Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3609-3622.doi: 10.3864/j.issn.0578-1752.2021.17.005

• CLIMATE CHANGE AND MAIZE PRODUCTION IN CHINA • Previous Articles     Next Articles

Effects of Elevated Temperature on Maize Stem Growth, Lodging Resistance Characters and Yield

LIU DongYao(),YAN ZhenHua,CHEN YiBo,YANG Qin,JIA XuCun,LI HongPing,DONG PengFei,WANG Qun()   

  1. College of Agronomy, Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
  • Received:2020-09-13 Accepted:2020-11-10 Online:2021-09-01 Published:2021-09-09
  • Contact: Qun WANG E-mail:nxy1302@163.com;wangqun177@163.com

Abstract:

【Objective】 With the global climate change, the effects of elevated temperature on maize production system are increasingly complex. Lodging resistance plays an important role on the completely mechanized maize production system in present and the future. Thus, the studying on the characteristics of maize stem and lodging resistance responding to gradient warming during the whole season could provide the theoretical and practical basis to the adaptive cultivation approach in response to climate change in the future. 【Method】 Zhengdan 958 (ZD958) and Xianyu 335 (XY335) were tested as materials. Three temperature gradient of CK, CK+2℃, CK+4℃ were conducted in the greenhouse to study the effects of gradient warming on stem growth and development, stem mechanics characters, lodging resistance characters and grain yield. 【Result】 The results showed that with increasing temperature, plant height, ear height, the third internode length, stem length under the ear and above the ear were significantly higher than that of CK; CK+2℃ increased on average by 10.80%, 37.29%, 16.87%, 17.11% and 17.78%, respectively, compared to CK; CK+4℃ increased on average by 20.82%, 54.17%, 37.11%, 28.48% and 35.84%, respectively, compared to CK. Temperature increment significantly increased the ear location coefficient and stem diameter coefficient. Compared with CK+2℃ and CK, the stem diameter coefficient of CK+4℃ was increased by 15.92% and 58.99% on average, respectively. Temperature increment significantly decreased the number and area of vascular bundles of stems. Compared with CK, CK+4℃ and CK+2℃ decreased the number of central vascular bundles of third internode by 43.29% and 22.59%, respectively; CK+4℃ and CK+2℃ decreased total vascular bundle area by 40.33% and 28.68%, respectively. The effect of temperature increment on the number and area of central vascular bundle was greater than that of peripheral vascular bundle. The elevated temperature decreased the area of single peripheral and central vascular bundle, but increased that of XY335. And ZD958 had greater increment of the number of vascular bundles and area of total area of peripheral vascular bundles than XY335 under elevated temperature. Temperature increment significantly decreased the thrust resistance, puncture strength and crushing strength; Compared with CK, CK+4℃ and CK+2℃ significantly increased the thrust resistance by 50.75% and 43.75%, puncture strength by 25.41% and 29.59%, crushing strength by 22.41% and 23.58%, respectively. The thrust resistance showed significantly negative relationship with plant height, ear height and the third internode length, and positive relationship with stem diameter, moment of inertia, the number and area of peripheral vascular bundle, the number and area of central vascular bundle. XY335 and ZD958 had different responses to temperature increment in the whole season. Under elevated temperature, XY335 had higher increment of plant height, ear height, the third internode length, ear position coefficient and the stem diameter coefficient than ZD958. As the temperature rose, the area of single peripheral and central vascular bundle of ZD958 decreased, while the area of vascular bundle of XY335 increased. The decrease of the number of vascular bundle and the total area of edge vascular bundle of ZD958 was less than that of XY335. As the temperature rose, stem thrust reduction of XY335 was significantly greater than that of ZD958. XY335 showed maximum values at 25 days after silking, declined later, while ZD958 showed maximum values at the mature stage. The puncture strength and crushing strength of ZD958 were significantly negatively related to plant height, ear height and the third internode length, while positively related to stem diameter. The puncture strength of XY335 was significantly negatively related to plant height, while the crushing strength showed no significant relationship with those indexes. 【Conclusion】 Elevated temperature significantly promoted the growth and development of corn, and changed microstructure of stem, decreased the stem thrust resistance and increased lodging risk. The higher the temperature was, the greater the risk of lodging. The stem growth traits and lodging ability in different cultivars had significantly different response to elevated temperature.

