Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4225-4236.doi: 10.3864/j.issn.0578-1752.2022.21.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Chelating Agent on Dissolution, Fixation and Fertisphere Transformation of Diammonium Phosphate

DONG ZeKuan1(),ZHANG ShuiQin2,LI YanTing2,GAO Qiang1,ZHAO BingQiang2,YUAN Liang2()   

  1. 1College of Resources and Environment, Jilin Agricultural University, Changchun 130118
    2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2021-09-07 Accepted:2021-12-24 Online:2022-11-01 Published:2022-11-09
  • Contact: Liang YUAN E-mail:dongzekuan708411@163.com;yuanliang@caas.cn

Abstract:

【Objective】Promoting the dissolution of phosphate fertilizer and reducing its fixation are important ways to ensure the phosphate supply and to improve the utilization rate of phosphate fertilizer. In this study, the test products of phosphate fertilizer by adding hydroxyethylidene diphosphonic acid (HEDP) and sodium gluconate (SG) into diammonium phosphate were prepared to investigate its dissolution, anti-fixation and fertisphere transformation characteristics, so as to provide a theoretical and technical basis for the efficient utilization of phosphate fertilizer. 【Method】 HEDP and SG were physically mixed with powdered diammonium phosphate at the addition ratio of 0, 0.5%, 1%, 3% and 5%, respectively, and the extrusion granulation was used to obtain the nine granular diammonium phosphate test products, specifically, common diammonium phosphate (P), HEDP0.5%+P, HEDP1%+P, HEDP3%+P, HEDP5%+P, SG0.5%+P, SG1%+P, SG3%+P, and SG5%+P. The dissolution rate and fixation rate of water-soluble phosphorus in different diammonium phosphate particles were analyzed and compared by using water dissolution rate method and CaCl2 precipitation method, respectively. A soil cultivation was conducted to investigate the transformation characteristics of diammonium phosphate in the fertisphere. 【Result】 (1) Adding HEDP and SG increased the dissolution rate of diammonium phosphate on average by 27.7% and 20.0%, respectively. When HEDP and SG were added at 5% and 0.5%, the dissolution rates were 5.1%·min-1 and 4.8%·min-1, respectively, higher than other additive rate, and also higher than P by 39.2% and 32.6%, respectively. (2) When HEDP and SG were added, the fixation rates of water-soluble phosphorus in diammonium phosphate decreased by 10.3% and 6.6%, respectively. When the additive rate of chelating agent was at 5% and 3%, the fixation rate of water-soluble phosphorus was lower than P by 58.1% and 61.3% for HEDP, 17.0% and 11.8% for SG, respectively. (3) The content of available phosphorus in the fertisphere soil treated with HEDP+P and SG+P significantly increased by 39.5% and 21.2%, respectively, and HEDP+P had a better performance. When the additive rate of HEDP and SG was at 3%, the available phosphorus content in fertisphere soil was 2.9 g·kg-1 and 2.5 g·kg-1, respectively, higher than that of P by 53.3% and 31.9%, respectively. (4) The Ca2-P contents in the fertisphere soil treated with HEDP+P and SG+P were higher than that of P by 38.2% and 43.0%, respectively, and both of HEDP and SG had a better performance when their additive amount at 3%. The Ca8-P content in the 5 mm fertisphere soil treated with HEDP+P and SG+P was lower than that of P by 33.6% and 14.5%, respectively. When the additive amount of HEDP and SG was at 0.5% and 3%, the Ca8-P content of fertisphere was 0.9 g·kg-1 and 1.5 g·kg-1, respectively, lower than that of P by 53.4% and 25.8%, respectively. (5) The contents of available phosphorus and Ca2-P in the fertisphere soil were positively correlated with the dissolution rate of phosphorus fertilizer and negatively correlated with the fixation rate of water-soluble phosphorus.【Conclusion】The addition of HEDP and SG could effectively enhance the dissolution of diammonium phosphate and reduce phosphorus fixation. HEDP had a better performance, and especially when its addition amount was at 3%, HEDP could more improve the available phosphorus content and decrease the transformation from Ca2-P to Ca8-P in the fertisphere soil.

