Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4826-4839.doi: 10.3864/j.issn.0578-1752.2021.22.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Phosphorus Fertilizer Replacement Value of Livestock Manure in Winter Wheat

XU JiuKai(),YUAN Liang,WEN YanChen,ZHANG ShuiQin,LIN ZhiAn,LI YanTing,LI HaiYan,ZHAO BingQiang()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2020-11-28 Accepted:2021-04-09 Online:2021-11-16 Published:2021-11-19
  • Contact: BingQiang ZHAO E-mail:xujiukai2008@163.com;zhaobingqiang@caas.cn

Abstract:

【Objective】 Excessive application of phosphorus has not only caused the depletion of phosphate rock resources, but also increased the risk of environmental pollution. Livestock manure has always been used as a good alternative resource for chemical phosphorus. However, due to the complex composition and various influencing factors in the transformation process of phosphorus in animal manure, its effectiveness compared with that in chemical fertilizers has long been controversial. Clarifying the phosphorus replacement value of livestock manure, and the accurate proportion of organic fertilizer phosphorus replacing chemical fertilizer phosphorus, could provide the supporting data for rational application of organic fertilizer phosphorus.【Method】In this study, composted pig manure, chicken manure and cattle manure as well as chemical fertilizer were selected as the research materials. The application rate of P2O5 was set at 6 levels, which were 0, 20, 40, 60, 80 and 100 mg·kg-1 dry soil, respectively. A soil column experiment was conducted to investigate the effects of phosphorus in manure and chemical fertilizer on wheat yield, phosphorus uptake and the content of soil available phosphorus. Furthermore, the relative substitution equivalent of phosphorus in three kinds of manure was statistically analyzed.【Result】 (1) The content of organic and inorganic phosphorus in the three kinds of manure varied much. The proportion of organic phosphorus accounted for 25.9%, 17.6% and 56.5% of total phosphorus in pig, chicken and cattle manures, respectively. The liable phosphorus (H2O-P and NaHCO3-P) was the main phosphorus fraction for the cattle manure, while there was more phosphorus fraction attributed to highly stable phosphorus (HCl-P) in chicken manure and pig manure. (2)There was no significant difference in grain yield between different phosphorus supplies with the same application rate. The phosphorus uptake of wheat with chemical fertilizer was slightly higher than that treated with three kinds of manure. (3) In this study, when the seasonal recovery rate of phosphorus was used as a reference index, the chemical fertilizer equivalent value in chicken, pig and cattle manures to the commercial mineral phosphorus (super phosphate) were 80.3%, 84.3% and 90.4%, respectively. When the relative substitution equivalents of three kinds of manure were calculated by using the regression function between the chemical phosphorus and grain yield, biomass, phosphorus uptake of grain or total phosphorus uptake, the relative substitution equivalents of pig manure were 90.0%, 93.6%, 80.6% and 80.2%, respectively; The relative substitution equivalents of chicken manure were 78.4%, 87.9%, 73.4%, 67.6%, and that of cattle manure were 89.6%, 99.9%, 90.0%, 87.3%. (4) Both the manure and chemical fertilizer could increase the content of available phosphorus in soil, but the manure showed a slight effect than the chemical fertilizer. 【Conclusion】 Based on the integrated methods for calculating substitution equivalent of the present experimental condition, the phosphorus in pig manure could replace 85.7% of equivalent chemical fertilizer P, while chicken manure and cow manure could replace 77.6% and 91.4%, respectively.

Key words: livestock manure, phosphorus, wheat yield, phosphorus uptake and utilization, relative substitution equivalents

Table 1

Nutrient content of cattle manure, chicken manure and pig manure"

有机肥
Organic manure
养分含量 Nutrient content (%,Air dried basis) 有机碳
Organic C (%)
C/N
C/P
全氮Total N (N) 全磷Total P (P) 全钾Total K (K)
牛粪 Cattle manure 1.61 0.57 1.29 21.02 13.06 36.88
鸡粪 Chicken manure 1.95 2.30 1.74 18.11 9.28 7.87
猪粪 Pig manure 2.23 3.13 1.51 23.50 10.54 7.51