Key words: elevated temperature, maize, internode length, stem vascular bundles, mechanics characteristic of stem, lodging resistance

Fig. 1

The changes of the average daily temperature, air humidity and light intensity under different treatments"

Table 1

The change of plant height, ear height, stem length and stalk width under different treatments"

品种
Cultivar
处理
Treatment
株高
Plant height (cm)
穗位高
Ear height (cm)
穗位系数
Ear coefficient
穗下节间长
Stem length under ear (cm)
穗上节间长
Stem length above ear (cm)
第三节间长
3rd internode length (mm)
茎粗
Stalk width (mm)
茎粗系数
Stalk width coefficient
截面惯性矩Moment of inertia(mm4)
ZD958 CK 274.33a 100.20a 0.37a 94.12a 107.52a 115.33a 20.16a 5.72a 8111.66a
CK+2℃ 295.67b 139.40b 0.47b 111.67b 132.77b 149.33b 18.72b 7.98b 6040.42b
CK+4℃ 314.33b 149.00b 0.47b 123.20c 144.23c 163.33c 18.35b 8.90c 5575.95b
XY335 CK 294.33a 97.60a 0.33a 93.60a 149.60a 164.67a 23.99a 6.86a 16265.35a
CK+2℃ 335.00b 132.20b 0.39b 109.43b 165.65b 171.67b 18.54b 9.26b 5809.57b
CK+4℃ 374.00c 155.80c 0.42b 131.77c 183.72c 218.33c 19.60b 11.14c 7234.58b

Fig. 2

The dynamic changes of stalk thrust resistance under different treatments CK: Contrast, CK+2℃: 2℃ higher than the control in the whole growth season, CK+4℃: 4℃ higher than the control in the whole growth season, VT: Tassel, AS10: 10 days after silking, AS25: 25 days after silking, TR: Mature period, TR10: 10 days after maturity. The same as below"

Fig. 3

The dynamic changes of stalk puncture strength under different treatments"

Fig. 4

The dynamic changes of stalk crushing strength under different treatments"

Fig. 5

The micro structure of the third internode of above ground under different treatments"

Table 2

The number and area of vascular bundle of stem under different treatments"

品种
Cultivar
处理
Treatment
维管束数目
Number of vascular bundle
单个维管束面积
Single vascular bundle area
维管束总面积
Vascular bundle total area
边缘Edge
(Number per field)
中心Centre
(Number per field)
边缘Edge
(×103μm2)
中心Centre
(×103μm2)
边缘Edge
(×105μm2)
中心Centre
(×105μm2)
ZD958 CK 52.67a 19.33a 5.65a 34.12a 3.96a 6.47a
CK+2℃ 41.33b 17.00a 5.50a 25.51b 3.30b 4.33b
CK+4℃ 38.00b 11.33b 2.94b 29.01b 2.56c 3.19c
XY335 CK 51.33a 39.67a 3.29a 15.30a 3.67a 5.98a
CK+2℃ 36.00b 29.00b 4.95b 16.81a 2.56b 4.86b
CK+4℃ 31.33b 15.33c 5.65c 26.10b 2.13c 3.91c

Table 3

Correlation between mechanical characteristics and agronomic trait and vascular bundle in maize stalk under different treatments"