Key words: diammonium phosphate, hydroxyethylidene diphosphonic acid, sodium gluconate, dissolution, anti-fixation, fertisphere, phosphorus forms

Table 1

The P2O5 content of diammonium phosphate products"

供试产品
Test product
螯合剂
Chelating agent
螯合剂添加量
Additive amount
有效磷含量
Available phosphorus
content (P2O5, %)
水溶性磷含量
Water-soluble phosphorus
content (P2O5, %)
P 46.61 42.83
HEDP0.5%+P 羟基乙叉二膦酸
Hydroxyethylidene
diphosphonic acid
0.5% 46.48 42.61
HETP1%+P 1% 45.75 42.40
HETP3%+P 3% 45.24 41.55
HETP5%+P 5% 43.27 40.69
SG0.5%+P 葡萄糖酸钠
Sodium gluconate
0.5% 46.28 42.68
SG1%+P 1% 45.15 42.30
SG3%+P 3% 44.31 41.50
SG5%+P 5% 43.47 40.67

Fig. 1

Schematic diagram of the fertisphere soil sampling"

Table 2

Effects of HEDP and SG on the dissolution rate of water-soluble phosphorus in diammonium phosphate (%·min-1)"

处理
Treatment
螯合剂添加量Additive amount 平均
Average
0.5% 1% 3% 5%
P 3.65cA 3.62bA 3.63cA 3.67cA 3.64
SG+P 4.84aA 4.11aC 4.53bB 4.67bAB 4.37
HEDP+P 4.61bB 4.18aC 4.98aA 5.11aA 4.65
平均Average 4.72 4.15 4.75 5.09 4.51

Table 3

Effects of HEDP and SG on the fixation rate of water-soluble phosphorus in diammonium phosphate (%)"

处理
Treatment
螯合剂添加量Additive amount 平均
Average
0.5% 1% 3% 5%
P 68.29aA 70.40aA 69.56aA 69.93aA 69.14
SG+P 68.38aA 66.87bA 61.32bB 61.87bB 64.61
HEDP+P 65.19bA 64.33cA 60.55bB 58.05cB 62.03
平均Average 66.74 65.60 60.94 59.96 63.32

Fig. 2

Effects of different diammonium phosphate applications on available phosphorus content in fertisphere soil"

Fig. 3

Effects of different diammonium phosphate applications on the contents of Ca2-P and Ca8-P in fertisphere soil"

Table 4

Correlation between phosphorus content in the fertisphere soil with influencing factors (n=15)"