Table 2

Phosphorus fractions in chicken manure, pig manure and cattle manure (%)"

项目
Item
不同肥料品种 Different types of fertilizer
猪粪
Pig manure
鸡粪
Chicken manure
牛粪
Cattle manure
H2O-Pi 12.55 ±0.95 17.62±0.95 13.19 ±0.16
H2O-Po 3.64±0.10 3.61±0.03 8.61±0.19
NaHCO3-Pi 12.17±0.24 13.91±0.40 12.61±0.53
NaHCO3-Po 4.36 ±0.28 2.95±0.26 18.98 ±0.22
NaOH-Pi 13.66±0.37 2.06±0.15 8.21±0.15
NaOH-Po 3.28±0.10 5.33±0.28 10.64±0.45
HCl-Pi 35.69±0.91 48.94±2.00 9.54 ±0.11
HCl-Po 7.76±0.22 0.00±0.00 9.29±0.50
residual-P 6.89±0.31 5.65±0.16 8.93±0.20

Table 3

Effects of different sources of phosphorus on wheat yield and biomass"

项目
Item
施磷量
P2O5 rate (mg·kg-1)
不同肥料品种 Different type of fertilizers
猪粪 Pig manure 鸡粪 Chicken manure 牛粪 Cattle manure 化肥 Chemical fertilizer
籽粒产量
Grain yield
(g/pot)
0 47.14±7.67d A 47.14±7.67d A 47.14±7.67d A 47.14±7.67d A
20 68.29±9.95c A 64.98±5.15c A 72.20±5.77c A 72.94±6.95c A
40 83.32±12.5b A 84.01±12.59b A 83.42±5.91b A 83.29±9.28b A
60 92.01±8.03ab A 84.50±5.88b A 86.80±7.29ab A 91.64±8.22ab A
80 94.34±6.81a A 97.96±6.77a A 92.86±6.21a A 98.49±11.20a A
100 93.88±9.76ab A 92.76±6.03ab A 93.22±7.79a A 96.73±6.62a A
生物量
Wheat biomass
(g/pot)
0 89.87±14.02d A 89.87±14.02e A 89.87±14.02d A 89.87±14.02c A
20 130.29±18.97c A 125.97±12.33d A 138.58±10.86c A 137.34±11.46b A
40 156.04±15.82b A 157.15±18.04c A 158.73±9.25b A 150.93±12.61b A
60 173.44±11.65ab A 161.59±12.43bc A 163.37±13.53ab A 170.3±14.01a A
80 169.45±11.48ab A 183.87±10.57a A 173.04±13.08a A 183.77±19.52a A
100 173.52±18.29a A 173.02±12.20ab A 169.00±12.67ab A 181.01±14.73a A

Table 4

Effects of different sources of phosphorus on yield components of wheat"

项目
Item
施磷量
P2O5 rate (mg·kg-1)
不同肥料品种 Different type of fertilizers
猪粪 Pig manure 鸡粪 Chicken manure 牛粪 Cattle manure 化肥 Chemical fertilizer
穗数
Number of ears (No./pot)
0 33±4c A 33±4c A 33±4c A 33±4d A
20 35±3bc A 37±2c A 39±2b A 39±4c A
40 39±6b A 44±4b A 45±6a A 43±4bc A
60 46±2a A 43±5b A 44±1a A 45±2ab A
80 47±6a A 49±1a A 47±4a A 49±6a A
100 47±5a AB 45±3ab AB 43±2a B 49±3a A
穗粒数
Grain No.per spike (No./spike)
0 30±3b A 30±3b A 30±3c A 30±3b A
20 39±5a A 36±4a B 38±4b A 39±1a A
40 42±2a A 38±4a AB 37±4b B 39±3a AB
60 40±2a A 39±3a A 39±3b A 40±2a A
80 40±2a A 39±2a A 40±2ab A 40±2a A
100 39±1a B 40±2a AB 43±5a A 39±2a B
千粒重
Thousand seed weight (g)
0 47.36±1.04c A 47.36±1.04c A 47.36±1.04c A 47.36±1.04d A
20 49.50±1.44b A 48.66±1.55bc A 48.98±0.67bc A 48.92±1.27c A
40 50.85±1.54ab A 50.15±1.53ab A 50.97±1.23a A 50.32±1.00b A
60 50.92±2.16ab A 51.01±1.53a A 50.36±2.56ab A 51.15±1.03ab A
80 50.59±2.16ab A 50.59±1.76a A 50.26±1.71ab A 50.95±0.69ab A
100 51.38±1.23a A 51.00±2.04a A 50.42±1.97ab A 51.55±1.00a A