品种
Cultivar
力学特性
Mechanical characteristics
株高
Plant height
穗位高
Ear height
茎粗
Stalk width
截面惯性矩
Moment of inertia
地上部第三节间长
3rd joint length
边缘维
管束数目
Marginal vascular bundle number
边缘维
管束面积
Marginal vascular bundle area
中心维
管束数目
Central vascular bundle number
中心维
管束面积
Central vascular bundle area
ZD958 抗推力
Thrust resistance
-0.860** -0.966** 0.987** 0.890** -0.972** 0.983** 0.913** 0.798** 0.970**
穿刺强度
Puncture strength
-0.478 -0.623 0.706* 0.648 -0.706* 0.61 0.618 0.578 0.622
破碎强度
Crushing strength
-0.826** -0.825** 0.775* 0.929* -0.890** 0.844** 0.806** 0.720* 0.841**
XY335 抗推力
Thrust resistance
-0.939** -0.945** 0.938** 0.845** -0.939** 0.954** 0.959** 0.943** 0.963**
穿刺强度
Puncture strength
-0.670* -0.534 0.626 0.532 -0.626 0.571 0.571 0.532 0.556
破碎强度
Crushing strength
-0.063 -0.227 0.131 0.200 -0.195 0.252 0.251 0.233 0.244

Table 4

Yield and yield components under different treatments"

年际
Year
品种
Cultivar
处理
Treatment
产量
Yield (kg·hm-2)
穗粒数
Ear grain
百粒重
100-grain weight (g)
穗行数
rows per ear
行粒数
Grain number per row
穗长
Ear length (cm)
穗粗
Ear diameter (mm)
穗秃尖
Ear bald tip (cm)
2018 ZD958 CK 9156.04a 655.60a 22.20a 15.20a 43.20a 22.40a 51.97a 1.76a
CK+2℃ 5974.92b 429.20b 22.19a 16.00a 27.00b 19.70b 42.45b 2.40a
CK+4℃ 4354.94c 298.00c 23.34a 15.60a 19.00c 19.76b 44.54b 2.33a
XY335 CK 9939.13a 672.00a 23.47a 15.60a 43.20a 22.26a 48.85a 1.96a
CK+2℃ 5561.39b 365.60b 24.28a 15.60a 23.40b 19.23b 40.63b 2.79a
CK+4℃ 140.74c 8.20c 29.24b 1.80b 4.20c 20.10b 23.98c 18.10b
2019 ZD958 CK 9296.15a 644.40a 22.90b 15.60a 41.40a 22.56a 52.48a 3.14a
CK+2℃ 5991.43b 361.60b 25.69a 14.40a 25.20b 18.50b 41.18b 3.40a
CK+4℃ 3901.46c 291.20c 21.24b 16.00a 18.20c 18.86b 45.93b 3.05a
XY335 CK 10392.73a 695.20a 23.79a 16.00a 43.60a 23.24a 49.45a 1.67a
CK+2℃ 5552.95b 367.60b 24.38a 14.40a 25.40b 19.12b 40.31b 2.69a
CK+4℃ 202.61c 12.60c 25.04a 2.00b 6.30c 21.50b 24.57c 18.80b
变异来源 Source of variation 年际 Year NS NS NS NS NS NS NS NS
处理 Treatment ** ** NS ** ** ** ** **
品种 Cultivar ** ** ** ** ** NS ** **
年际×处理Year×Treatment NS NS * NS ** NS NS NS
年际×品种 Year×Cultivar NS NS NS NS NS NS NS NS
品种×处理Cultivar×Treatment ** ** * ** ** NS ** **
年际×处理×品种Year×Treatment×Cultivar NS NS NS NS NS NS NS NS

Table 5

Correlation between yield and mechanical characteristics and agronomic trait in maize stalk under different treatments"