肥际微域磷形态
Phosphorus forms in the fertisphere soil
磷肥溶解速率
Dissolution rate of phosphate fertilizer
水溶性磷固定率
Water soluble phosphorus fixation rate
AP 0.686** -0.842**
Ca2-P 0.684** -0.869**
Ca8-P -0.082 -0.070
[49] 韩应琳, 赵任辉, 马迎军, 王龙根. 锌盐在常用有机膦酸阻垢剂中的溶解和稳定性. 南京化工大学学报(自然科学版), 1997, 19(1): 57-61.
HAN Y L, ZHAO R H, MA Y J, WANG L G. Studies on solubility and stability of zinc salt in common organo phosphonic acid scale inhibitors. Journal of Nanjing University of Chemical Technology (Natural Science), 1997, 19(1): 57-61. (in Chinese)
[1] ELSER J, BENNETT E. A broken biogeochemical cycle. Nature, 2011, 478(7367): 29-31. doi:10.1038/478029a.
[2] LINDSAY W L, FRAZIER A W, STEPHENSON H F. Identification of reaction products from phosphate fertilizers in soils. Soil Science Society of America Journal, 1962, 26(5): 446-452. doi:10.2136/sssaj1962.03615995002600050013x.
[3] KING K W, WILLIAMS M R, MACRAE M L, FAUSEY N R, FRANKENBERGER J, SMITH D R, KLEINMAN P J A, BROWN L C. Phosphorus transport in agricultural subsurface drainage: A review. Journal of Environmental Quality, 2015, 44(2): 467-485. doi:10.2134/jeq2014.04.0163.
[4] 冯媛媛. 主要粮食作物磷肥利用率与土壤有效磷含量的定量关系分析[D]. 荆州: 长江大学, 2019: 74.
[50] 逄锦江, 刘忠, 惠岚峰, 蒋华朋, 宗胶娜. HEDP作为纸浆H2O2漂白螯合剂的研究. 中华纸业, 2012, 33(14): 27-30.
PANG J J, LIU Z, HUI L F, JIANG H P, ZONG J N. HEDP as chelating agent for hydrogen peroxide bleaching,China Pulp & Paper Industry, 2012, 33(14): 27-30. (in Chinese)
[4] FENG Y Y. An analysis of the relationship between phosphorus use efficiency and soil Olsen-P in the wheat, rice, corn land[D]. Jingzhou: Yangtze University, 2019: 74. (in Chinese)
[5] SHARPLEY A N. Phosphorus cycling in unfertilized and fertilized agricultural soils. Soil Science Society of America Journal, 1985, 49(4): 905-911. doi:10.2136/sssaj1985.03615995004900040023x.
[51] 鲁如坤. “微域土壤学”: 一个可能的土壤学的新分支. 土壤学报, 1999(2): 287-288.
LU R K. Microzone soil science — A possible new branch of soil science. Acta Pedologica Sinica, 1999(2): 287-288. (in Chinese)
[6] SUN B, ZHANG L X, YANG L Z, ZHANG F S, NORSE D, ZHU Z L. Agricultural non-point source pollution in China: causes and mitigation measures. Ambio, 2012, 41(4): 370-379. doi:10.1007/s13280-012-0249-6.
[7] 王小华, 闫宁, 张营, 贾莉莉, 郑磊. 聚磷酸铵对石灰性土壤有效磷含量和无机磷形态分布的影响. 西北农林科技大学学报(自然科学版), 2021, 49(10): 64-72. doi:10.13207/j.cnki.jnwafu.2021.10.009.
WANG X H, YAN N, ZHANG Y, JIA L L, ZHENG L. Effect of ammonium polyphosphate application on available phosphorus content and inorganic phosphorus distribution in calcareous soils. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(10): 64-72. doi:10.13207/j.cnki.jnwafu.2021.10.009. (in Chinese)
[8] 杨依彬, 陈小娟, 邓兰生, 林净净, 程凤娴, 胡克纬, 张承林, 涂攀峰. 聚磷酸铵对砖红壤和石灰性土壤上磷素吸附解吸行为的影响. 浙江农业学报, 2021, 33(4): 697-703. doi:10.3969/j.issn.1004-1524.2021.04.15.
YANG Y B, CHEN X J, DENG L S, LIN J J, CHENG F X, HU K W, ZHANG C L, TU P F. Effect of ammonium polyphosphate on phosphorus adsorption and desorption in laterite and calcareous soil. Acta Agriculturae Zhejiangensis, 2021, 33(4): 697-703. doi:10.3969/j.issn.1004-1524.2021.04.15. (in Chinese)