Table 5

Effects of different sources of phosphorus on phosphorus uptakes in different organs of wheat"

项目
Item
施磷量
P2O5 rate (mg·kg-1)
不同肥料品种 Different type of fertilizers
猪粪 Pig manure 鸡粪 Chicken manure 牛粪 Cattle manure 化肥 Chemical fertilizer
磷吸收量
P uptake
(g/pot)
秸秆
Straw
0 0.05±0.01d A 0.05±0.01d A 0.05±0.01d A 0.05±0.01e A
20 0.06±0.01c A 0.06±0.01cd A 0.06±0.01c A 0.06±0.01d A
40 0.07±0.02b A 0.07±0.01bc A 0.07±0.01c A 0.08±0.02c A
60 0.09±0.01ab A 0.08±0.02b B 0.08±0.02bc B 0.09±0.02b AB
80 0.09±0.00a B 0.09±0.00a B 0.08±0.01b B 0.11±0.02ab A
100 0.10±0.02a A 0.09±0.01a A 0.10±0.01a A 0.11±0.02a A
籽粒
Grain
0 0.14±0.03d A 0.14±0.03d A 0.14±0.03d A 0.14±0.03e A
20 0.21±0.05c AB 0.19±0.03c B 0.23±0.02c A 0.22±0.02d AB
40 0.27±0.03b A 0.26±0.07b A 0.27±0.04b A 0.28±0.03c A
60 0.29±0.03ab A 0.29±0.04b A 0.30±0.05ab A 0.32±0.03b A
80 0.32±0.04a A 0.34±0.04ab A 0.33±0.03a A 0.35±0.03ab A
100 0.31±0.04a B 0.32±0.03a AB 0.33±0.04a AB 0.36±0.03a A
地上部
Above ground
0 0.19±0.03d A 0.19±0.03d A 0.19±0.03e A 0.19±0.03e A
20 0.27±0.05c AB 0.24±0.03c B 0.29±0.02d A 0.28±0.03d AB
40 0.34±0.07b A 0.33±0.07b A 0.34±0.05c A 0.36±0.04c A
60 0.39±0.04ab A 0.36±0.04b A 0.38±0.07bc A 0.41±0.04b A
80 0.41±0.03a B 0.43±0.05a B 0.41±0.02ab AB 0.46±0.05a A
100 0.41±0.06a B 0.42±0.04a B 0.43±0.04a AB 0.47±0.02a A
磷素收获指数
PHI (%)
0 75.70±6.13a A 75.70±6.13b A 75.70±6.13b A 75.70±6.13b A
20 79.08±4.51a A 76.98±2.52b A 77.88±2.56ab A 77.84±3.66ab A
40 78.54±1.00a A 79.38±4.20aA 79.35±2.50a A 77.70±4.96ab A
60 75.84±2.00a A 79.03±5.67ab A 80.01±3.76a A 78.35±2.88a A
80 78.07±1.65a A 78.40±1.95ab A 79.42±3.79a A 76.46±2.27ab A
100 76.35±1.88a A 77.13±2.58b A 77.27±2.53ab A 75.91±3.51ab A

Table 6

The equivalent value of mineral phosphorus and recovery rate"

项目
Item
施磷量
P2O5 rate (mg·kg-1)
不同肥料品种 Different type of fertilizers
猪粪 Pig manure 鸡粪 Chicken manure 牛粪 Cattle manure 化肥 Chemical fertilizer
磷素回收率
Phosphorous recovery ratio (%)
20 55.82a AB 48.15a B 72.18a A 66.45a AB
40 52.85a A 50.70a A 55.03b A 61.80abA
60 47.01ab A 40.89ab A 46.52bc A 52.10abc A
80 38.82ab B 42.68ab A 39.43cB 48.62bc A
100 32.04lb B 32.33b B 34.88c AB 40.03cA
化肥磷素等效值
Chemical phosphorus equivalent value (%)
20 84.02 72.46 108.63 --
40 87.36 82.05 89.04 --
60 90.24 78.50 85.82 --
80 79.84 87.78 81.10 --
100 80.03 80.76 87.15 --