品种
Cultivar
株高
Plant height
穗位高
Ear height
茎粗
Stalk width
截面惯性矩 Moment of inertia 地上部第三节间长
3rd joint length
抗推力
Thrust resistance
穿刺强度
Puncture strength
破碎强度
Crushing strength
产量Yield ZD958 -0.928** -0.961** 0.946** 0.919** -0.960** 0.957** 0.578 0.899**
XY335 -0.965** -0.984** 0.923** 0.766* -0.930** 0.965** 0.557 0.238
[1] 陈印军, 王琦琪, 向雁. 我国玉米生产地位、优势与自给率分析. 中国农业资源与区划, 2019, 40(1): 7-16.
CHEN Y J, WANG Q Q, XIANG Y. Analysis of corn production status, superiority and self-sufficiency in China. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(1): 7-16. (in Chinese)
[2] ZANDAlLINAS S I, MITTLER R, BALFAGON D, ARBONA V, GOMEZ-CADENAS A. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 2018, 162: 2-12.
doi: 10.1111/ppl.2018.162.issue-1
[3] KAMALI B, ABBASPOUR K C, WEHRLI B, YANG H. Drought vulnerability assessment of maize in Sub-Saharan Africa: Insights from physical and social perspectives. Global and Planetary Change, 2018, 162: 266-274.
doi: 10.1016/j.gloplacha.2018.01.011
[4] 李树岩, 马玮, 彭记永, 陈忠民. 大喇叭口及灌浆期倒伏对夏玉米产量损失的研究. 中国农业科学, 2015, 48(19): 3952-3964.
LI S Y, MA W, PENG J Y, CHEN Z M. Study on yield loss of summer maize due to lodging at the big flare stage and grain filling stage. Scientia Agricultura Sinica, 2015, 48(19): 3952-3964. (in Chinese)
[5] TOLLENAAR M, LEE E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 2002, 88: 161-169.
[6] KHOSRAVI G R, ANDERSON I C. Growth, yield, and yield components of ethephon-treated corn. Plant Growth Regulation, 1991, 10(1): 27-36.
doi: 10.1007/BF00035128
[7] 边大红, 刘梦星, 牛海峰, 魏钟博, 杜雄, 崔彦宏. 施氮时期对黄淮海平原夏玉米茎秆发育及倒伏的影响. 中国农业科学, 2017, 50(12): 2294-2304.
BIAN D H, LIU M X, NIU H F, WEI Z B, DU X, CUI Y H. Effects of nitrogen application times on stem traits and lodging of summer maize (Zea mays L.) in the Huang-Huai-Hai plain. Scientia Agricultura Sinica, 2017, 50(12): 2294-2304. (in Chinese)
[8] 冯波, 刘延忠, 董树亭, 高荣歧, 胡昌浩, 王空军. 高温对玉米种苗转化过程中关键水解酶活性及ATP含量的影响研究. 玉米科学, 2006, 14(6): 86-89.
FENG B, LIU Y Z, DONG S T, GAO R Q, HU C H, WANG K J. Effect of high temperature on the key hydrolytic enzyme activity and ATP content during petroleum seed-seedling transformation. Journal of Maize Sciences, 2006, 14(6): 86-89. (in Chinese)
[9] 吴小娟, 杨雯, 解如, 张晓平. 高温胁迫对玉米品种‘郑单958’幼苗生长及部分生理指标的影响. 植物资源与环境学报, 2018, 27(2): 117-119.
WU X J, YANG W, XIE R, ZHANG X P. Effects of high temperature stress on growth and some physiological indexes of boast of Zea mays ‘Zhengdan 958’. Journal of Plant Resources and Environment, 2018, 27(2): 117-119. (in Chinese)
[10] 赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40(10): 1839-1845.
doi: 10.3724/SP.J.1006.2014.01839
ZHAO L X, ZHANG P, WANG R N, WANG P, TAO H B. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica, 2014, 40(10): 1839-1845. (in Chinese)