[9] 熊子怡, 邱烨, 郭琳钰, 郭涛, 石纹豪. 聚磷酸铵在土壤中有效性的变化及其影响因素. 植物营养与肥料学报, 2020, 26(8): 1473-1480.
XIONG Z Y, QIU Y, GUO L Y, GUO T, SHI W H. The availability of ammonium polyphosphate in soil and the impacting factors. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1473-1480. (in Chinese)
[10] 付文杰, 万亚珍, 张文辉, 梅丹丹, 薛亚男. γ-聚谷氨酸磷肥增效剂对石灰性土壤有效磷的影响. 中国土壤与肥料, 2021(2): 17-22. doi:10.11838/sfsc.1673-6257.20071.
FU W J, WAN Y Z, ZHANG W H, MEI D D, XUE Y N. Effect of polyglutamic acid phosphate fertilizer synergist on available phosphorus in calcareous soil. Soil and Fertilizer Sciences in China, 2021(2): 17-22. doi:10.11838/sfsc.1673-6257.20071. (in Chinese)
[11] 王彬. 含葡萄糖氮、磷肥在石灰性潮土中的转化特征及其肥效研究[D]. 北京: 中国农业科学院, 2020: 88.
WANG B. Transformation and efficiency of nitrogen/phosphorus fertilizer containing glucose in calcareous fluvo-aquic soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020: 88. (in Chinese)
[12] 李军, 袁亮, 赵秉强, 李燕婷, 温延臣, 李伟, 林治安. 磷肥中腐植酸添加比例对玉米产量、磷素吸收及土壤速效磷含量的影响. 植物营养与肥料学报, 2017, 23(3): 641-648. doi:10.11674/zwyf.16319.
LI J, YUAN L, ZHAO B Q, LI Y T, WEN Y C, LI W, LIN Z A. Effect of adding humic acid to phosphorous fertilizer on maize yield and phosphorus uptake and soil available phosphorus content. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 641-648. doi:10.11674/zwyf.16319. (in Chinese)
[13] 李志坚, 林治安, 赵秉强, 袁亮, 李燕婷, 温延臣. 增效磷肥对冬小麦产量和磷素利用率的影响. 植物营养与肥料学报, 2013, 19(6): 1329-1336.
LI Z J, LIN Z A, ZHAO B Q, YUAN L, LI Y T, WEN Y C. Effects of value-added phosphate fertilizers on yield and phosphorus utilization of winter wheat. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1329-1336. (in Chinese)
[14] 孙桂芳. 改性木质素和有机酸类物质对土壤磷素有效性的影响[D]. 北京: 中国农业科学院, 2010: 137.
SUN G F. Study on effect of modified lignin and organic acids on soil phosphates[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010: 137. (in Chinese)
[15] 邱兰兰, 贺山峰, 石元亮. 活化剂对黑土磷有效性影响研究. 土壤通报, 2013, 44(5): 1168-1172. doi:10.19336/j.cnki.trtb.2013.05.025.
QIU L L, HE S F, SHI Y L. Effects of phosphorus activator on the types and validities of phosphorus in black soil. Chinese Journal of Soil Science, 2013, 44(5): 1168-1172. doi:10.19336/j.cnki.trtb.2013.05.025. (in Chinese)
[16] 王磊, 陈永忠, 王承南, 陈隆升, 王瑞, 罗健. 磷活化剂对红壤吸磷特性的影响. 西南林业大学学报, 2013, 33(3): 20-24. doi:10.3969/j.issn.2095-1914.2013.03.004.
WANG L, CHEN Y Z, WANG C N, CHEN L S, WANG R, LUO J. Effects of phosphorus activator on absorbability of phosphorus in red soil. Journal of Southwest Forestry College, 2013, 33(3): 20-24. doi:10.3969/j.issn.2095-1914.2013.03.004. (in Chinese)
[17] 穆环珍, 曾文, 黄衍初, 孙悦凤, 杨问波. 增效磷肥的研制与增产效应研究. 农业环境保护, 2002, 21(1): 26-28. doi:10.3321/j.issn:1672-2043.2002.01.008.
MU H Z, ZENG W, HUANG Y C, SUN Y F, YANG W B. A study made for developing synergist of phosphoric fertilizer and its function on enhancement of crop yield. Agro-Environmental Protection, 2002, 21(1): 26-28. doi:10.3321/j.issn:1672-2043.2002.01.008. (in Chinese)