Fig. 1

The response of chemical phosphorus application rate to wheat grain yield (a), biomass (b), grain phosphorus uptake (c) and aboveground phosphorus uptake (d)"

Table 7

Mineral phosphorus fertilizer replacement value of manures on the basis of wheat grain yield biomass, grain phosphorus uptake and aboveground phosphorus uptake"

项目
Item
施磷量
P2O5 rate (mg·kg-1)
粪肥磷素替代化肥磷素(P2O5)的相对替代当量
Mineral phosphorus fertilizer replacement value (%)
猪粪 Pig manure 鸡粪 Chicken manure 牛粪 Cattle manure
籽粒Grain 20 93.81 60.84 116.12
40 95.78 98.57 96.20
60 92.46 67.07 73.74
80 78.08 87.02 72.26
生物量Biomass 20 104.80 72.53 133.09
40 99.56 102.15 107.93
60 101.19 76.71 83.35
80 68.84 100.00 75.13
籽粒磷吸收量
Grain phosphorus uptake
20 88.44 52.67 109.76
40 87.89 86.14 92.81
60 75.40 70.51 81.00
80 70.78 84.25 76.39
地上部磷吸收量
Aboveground phosphorus uptake
20 83.11 41.25 110.13
40 87.42 81.15 94.95
60 80.48 68.10 72.82
80 69.59 79.91 71.14

Table 8

Effects of different sources of phosphorus on soil available phosphorus content"