doi: 10.3724/SP.J.1006.2014.01839
[11] 孙宁宁. 玉米叶、粒对高温胁迫的响应[D]. 郑州: 河南农业大学, 2017.
SUN N N. Responses of maize leaf and kernel to heat stress[D]. Zhengzhou: Henan Agricultural University, 2017. (in Chinese)
[12] 郑东泽. 气象因素对寒地玉米生长发育、产量及品质的影响[D]. 哈尔滨: 东北农业大学, 2013.
ZHENG D Z. Effects of meteorological factors on growth, yield and quality of maize in cold regions[D]. Haerbin: Northeast Agricultural University, 2013. (in Chinese)
[13] PICKETT L K, LILJEDAHL J B, HAUGH G G, ULLSTRUP A J. Rheological properties of corn stalks subjected to transverse loading. Transactions of the American Society Agricultural Engineers, 1969, 12(3): 392-396.
doi: 10.13031/2013.38849
[14] 袁志华, 李云东, 陈合顺. 玉米茎秆的力学模型及抗倒伏分析. 玉米科学, 2002, 10(3): 74-75.
YUAN Z H, LI Y D, CHEN H S. Dynamic model and lodging resistance analysis of maize stem. Journal of Maize Sciences, 2002, 10(3): 74-75. (in Chinese)
[15] 王娜, 李凤海, 王志斌, 王宏伟, 吕香玲, 周宇飞, 史振声. 不同耐密型玉米品种茎秆性状对密度的响应及与倒伏的关系. 作物杂志, 2011(3): 67-70.
WANG N, LI F H, WANG Z B, WANG H W, LÜ X L, ZHOU Y F, SHI Z S. Response to plant density of stem characters of maize hybrids and its relationship to lodging. Crops, 2011(3): 67-70. (in Chinese)
[16] 刘明, 齐华, 张卫建, 张振平, 李雪霏, 宋振伟, 于吉琳, 吴亚男. 深松方式与施氮量对玉米茎秆解剖结构及倒伏的影响. 玉米科学, 2013, 21(1): 57-63.
LIU M, QI H, ZHANG W J, ZHANG Z P, LI X F, SONG Z W, YU J L, WU Y N. Effects of deep loosening and nitrogen application on anatomical structures of stalk and lodging in maize. Journal of Maize Science, 2013, 21(1): 57-63. (in Chinese)
[17] 李波, 张吉旺, 崔海岩, 靳立斌, 董树亭, 刘鹏, 赵斌. 施钾量对高产夏玉米抗倒伏能力的影响. 作物学报, 2012, 38(11): 2093-2099.
doi: 10.3724/SP.J.1006.2012.02093
LI B, ZHANG J W, CUI H Y, JIN L B, DONG S T, LIU P, ZHAO B. Effects of potassium application rate on stem lodging resistance of summer maize under high yield conditions. Acta Agronomica Sinica, 2012, 38(11): 2093-2099. (in Chinese)
doi: 10.3724/SP.J.1006.2012.02093
[18] 陈煊. 水稻抗茎倒伏的力学评价方法及抗倒因子的研究[D]. 扬州: 扬州大学, 2014.
CHEN X. A method for the assessment of stem loding resistance in rice[D]. Yangzhou: Yangzhou University, 2014. (in Chinese)
[19] 勾玲, 赵明, 黄建军, 张宾, 李涛, 孙锐. 玉米茎秆弯曲性能与抗倒能力的研究. 作物学报, 2008, 34(4): 653-661.
doi: 10.3724/SP.J.1006.2008.00653
GOU L, ZHAO M, HUANG J J, ZHANG B, LI T, SUN R. Bending mechanical properties of stalk and lodging-resistance of maize (Zea mays L.). Acta Agronomica Sinica, 2008, 34(4): 653-661. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00653
[20] 赵久然, 王荣焕. 美国玉米持续增产的因素及其对我国的启示. 玉米科学, 2009, 17(5): 156-159.
ZHAO J R, WANG R H. Factors promoting the steady increase of American maize production and their enlightenments for China. Journal of Maize Sciences, 2009, 17(5): 156-159. (in Chinese)
[21] YORDANOVA R Y, POPOVA L P. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiologiae Plantarum, 2007, 29(6): 535-541.