[18] 黄雷, 毛小云, 王君, 邓冰露, 王冠豪, 廖宗文. 促释磷肥的结构特征及其有效性机理研究. 中国农业科学, 2013, 46(4): 769-779.
HUANG L, MAO X Y, WANG J, DENG B L, WANG G H, LIAO Z W. Research on the structural characteristics of promoted-release phosphate rocks and its phosphorus bioavailability mechanism. Scientia Agricultura Sinica, 2013, 46(4): 769-779. (in Chinese)
[19] 杜振宇, 王清华, 刘方春, 马丙尧. 腐殖酸物质对磷在褐土中迁移的影响. 中国土壤与肥料, 2012(2): 14-17, 50. doi:10.3969/j.issn.1673-6257.2012.02.003.
DU Z Y, WANG Q H, LIU F C, MA B Y. Phosphorus movement in a cinnamon soil as affected by humic substances. Soil and Fertilizer Sciences in China, 2012(2): 14-17, 50. doi:10.3969/j.issn.1673-6257.2012.02.003. (in Chinese)
[20] 王光火, 朱祖祥, J.K.Syers. 石灰性土壤与磷酸盐的反应及吸持态磷的同位素交换性. 土壤学报, 1993, 30(4): 374-379.
WANG G H, ZHU Z X, SYERS J K. Sorption and exchangeability of in calcareous soil. Acta Pedologica Sinica, 1993, 30(4): 374-379. (in Chinese)
[21] WASAY S A, BARRINGTON S F, TOKUNAGA S. Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environmental Technology, 1998, 19(4): 369-379. doi:10.1080/09593331908616692.
[22] 丁佳惠, 王祺, 樊秉乾, 张帅, 崔建宇, 胡兆平, 陈清. 乙二胺四乙酸和柠檬酸活化石灰性土壤磷素的潜力评估. 植物营养与肥料学报, 2020, 26(2): 362-369. doi:10.11674/zwyf.19098.
DING J H, WANG Q, FAN B Q, ZHANG S, CUI J Y, HU Z P, CHEN Q. Activation potential of soil legacy phosphorus by EDTA and citric acid evaluated with consecutive extraction method in the calcareous soil. Journal of Plant Nutrition and Fertilizer, 2020, 26(2): 362-369. doi:10.11674/zwyf.19098. (in Chinese)
[23] 马怡璇, 毛凯, 莫婷, 潘红春, 刘红. 响应面试验优化葡萄糖酸钠铁合成工艺及其理化性质分析. 食品科学, 2016, 37(6): 64-70. doi:10.7506/spkx1002-6630-201606011.
MA Y X, MAO K, MO T, PAN H C, LIU H. Optimization of synthesis parameters and physicochemical properties of sodium ferric gluconate complex. Food Science, 2016, 37(6): 64-70. doi:10.7506/spkx1002-6630-201606011. (in Chinese)
[24] 喻强. 循环冷却水中铜铁铝体系绿色阻垢缓蚀剂的筛选研究[D]. 长沙: 长沙理工大学, 2018: 68.
YU Q. Screening and performances research on multi-component water treatment agent for polymetallic system of cooling water[D]. Changsha: Changsha University of Science & Technology, 2018: 68. (in Chinese)
[25] 马保国, 李高明, 李相国, 谭洪波, 李正冈. 葡萄糖酸钠与聚羧酸减水剂的复合效应研究. 武汉理工大学学报, 2011, 33(1): 52-55. doi:10.3963/j.issn.1671-4431.2011.01.011.
MA B G, LI G M, LI X G, TAN H B, LI Z G. Study on the effects by compounding the polycarboxylic type superplasticizer with sodium gluconate. Journal of Wuhan University of Technology, 2011, 33(1): 52-55. doi:10.3963/j.issn.1671-4431.2011.01.011. (in Chinese)
[26] 黄金营, 许立铭, 魏慧芳. 羟基乙叉二膦酸溶垢机理的研究. 腐蚀与防护, 2003, 24(7): 282-284. doi:10.3969/j.issn.1005-748X.2003.07.002.
HUANG J Y, XU L M, WEI H F. Mechanism of dissolving calcium carbonate using 1-hydroxyethylidene-1, 1-diphosphonic acid. Corrosion and Protection, 2003, 24(7): 282-284. doi:10.3969/j.issn.1005-748X.2003.07.002. (in Chinese)