施磷量
P2O5 rate (mg·kg-1)
速效磷含量 Available phosphorus (mg·kg-1)
猪粪 Pig manure 鸡粪 Chicken manure 牛粪 Cattle manure 化肥 Chemical fertilizer
0 4.77±0.65d A 4.77±0.65d A 4.77±0.65d A 4.77±0.65d A
20 6.27±0.82c A 4.52±0.40d C 5.16±0.53cd BC 5.41±0.89d B
40 7.03±1.17c AB 5.82±0.76c C 5.97±0.61c BC 7.35±1.09cd A
60 9.04±1.68bA 8.18±1.15b A 8.21±0.71b A 8.50±2.74bc A
80 8.82±1.14b B 7.91±0.62b B 8.38±0.91b B 10.37±1.80b A
100 11.50±1.02a A 9.61±1.05a B 10.45±1.24a AB 12.20±2.24a A
[1] 鲁如坤. 土壤–植物营养学原理和施肥. 北京: 化学工业出版社, 1998.
LU R K. Principles of Soil Plant Nutrition and Fertilization. Beijing: Chemical Industry Press, 1998. (in Chinese)
[2] MA J C, HE P, XU X P, HE W T, LIU Y X, YANG F Q, CHEN F, LI S T, TU S H, JIN J Y, JOHNSTON A M, ZHOU W. Temporal and spatial changes in soil available phosphorus in China (1990-2012). Field Crops Research, 2016, 192: 13-20. doi: 10.1016/j.fcr.2016.04.006.
doi: 10.1016/j.fcr.2016.04.006
[3] XIN X L, QIN S W, ZHANG J B, ZHU A N, YANG W L, ZHANG X F. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Research, 2017, 208: 27-33. doi: 10.1016/j.fcr.2017.03.011.
doi: 10.1016/j.fcr.2017.03.011
[4] 刘晓永, 王秀斌, 李书田. 中国农田畜禽粪尿磷负荷量及环境风险分析. 农业环境科学学报, 2019, 38(11): 2594-2608. doi: 10.11654/jaes.2018-0626.
doi: 10.11654/jaes.2018-0626
LIU X Y, WANG X B, LI S T. Phosphorus loading rates from livestock and poultry faeces, and environmental evaluation in China. Journal of Agro-Environment Science, 2019, 38(11): 2594-2608. doi: 10.11654/jaes.2018-0626. (in Chinese)
doi: 10.11654/jaes.2018-0626
[5] BAI Z H, MA L, JIN S Q, MA W Q, VELTHOF G L, OENEMA O, LIU L, CHADWICK D, ZHANG F S. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environmental Science & Technology, 2016, 50(24): 13409-13418. doi: 10.1021/acs.est.6b03348.
doi: 10.1021/acs.est.6b03348
[6] 徐明岗, 李冬初, 李菊梅, 秦道珠, 八木一行, 宝川靖和. 化肥有机肥配施对水稻养分吸收和产量的影响. 中国农业科学, 2008, 41(10): 3133-3139. doi: 10.3864/j.issn.0578-1752.2008.10.029.
doi: 10.3864/j.issn.0578-1752.2008.10.029
XU M G, LI D C, LI J M, QIN D Z, KAZUYUKI Y, YASUKAZU H. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Scientia Agricultura Sinica, 2008, 41(10): 3133-3139. doi: 10.3864/j.issn.0578-1752.2008.10.029. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.10.029
[7] 李燕青. 不同类型有机肥与化肥配施的农学和环境效应研究[D]. 北京: 中国农业科学院, 2016.
LI Y Q. Study on agronomic and environmental effects of combined application of different organic manures with chemical fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[8] EGHBALL B, GINTING D, GILLEY J E. Residual effects of manure and compost applications on corn production and soil properties. Agronomy Journal, 2004, 96(2): 442-447. doi: 10.2134/agronj2004.4420.
doi: 10.2134/agronj2004.4420
[9] 李书田, 刘荣乐, 陕红. 我国主要畜禽粪便养分含量及变化分析. 农业环境科学学报, 2009, 28(1): 179-184. doi: 10.3321/j.issn:1672-2043.2009.01.033.
doi: 10.3321/j.issn:1672-2043.2009.01.033
LI S T, LIU R L, SHAN H. Nutrient contents in main animal manures in China. Journal of Agro-Environment Science, 2009, 28(1): 179-184. doi: 10.3321/j.issn:1672-2043.2009.01.033. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2009.01.033
[10] LIU J L, LIAO W H, ZHANG Z X, ZHANG H T, WANG X J, MENG N. Effect of phopshate fertilizer and manure on crop yield, soil P accumulation, and the environmental risk assessment. Agricultural Sciences in China, 2007, 6(9): 1107-1114. doi: 10.1016/S1671-2927(07)60153-9.
doi: 10.1016/S1671-2927(07)60153-9
[11] PIZZEGHELLO D, BERTI A, NARDI S, MORARI F. Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agriculture, Ecosystems & Environment, 2011, 141(1/2): 58-66. doi: 10.1016/j.agee.2011.02.011.