doi: 10.1007/s11738-007-0064-z
[22] 任佰朝, 张吉旺, 李霞, 范霞, 董树亭, 刘鹏, 赵斌. 大田淹水对高产夏玉米抗倒伏性能的影响. 中国农业科学, 2013, 46(12): 2440-2448.
REN B C, ZHANG J W, LI X, FAN X, DONG S T, LIU P, ZHAO B. Effects of waterlogging on stem lodging resistance of summer maize under field conditions. Scientia Agricultura Sinica, 2013, 46(12): 2440-2448. (in Chinese)
[23] 李潮海, 栾丽敏, 尹飞, 王群, 赵亚丽. 弱光胁迫对不同基因型玉米生长发育和产量的影响. 生态学报, 2005, 25(4): 824-830.
LI C H, LUAN L M, YIN F, WANG Q, ZHAO Y L. Effects of light stress at different stages on the growth and yield of different maize genotypes. Acta Ecologica Sinica, 2005, 25(4): 824-830. (in Chinese)
[24] 刘仲发, 勾玲, 赵明, 张保军. 遮荫对玉米茎秆形态特征、穿刺强度及抗倒伏能力的影响. 华北农学报, 2011, 26(4): 91-96.
LIU Z F, GOU L, ZHAO M, ZHANG B J. Effects of shading on stalk morphological characteristics, rind penetration strength and lodging-resistance of maize. Acta Agriculture Boreali-Sinica, 2011, 26(4): 91-96. (in Chinese)
[25] 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007, 33(10): 1688-1695.
GOU L, HUANG J J, ZHANG B, LI T, SUN R, ZHAO M. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agronomica Sinica, 2007, 33(10): 1688-1695. (in Chinese)
[26] 李宾, 于宁宁, 王洪明, 任佰朝, 杨今胜, 张吉旺. 割苗对夏玉米生长发育、产量及抗倒伏性能的影响. 山东农业科学, 2019, 51(6): 55-61.
LI B, YU N N, WANG H M, REN B C, YANG J S, ZHANG J W. Effects of cutting seedlings on growth, yield and lodging resistance of summer maize. Shandong Agricultural Sciences, 2019, 51(6): 55-61. (in Chinese)
[27] 王彦坡, 李昂, 杨豫龙, 孟恩, 潘利文, 朱暖暖, 刘天学. 割苗对河南省夏玉米生长及产量的影响. 河南农业科学, 2019, 48(4): 28-32.
WANG Y P, LI A, YANG Y L, MENG E, PAN L W, ZHU N N, LIU T X. Effects of cutting seedlings on growth and yield of summer maize in Henan province. Journal of Henan Agricultural Sciences, 2019, 48(4): 28-32. (in Chinese)
[28] RAFTERY A E, ZIMMER A, FRIERSON D M, STARTZ R, LIU P. Less than 2℃ warming by 2100 unlikely. Nature Climate Change, 2017, 7: 637-641.
doi: 10.1038/nclimate3352
[29] ROGELJ J, POPP A, CALVIN K V, LUDERER G, EMMERLING J, GERNAAT D, KREY V. Scenarios towards limiting global mean temperature increase below 1.5°C. Nature Climate Change, 2018, 8(4): 325-332.
doi: 10.1038/s41558-018-0091-3
[30] CAMPBELL C, ATKINSON L, ZARAGOZA-CASTELLS J, LUNDMARK M, ATKIN O, HURRY V. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist, 2007, 176: 375-389.
doi: 10.1111/nph.2007.176.issue-2
[31] TAO F L, ZHANG Z. Adaptation of maize production to climate change in North China Plain: Quantify the relative contributions of adaptation options. European Journal of Agronomy, 2010, 33: 103-116.
doi: 10.1016/j.eja.2010.04.002
[32] MASSON-DELMOTTE V, ZHAI P, PORTNER H O, ROBERTS D, SKEA J, SHUKLA P R. Special Report on Global Warming of 1.5℃. UK: Cambridge University Press, 2018.