[27] 兰淑仙, 金雅凤, 张训天, 金鲜花. 螯合分散剂分散力测试方法研究. 印染助剂, 2002, 19(5): 49-50. doi:10.3969/j.issn.1004-0439.2002.05.016.
LAN S X, JIN Y F, ZHANG X T, JIN X H. A study on test method of dispersing power of sequestering/dispersing agent. Textile Auxiliaries, 2002, 19(5): 49-50. doi:10.3969/j.issn.1004-0439.2002.05.016. (in Chinese)
[28] 马怡璇, 王文婷, 吴姣娇, 潘红春, 刘红. 葡萄糖酸钠铁合成工艺优化及表征. 食品科学, 2016, 37(12): 46-51. doi:10.7506/spkx1002-6630-201612008.
MA Y X, WANG W T, WU J J, PAN H C, LIU H. Optimization of synthesis process and characterization of sodium ferric gluconate complex. Food Science, 2016, 37(12): 46-51. doi:10.7506/spkx1002-6630-201612008. (in Chinese)
[29] 蒲世民. 镁表面锆离子螯合羟基乙叉二膦酸复合涂层的腐蚀行为和生物相容性研究[D]. 成都: 西南交通大学, 2018.
PU S M. Corrosion-controlling and biocompatible Zr ion-chelated 1-hydroxyethylidene-1, 1-diphosphonic acid coating on magnesium[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
[30] 杜建军, 廖宗文, 宋波, 朱兆华. 包膜控释肥养分释放特性评价方法的研究进展. 植物营养与肥料学报, 2002, 8(1): 16-21. doi:10.3321/j.issn:1008-505X.2002.01.003.
DU J J, LIAO Z W, SONG B, ZHU Z H. Progress on evaluation methods for nutrient release characteristic of coated controlled release fertilizers. Plant Nutrition and Fertilizer Science, 2002, 8(1): 16-21. doi:10.3321/j.issn:1008-505X.2002.01.003. (in Chinese)
[31] 张英强, 张水勤, 袁亮, 李燕婷, 林治安, 王立艳, 赵秉强. 柠檬酸改性磷肥的结构分析及其对水溶性磷固定率的影响. 植物营养与肥料学报, 2021, 27(5): 878-885. doi:10.11674/zwyf.20542.
ZHANG Y Q, ZHANG S Q, YUAN L, LI Y T, LIN Z A, WANG L Y, ZHAO B Q. Structure analysis of citric acid-modified phosphate fertilizer and its effects on water-soluble phosphorus fixation. Journal of Plant Nutrition and Fertilizer, 2021, 27(5): 878-885. doi:10.11674/zwyf.20542. (in Chinese)
[32] 景建元, 袁亮, 张水勤, 李燕婷, 赵秉强. 腐殖酸磷肥中的腐殖酸对磷迁移的影响及机理. 中国农业科学, 2021, 54(23): 5032-2042. doi: 10.3864/j.issn.0578-1752.2021.23.009.
JING J Y, YUAN L, ZHANG S Q, LI Y T, ZHAO B Q. Effects and mechanism of humic acid in humic acid enhanced phosphate fertilizer on fertilizer-phosphorus migration. Scientia Agricultura Sinica, 2021, 54(23): 5032-2042. doi: 10.3864/j.issn.0578-1752.2021.23.009. (in Chinese)
[33] 张行峰, 陈防. 土壤有效磷测定(Olsen法)的温度校正. 土壤通报, 1998, 29(6): 282-283. doi:10.19336/j.cnki.trtb.1998.06.014.
ZHANG X F, CHEN F. Temperature correction of soil available phosphorus determination (Olsen method). Chinese Journal of Soil Science, 1998, 29(6): 282-283. doi:10.19336/j.cnki.trtb.1998.06.014. (in Chinese)
[34] 蒋柏藩, 顾益初. 石灰性土壤无机磷分级体系的研究. 中国农业科学, 1989, 22(3): 58-66.
JIANG B F, GU Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Scientia Agricultura Sinica, 1989, 22(3): 58-66. (in Chinese)
[35] 刘鹏, 张振都, 童旭宏, 苏英科. 水溶性肥料的发展研究进展. 现代农业科技, 2013(13): 243-244. doi:10.3969/j.issn.1007-5739.2013.13.162.
LIU P, ZHANG Z D, TONG X H, SU Y K. Research progress on development of water soluble fertilizer. Modern Agricultural Science and Technology, 2013(13): 243-244. doi:10.3969/j.issn.1007-5739.2013.13.162. (in Chinese)
