in Holsteins Cattle [J]. Scientia Agricultura Sinica, 2022, 55(2): 403-414.
[10] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[11] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[12] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[13] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[14] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[15] LÜ TengFei,SHEN Jie,MA Peng,DAI Zou,YANG ZhiYuan,XU Hui,ZHENG ChuanGang,MA Jun. Effects of Combined Application of Slow Release Nitrogen Fertilizer and Urea on the Nitrogen Utilization Characteristics in Machine- Transplanted Hybrid Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1410-1423.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!