doi: 10.1016/j.agee.2011.02.011
[12] REDDY D D, RAO A S, RUPA T R. Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phosphorus in a Vertisol. Bioresource Technology, 2000, 75(2): 113-118. doi: 10.1016/S0960-8524(00)00050-X.
doi: 10.1016/S0960-8524(00)00050-X
[13] EGHBALL B, WIENHOLD B L, WOODBURY B L, EIGENBERG R A. Plant availability of phosphorus in swine slurry and cattle feedlot manure. Agronomy Journal, 2005, 97(2): 542-548. doi: 10.2134/agronj2005.0542.
doi: 10.2134/agronj2005.0542
[14] KAHILUOTO H, KUISMA M, KETOJA E, SALO T, HEIKKINEN J. Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer. Environmental Science & Technology, 2015, 49(4): 2115-2122. doi: 10.1021/es503387y.
doi: 10.1021/es503387y
[15] 严正娟, 陈硕, 王敏锋, 宋梓玮, 贾伟, 陈清. 不同动物粪肥的磷素形态特征及有效性分析. 农业资源与环境学报, 2015, 32(1): 31-39. doi: 10.13254/j.jare.2014.0283.
doi: 10.13254/j.jare.2014.0283
YAN Z J, CHEN S, WANG M F, SONG Z W, JIA W, CHEN Q. Characteristics and availability of different forms of phosphorus in animal manures. Journal of Agricultural Resources and Environment, 2015, 32(1): 31-39. doi: 10.13254/j.jare.2014.0283. (in Chinese)
doi: 10.13254/j.jare.2014.0283
[16] CONDRON L M, TURNER B L, CADE-MENUN B J. Chemistry and dynamics of soil organic phosphorus. Agronomy Monographs. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2015: 87-121. doi: 10.2134/agronmonogr46.c4.
doi: 10.2134/agronmonogr46.c4
[17] PAGLIARI P H. Variety and solubility of phosphorus forms in animal manure and their effects on soil test phosphorus//HE Z Q, ZHANG H L. Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment. Dordrecht: Springer Netherlands, 2014: 141-161.
[18] AJIBOYE B, AKINREMI O O, HU Y F, FLATEN D N. Phosphorus speciation of sequential extracts of organic amendments using nuclear magnetic resonance and X-ray absorption near-edge structure spectroscopies. Journal of Environmental Quality, 2007, 36(6): 1563-1576. doi: 10.2134/jeq2006.0541.
doi: 10.2134/jeq2006.0541
[19] 莫淑勋, 钱菊芳, 钱承梁. 猪粪等有机肥料中磷素养分循环再利用的研究. 土壤学报, 1991, 28(3): 309-316.
MO S X, QIAN J F, QIAN C L. Studies on phosphorus of organic manures and its reutilization. Acta Pedologica Sinica, 1991, 28(3): 309-316. (in Chinese)
[20] SIKORA L J, ENKIRI N K. Comparison of phosphorus uptake from poultry litter compost with triple superphosphate in codorus soil. Agronomy Journal, 2005, 97(3): 668-673. doi: 10.2134/agronj2004.0008.
doi: 10.2134/agronj2004.0008
[21] MATERECHERA S A, MORUTSE H M. Response of maize to phosphorus from fertilizer and chicken manure in a semi-arid environment of South Africa. Experimental Agriculture, 2009, 45(3): 261-273. doi: 10.1017/s0014479709007868.
doi: 10.1017/s0014479709007868
[22] EBELING A M, COOPERBAND L R, BUNDY L G. Phosphorus availability to wheat from manures, biosolids, and an inorganic fertilizer. Communications in Soil Science and Plant Analysis, 2003, 34(9/10): 1347-1365. doi: 10.1081/CSS-120020449.
doi: 10.1081/CSS-120020449
[23] KULIGOWSKI K, POULSEN T G, RUBÆK G H, SØRENSEN P. Plant-availability to barley of phosphorus in ash from thermally treated animal manure in comparison to other manure based materials and commercial fertilizer. European Journal of Agronomy, 2010, 33(4): 293-303. doi: 10.1016/j.eja.2010.08.003.
doi: 10.1016/j.eja.2010.08.003
[24] 邢璐. 不同粪肥的施用对土壤磷素转化与迁移的影响[D]. 北京: 中国科学院大学, 2013.
XING L. Effects of different manures on transformation and movement of phosphorus in soils[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese)
[25] HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi: 10.2136/sssaj1982.03615995004600050017x.