[33] United Nations Framework Convention on Climate Change. Paris Climate Change Conference (Paris, UNFCCC).(2016-01-29)[2020-06-25]. https://unfccc.int/documents/9097.
[34] 徐田军, 吕天放, 陈传永, 刘月娥, 张译天, 刘秀芝, 赵久然, 王荣焕. 种植密度和植物生长调节剂对玉米茎秆性状的影响及调控. 中国农业科学, 2019, 52(4): 629-638.
XU T J, LÜ T F, CHEN C Y, LIU Y E, ZHANG Y T, LIU X Z, ZHAO J R, WANG R H. Effects of plant density and plant growth regulator on stalk traits of maize and their regulation. Scientia Agricultura Sinica, 2019, 52(4): 629-638. (in Chinese)
[35] 裴志超, 兰宏亮, 徐田军, 陈传永, 董志强. 膦酸胆碱合剂对东北地区春玉米茎秆形态与质量性状的影响. 玉米科学, 2011, 19(4): 59-64.
PEI Z C, LAN H L, XU T J, CHEN C Y, DONG Z Q. Effect of ECK treatment on the stalk characters of spring maize in the Northeast China. Journal of Maize Sciences, 2011, 19(4): 59-64. (in Chinese)
[36] 崔海岩, 靳立斌, 李波, 张吉旺, 赵斌, 董树亭, 刘鹏. 遮阴对夏玉米茎秆形态结构和倒伏的影响. 中国农业科学, 2012, 45(17): 3497-3505.
CUI H Y, JIN L B, LI B, ZHANG J W, ZHAO B, DONG S T, LIU P. Effects of shading on stalks morphology, structure and lodging of summer maize in field. Scientia Agricultura Sinica, 2012, 45(17): 3497-3505. (in Chinese)
[37] 刘文彬, 冯乃杰, 张盼盼, 李东, 张洪鹏, 何天明, 赵晶晶, 徐延辉, 王畅. 乙烯利和激动素对玉米茎秆抗倒伏和产量的影响. 中国生态农业学报, 2017, 25(9): 1326-1334.
LIU W B, FENG N J, ZHANG P P, LI D, ZHANG H P, HE T M, ZHAO J J, XU Y H, WANG C. Effects of ethephon and kinetin on lodging-resistance and yield of maize. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1326-1334. (in Chinese)
[38] 靳英杰, 李鸿萍, 安盼盼, 程思贤, 赵向阳, 余天雨, 李潮海. 玉米抗倒性研究进展. 玉米科学, 2019, 27(2): 94-98, 105.
JIN Y J, LI H P, AN P P, CHENG S X, ZHAO X Y, YU T Y, LI C H. Research progress on the lodging resistance of maize. Journal of Maize Science, 2019, 27(2): 94-98, 105. (in Chinese)
[39] 刘鑫, 谢瑞芝, 牛兴奎, 修文雯, 李少昆, 高世菊, 张凤路. 种植密度对东北地区不同年代玉米生产主推品种抗倒伏性能的影响. 作物杂志, 2012(5): 126-130.
LIU X, XIE R Z, NIU X K, XIU W W, LI S K, GAO S J, ZHANG F L. Effects of planting density on lodging resistance performance of maize varieties of different eras in North-East China. Crops, 2012(5): 126-130. (in Chinese)
[40] 丁山, 张兆玉, 杨锦忠, 姜林平, 韩伟, 桑素平. 玉米茎秆力学性状的边际效应研究. 山东农业科学, 2018, 50(11): 37-42.
DING S, ZHANG Z Y, YANG J Z, JIANG L P, HAN W, SANG S P. Study on marginal effect of edge properties of maize stalk. Shandong Agricultural Sciences, 2018, 50(11): 37-42. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[4] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[9] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[10] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[11] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[12] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[13] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[14] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[15] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!