[36] 李代红, 傅送保, 操斌. 水溶性肥料的应用与发展. 现代化工, 2012, 32(7): 12-15. doi:10.16606/j.cnki.issn0253-4320.2012.07.004.
LI D H, FU S B, CAO B. Application and development of water soluble fertilizer. Modern Chemical Industry, 2012, 32(7): 12-15. doi:10.16606/j.cnki.issn0253-4320.2012.07.004. (in Chinese)
[37] ZHANG S G, LEI W, XIA M Z, WANG F Y. QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index. Journal of Molecular Structure: THEOCHEM, 2005, 732(1/2/3): 173-182. doi:10.1016/j.theochem.2005.02.091.
[38] 刘宏, 王兴权, 胡发霞, 马福林. 添加剂对农用硫酸钾溶解速率的影响. 广州化工, 2019, 47(20): 66-69, 86. doi:10.3969/j.issn.1001-9677.2019.20.027.
LIU H, WANG X Q, HU F X, MA F L. Effects of additives on dissolution rate of potassium sulfate for agriculture. Guangzhou Chemical Industry, 2019, 47(20): 66-69, 86. doi:10.3969/j.issn.1001-9677.2019.20.027. (in Chinese)
[39] 兰淑仙, 金雅凤, 张训天, 金鲜花. 螯合分散剂分散力测试方法研究. 印染助剂, 2002, 19(5): 49-50. doi:10.3969/j.issn.1004-0439.2002.05.016.
LAN S X, JIN Y F, ZHANG X T, JIN X H. A study on test method of dispersing power of sequestering/dispersing agent. Textile Auxiliaries, 2002, 19(5): 49-50. doi:10.3969/j.issn.1004-0439.2002.05.016. (in Chinese)
[40] 文青松. 几种阻垢剂在工业洗涤剂中的应用性能研究(上). 中国洗涤用品工业, 2019(1): 34-42. doi:10.16054/j.cnki.cci.2019.01.005.
WEN Q S. Study on the application performance of several scale inhibitors in industrial detergent. China Cleaning Industry, 2019(1): 34-42. doi:10.16054/j.cnki.cci.2019.01.005. (in Chinese)
[41] 房福力, 李玉中, 李巧珍, 徐春英, 董一威, 郭智成. 柠檬酸与土壤磷相互作用的研究进展. 中国农学通报, 2012, 28(18): 26-30. doi:10.3969/j.issn.1000-6850.2012.18.005.
FANG F L, LI Y Z, LI Q Z, XU C Y, DONG Y W, GUO Z C. Research advance in the interaction of citric acid and phosphorous in soils. Chinese Agricultural Science Bulletin, 2012, 28(18): 26-30. doi:10.3969/j.issn.1000-6850.2012.18.005. (in Chinese)
[42] 高瑞, 任彦臻, 夏露, 张友寿. 一种铸造磷酸盐粘结剂的复合改性试验研究. 铸造, 2021, 70(4): 460-464. doi:10.3969/j.issn.1001-4977.2021.04.011.
GAO R, REN Y Z, XIA L, ZHANG Y S. Experimental study on composite modification of casting phosphate binder. Foundry, 2021, 70(4): 460-464. doi:10.3969/j.issn.1001-4977.2021.04.011. (in Chinese)
[43] 徐晖, 王宇平, 张晶晶. 新建锅炉的低浓度羟基乙叉二膦酸清洗. 清洗世界, 2012, 28(11): 1-4. doi:10.3969/j.issn.1671-8909.2012.11.001.
XU H, WANG Y P, ZHANG J J. Low concentration hydroxyl ethylidene phosphonic acid cleaning for new boiler. Cleaning World, 2012, 28(11): 1-4. doi:10.3969/j.issn.1671-8909.2012.11.001. (in Chinese)
[44] 方景礼. 有机多膦酸的合成、性质和应用. 石油化工, 1980, 9(7): 422-428.
FANG J L. Synthesis, properties and application of organic polyphosphonic acid. Petrochemical Technology, 1980, 9(7): 422-428. (in Chinese)
[45] 张青铃, 杨艳希, 罗友华, 许光辉, 杨辉, 戚欢阳, 贾玉龙, 黄亦琦. 化学药品对照品的吸湿性、溶解性与比表面积相关性研究. 中国现代应用药学, 2020, 37(11): 1343-1349. doi:10.13748/j.cnki.issn1007-7693.2020.11.012.
ZHANG Q L, YANG Y X, LUO Y H, XU G H, YANG H, QI H Y, JIA Y L, HUANG Y Q. Study on the correlation among hygroscopicity, solubility and specific surface area of the chemical reference. Chinese Journal of Modern Applied Pharmacy, 2020, 37(11): 1343-1349. doi:10.13748/j.cnki.issn1007-7693.2020.11.012. (in Chinese)