doi: 10.2136/sssaj1982.03615995004600050017x
[26] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Analysis Methods of Soil and Agricultural Chemistry. China Agriculture Scientech Press, 2000. (in Chinese)
[27] MUÑOZ G R, KELLING K A, RYLANT K E, ZHU J. Field evaluation of nitrogen availability from fresh and composted manure. Journal of Environmental Quality, 2008, 37(3): 944-955. doi: 10.2134/jeq2007.0219.
doi: 10.2134/jeq2007.0219
[28] DELIN S, STENBERG B, NYBERG A, BROHEDE L. Potential methods for estimating nitrogen fertilizer value of organic residues. Soil Use and Management, 2012, 28(3): 283-291. doi: 10.1111/j.1475-2743.2012.00417.x.
doi: 10.1111/j.1475-2743.2012.00417.x
[29] SCHRÖDER J J, UENK D, HILHORST G J. Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant and Soil, 2007, 299(1): 83-99. doi: 10.1007/s11104-007-9365-7.
doi: 10.1007/s11104-007-9365-7
[30] DOU Z, TOTH J D, GALLIGAN D T, RAMBERG JR C F, FERGUSON J D. Laboratory procedures for characterizing manure phosphorus. Journal of Environmental Quality, 2000, 29(2): 508-514. doi: 10.2134/jeq2000.00472425002900020019x.
doi: 10.2134/jeq2000.00472425002900020019x
[31] 李玲玲, 李书田. 猪粪氮素有效性与替代化肥氮当量研究. 中国土壤与肥料, 2011(5): 60-64. doi: 10.3969/j.issn.1673-6257.2011.05.012.
doi: 10.3969/j.issn.1673-6257.2011.05.012
LI L L, LI S T. Nitrogen availability of pig manure and its fertilizer equivalence. Soils and Fertilizers Sciences in China, 2011(5): 60-64. doi: 10.3969/j.issn.1673-6257.2011.05.012. (in Chinese)
doi: 10.3969/j.issn.1673-6257.2011.05.012
[32] PAGLIARI P H, LABOSKI C A M. Investigation of the inorganic and organic phosphorus forms in animal manure. Journal of Environmental Quality, 2012, 41(3): 901-910. doi: 10.2134/jeq2011.0451.
doi: 10.2134/jeq2011.0451
[33] TURNER B L, LEYTEM A B. Phosphorus compounds in sequential extracts of animal manures: chemical speciation and a novel fractionation procedure. Environmental Science & Technology, 2004, 38(22): 6101-6108. doi: 10.1021/es0493042.
doi: 10.1021/es0493042
[34] HANSEN J C, CADE-MENUN B J, STRAWN D G. Phosphorus speciation in manure-amended alkaline soils. Journal of Environmental Quality, 2004, 33(4): 1521-1527. doi: 10.2134/jeq2004.1521.
doi: 10.2134/jeq2004.1521
[35] 刘占军, 谢佳贵, 张宽, 王秀芳, 侯云鹏, 尹彩侠, 李书田. 有机肥磷替代化肥磷对春玉米干物质积累和磷素吸收的影响. 玉米科学, 2011, 19(2): 123-128.
LIU Z J, XIE J G, ZHANG K, WANG X F, HOU Y P, YIN C X, LI S T. Biomass accumulation and phosphorus uptake of spring maize as influenced by organic manure substitution for chemical phosphate. Journal of Maize Sciences, 2011, 19(2): 123-128. (in Chinese)
[36] 赵明, 赵征宇, 蔡葵, 王玉洲. 畜禽有机肥料当季速效氮磷钾养分释放规律. 山东农业科学, 2004(5): 59-61.
ZHAO M, ZHAO Z Y, CAI K, WANG Y Z. Release rule of Nitrogen, Phosphorus, potassium in animal manures. Shandong Agricultural Sciences, 2004(5): 59-61. (in Chinese)
[37] 姜宗庆, 封超年, 黄联联, 郭文善, 朱新开, 彭永欣. 施磷量对小麦物质生产及吸磷特性的影响. 植物营养与肥料学报, 2006, 12(5): 628-634. doi: 10.3321/j.issn:1008-505X.2006.05.005.
doi: 10.3321/j.issn:1008-505X.2006.05.005
JIANG Z Q, FENG C N, HUANG L L, GUO W S, ZHU X K, PENG Y X. Effects of phosphorus application on dry matter production and phosphorus uptake in wheat (Triticum aestivum L.). Plant Nutrition and Fertilizer Science, 2006, 12(5): 628-634. doi: 10.3321/j.issn:1008-505X.2006.05.005. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2006.05.005
[38] 韩燕来, 介晓磊, 谭金芳, 郭天财, 朱云集, 王晨阳, 夏国军, 刘征. 超高产冬小麦氮磷钾吸收、分配与运转规律的研究. 作物学报, 1998, 24(6): 908-915.
HAN Y L, JIE X L, TAN J F, GUO T C, ZHU Y J, WANG C Y, XIA G J, LIU Z. Studies on absorption, distribution and translocation of N, P and K of super-high yield winter wheat. Acta Agronomica Sinica, 1998, 24(6): 908-915. (in Chinese)
[39] 唐继伟, 徐久凯, 温延臣, 田昌玉, 林治安, 赵秉强. 长期单施有机肥和化肥对土壤养分和小麦产量的影响. 植物营养与肥料学报, 2019, 25(11): 1827-1834. doi: 10.11674/zwyf.18436.
doi: 10.11674/zwyf.18436
TANG J W, XU J K, WEN Y C, TIAN C Y, LIN Z A, ZHAO B Q. Effects of organic fertilizer and inorganic fertilizer on the wheat yields and soil nutrients under long-term fertilization. Plant Nutrition and Fertilizer Science, 2019, 25(11): 1827-1834. doi: 10.11674/zwyf.18436. (in Chinese)
doi: 10.11674/zwyf.18436
[40] DELIN S. Fertilizer value of phosphorus in different residues. Soil Use and Management, 2016, 32(1): 17-26. doi: 10.1111/sum.12227.
doi: 10.1111/sum.12227
[41] 赵少华, 宇万太, 张璐, 沈善敏, 马强. 土壤有机磷研究进展. 应用生态学报, 2004, 15(11): 2189-2194.
ZHAO S H, YU W T, ZHANG L, SHEN S M, MA Q. Research advance in soil organic phosphorus. Chinese Journal of Applied Ecology, 2004, 15(11): 2189-2194. (in Chinese)
[42] 姜一, 步凡, 张超, 陈立新. 土壤有机磷矿化研究进展. 南京林业大学学报(自然科学版), 2014, 38(3): 160-166. doi: 10.3969/j.issn.1000-2006.2014.03.031.
doi: 10.3969/j.issn.1000-2006.2014.03.031
JIANG Y, BU F, ZHANG C, CHEN L X. Research advances on soil organic phosphorus mineralization. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(3): 160-166. doi: 10.3969/j.issn.1000-2006.2014.03.031. (in Chinese)
doi: 10.3969/j.issn.1000-2006.2014.03.031
[43] JENSEN L S. Animal manure fertiliser value, crop utilisation and soil quality impacts. Animal Manure Recycling. Chichester, UK: John Wiley & Sons, Ltd, 2013: 295-328.
[44] DE NOTARIS C, SØRENSEN P, MØLLER H B, WAHID R, ERIKSEN J. Nitrogen fertilizer replacement value of digestates from three green manures. Nutrient Cycling in Agroecosystems, 2018, 112(3): 355-368. doi: 10.1007/s10705-018-9951-5.
doi: 10.1007/s10705-018-9951-5
[45] 严正娟. 施用粪肥对设施菜田土壤磷素形态与移动性的影响[D]. 北京: 中国农业大学, 2015.
YAN Z J. Effects of manure application on the form and mobility of soil phosphorus in vegetable greenhouse[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[46] PARHAM J A, DENG S P, DA H N, SUN H Y, RAUN W R. Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biology and Fertility of Soils, 2003, 38(4): 209-215. doi: 10.1007/s00374-003-0657-7.
doi: 10.1007/s00374-003-0657-7
[47] PARHAM JA, DENG SP, RAUN WR, JOHNSON G V. Long-term cattle manure application in soil. I. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities. Biology & Fertility of Soils, 2002, 35(5): 328-337.
[48] SATO S, SOLOMON D, HYLAND C, KETTERINGS Q M, LEHMANN J. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environmental Science & Technology, 2005, 39(19): 7485-7491. doi: 10.1021/es0503130.
doi: 10.1021/es0503130
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[5] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[6] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[7] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[8] XIONG ShuPing,GAO Ming,ZHANG ZhiYong,QIN BuTan,XU SaiJun,FU XinLu,WANG XiaoChun,MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[9] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[10] DONG ZeKuan,ZHANG ShuiQin,LI YanTing,GAO Qiang,ZHAO BingQiang,YUAN Liang. Effects of Chelating Agent on Dissolution, Fixation and Fertisphere Transformation of Diammonium Phosphate [J]. Scientia Agricultura Sinica, 2022, 55(21): 4225-4236.
[11] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[12] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[13] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[14] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[15] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!