[46] 安迪, 杨令, 王冠达, 蓝锐, 王亭杰, 金涌. 磷在土壤中的固定机制和磷肥的高效利用. 化工进展, 2013, 32(8): 1967-1973. doi:10.3969/j.issn.1000-6613.2013.08.043.
AN D, YANG L, WANG G D, LAN R, WANG T J, JIN Y. Mechanisms of phosphorus fixation in soils and efficient utilization of phosphate fertilizer. Chemical Industry and Engineering Progress, 2013, 32(8): 1967-1973. doi:10.3969/j.issn.1000-6613.2013.08.043. (in Chinese)
[47] 李建华, 赵冰, 杜荣归, 林昌健. D-葡萄糖酸钠对模拟混凝土孔隙液中钢筋的缓蚀作用. 功能材料, 2007, 38(3): 509-511. doi:10.3321/j.issn:1001-9731.2007.03.049.
LI J H, ZHAO B, DU R G, LIN C J. Study on the anticorrosion of D-sodium gluconate on reinforcing steel in simulated concrete pore solution. Journal of Functional Materials, 2007, 38(3): 509-511. doi:10.3321/j.issn:1001-9731.2007.03.049. (in Chinese)
[48] 梁治齐. 实用清洗技术手册. 2版. 北京: 化学工业出版社, 2005.
LIANG Z Q. Practical Cleaning Technical Manual. 2nd ed. Beijing: Chemical Industry Press, 2005. (in Chinese)
[52] 杜振宇, 王清华, 周健民, 王火焰. 磷在潮土肥际微域中的迁移和转化. 土壤学报, 2012, 49(4): 725-730.
DU Z Y, WANG Q H, ZHOU J M, WANG H Y. Movement and transformation of phosphorus in fertilizer microsites in a fluvo-aquic soil. Acta Pedologica Sinica, 2012, 49(4): 725-730. (in Chinese)
[53] 金亮, 周健民, 王火焰, 陈小琴, 杜昌文. 石灰性土壤肥际磷酸二铵的转化与肥料磷的迁移. 磷肥与复肥, 2008, 23(5): 14-18. doi:10.3969/j.issn.1007-6220.2008.05.005.
JIN L, ZHOU J M, WANG H Y, CHEN X Q, DU C W. Transformation and translocation of fertilizer-P with DAP application at fertisphere in calcareous soil. Phosphate & Compound Fertilizer, 2008, 23(5): 14-18. doi:10.3969/j.issn.1007-6220.2008.05.005. (in Chinese)
[54] 付文杰, 万亚珍, 张文辉, 梅丹丹, 薛亚男. γ-聚谷氨酸磷肥增效剂对石灰性土壤有效磷的影响. 中国土壤与肥料, 2021(2): 17-22. doi:10.11838/sfsc.1673-6257.20071.
FU W J, WAN Y Z, ZHANG W H, MEI D D, XUE Y N. Effect of polyglutamic acid phosphate fertilizer synergist on available phosphorus in calcareous soil. Soil and Fertilizer Sciences in China, 2021(2): 17-22. doi:10.11838/sfsc.1673-6257.20071. (in Chinese)
[55] 于淑芳, 杨力. 石灰性土壤Ca-P分布及转化特征的研究. 土壤学报, 2001, 38(3): 373-378. doi:10.3321/j.issn:0564-3929.2001.03.018.
YU S F, YANG L. Study of Ca-P distribution and transformation feature in calcareous soil. Acta Pedologica Sinica, 2001, 38(3): 373-378. doi:10.3321/j.issn:0564-3929.2001.03.018. (in Chinese)
[56] 李若楠, 王政培, BATBAYAR Javkhlan, 张东杰, 张树兰, 杨学云. 等有机质土有效磷和无机磷形态的关系. 中国农业科学, 2019, 52(21): 3852-3865.
LI R N, WANG Z P, BATBAYAR J, ZHANG D J, ZHANG S L, YANG X Y. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865. (in Chinese)
[57] 郑杰炳, 王子芳, 高明, 魏朝富, 车福才, 欧阳柬, 唐书源. 含硅熔渣与化肥混合对硅有效性与磷固定率影响研究. 植物营养与肥料学报, 2007, 13(5): 941-947.
ZHENG J B, WANG Z F, GAO M, WEI C F, CHE F C, OUYANG J, TANG S Y. Effect of mixing slag and fertilizer on silicon availability and phosphorus fixation rate. Plant Nutrition and Fertilizer Science, 2007, 13(5): 941-947. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!