Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3561-3572.doi: 10.3864/j.issn.0578-1752.2021.17.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Selection of PMS Rice Varieties and Application in Flooding Irrigation for Cadmium Reduction

ZENG XiaoShan1(),TANG GuoHua1,XIE HongJun1,ZHU MingDong1,AO HeJun2,CHEN Bo1,2,LI FangTing1,2,HAO Ming3,XIAO Yan1,FU HuiRong1,ZHANG Jian4(),YU YingHong1()   

  1. 1Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences/Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125
    2Hunan Agriculture University, Changsha 410128
    3Huaihua Polytechnic College, Huaihua 418099, Hunan
    4China National Rice Research Institute/State Key Lab of Rice Biology, Hangzhou 311400
  • Received:2021-01-07 Accepted:2021-03-08 Online:2021-09-01 Published:2021-09-09
  • Contact: Jian ZHANG,YingHong YU E-mail:zengxiaoshan2@163.com;zhangjian@caas.cn;yyh30678@163.com

Abstract:

【Objective】 With the extension of mechanization and large-scale rice production mode, late harvest of rice grains brought by improper weather, conflicts in using mechanics and drying facilities usually gives rise to severe yield loss and quality deterioration, which has been deeply concerned by the farmers and greatly challenged the middle and late rice production in China. On the other hand, cadmium accumulation in rice grains has become a top food safety issue for breeders and producers. Flooding irrigation can effectively reduce cadmium content in rice. This research aims to select PMS (post-maturation sustainability) and low cadmium accumulation rice varieties by continuous flooding irrigation treatment. We expect to establish an effective evaluation system for PMS, select and utilize rice varieties with both PMS and low cadmium accumulation for production and research. 【Method】 Continual flooding irrigation were carried out in the experimental field during booting stage to yellow ripening stage in 2018. The mature plant lodging, seed dormancy and grain shattering of the 244 materials from China were evaluated through field observation and data investigation after ripening. The appraisal time and value of PMS rice varieties were defined using significant analysis. The 1000-grain weight, milling quality, appearance quality, gelatinization temperature, gel consistency and amylose content were tested for PMS rice. In 2019, 132 rice varieties promoting in Hunan were evaluated and identified using the appraisal time and value of post-harvest lodging. 1000-grain-weight were investigated between flooding and dry-wet alternate irrigation. The yield and effect of cadmium accumulation reduction of PMS rice varieties were tested in demonstration paddy field. 【Result】 The threshold for PMS was optimized as follows: lodging resistance is defined as the angle between rice stalk and vertical inclination <45° at the 14th day after maturity; rice shattering <5.0% at 7 days after maturity; and spike germination rate <10.0% at the same day of maturity. 21 PMS rice varieties were obtained in 2019. No significant difference existed in 1000-grain weight between flooding and dry-wet alternate irrigation, and also in yield in demonstration paddy field. The cadmium content of brown rice in flooding irrigation was lower than 0.20 mg·kg -1, which is significantly lower than that of dry-wet alternate irrigation management. 【Conclusion】 PMS rice varieties can withstand long-term flooding irrigation. There is no significant effect on yield and quality in delayed harvest after maturity. Application of PMS rice varieties in mild and moderate-level cadmium contaminated paddy, safety production can be realized in combination with flooding irrigation.

Key words: rice, PMS, flooding irrigation, safety production

Fig. 1

Varieties frequency of lodging angle at different harvest-time after maturity"

Table 1

Grain percentage of several harvest-time in 2018"

组别
Group
成熟后天数Days after mature (d)
0 7 14 21
中稻迟熟Late-maturing middle-season (%) 5.75cA 6.68bcB 7.88abA 8.46aA
一季晚稻Single-cropping late rice (%) 4.83bB 7.95aA 7.29aB 7.34aB
晚稻迟熟Late-maturing late rice (%) 5.36bA 6.74abB 7.33aAB 6.31abC
晚稻中熟Middle-maturing late rice (%) 5.42bA 7.14aB 7.51aA 7.35aB
平均Mean (%) 5.34b 7.13a 7.50 a 7.37 a

Fig. 2

Varieties frequency of grain percentage in 2018"

Table 2

Panicle germination rate of several harvest-time in 2018"

组别
Group
成熟后天数Days after mature (d)
0 7 14 21
中稻迟熟Late-maturing middle-season (%) 19.95bB 32.11aB 33.15aA 35.40aA
一季晚稻Single-cropping late rice (%) 21.10bB 32.82aA 32.02aB 30.41aD
晚稻迟熟Late-maturing late rice (%) 21.17bB 33.07aA 30.85aC 31.55aC
晚稻中熟Middle-maturing late rice (%) 22.15bA 30.11aC 31.82aB 32.44aB
平均Mean (%) 21.09b 32.03a 31.96a 32.45a

Fig. 3

Varieties number of 227 isolates panicle germination rate in 2018"

Table 3

Quality performance under continuous flooding of 244 rice isolates in 2018"

成熟后天数
Days after mature (d)
糙米率
Brown rice rate (%)
精米率
Milled rice rate (%)
整精米率
Head rice rate (%)
长宽比
Length-width ratio
垩白度
Chalkiness (%)
透明度
Transparency
垩白粒率
Chalky grain rate (%)
碱消值
Alkali value
胶稠度
Gel consistency (mm)
直链淀粉含量
Amylase content (%)
0 79.80a 69.91a 53.73a 3.50a 0.78b 1.52a 6.17b 6.15a 74.02a 16.65a
7 79.75a 69.35b 47.37b 3.47a 1.03a 1.45a 7.90a 6.06a 73.07ab 16.57a
14 79.76a 69.26b 47.93b 3.48a 1.16a 1.59a 8.91a 6.06a 71.91bc 16.56a
21 79.43b 68.96b 46.42b 3.47a 1.13a 1.52a 9.04a 6.07a 71.35c 16.63a

Table 4

1000-grain weight of several harvest-time and irrigation management in 2019"

组别
Group
干-湿交替Dry-wet (d) 淹水Flooding (d)
0 7 14 21 0 7 14 21
中稻迟熟Late-maturing middle-season (g) 25.38A 25.02B 25.20A 25.60A 24.66B 24.61B 25.20B 24.85B
一季晚稻Single-cropping late rice (g) 23.27B 23.56C 23.80C 23.79B 23.32C 23.59C 23.59C 22.84C
晚稻迟熟Late-maturing late rice (g) 22.53C 21.95D 21.54D 21.78C 22.33D 22.07D 21.63D 21.69D
晚稻中熟Middle-maturing late rice (g) 25.37A 25.46A 24.78B 25.44A 25.80A 26.61A 25.63A 26.41A
平均Mean (g) 24.34 24.32 24.33 24.98 24.25 24.29 24.56 24.56

Table 5

PMS rice varieties in 2019"

组别
Group
品种
Variety
最大倾斜度
Max gradient (°)
穗发芽
Pre-harvest sprouting (%)
落粒率
Grain percentage (%)
中稻迟熟
Late-maturing middle-season
两优1316 Liangyou 1316 ≤30—45 9.89 0.58
隆两优1308 Longliangyou 1308 ≤30—45 3.56 0.91
隆两优1813 Longliangyou 1813 <30 6.06 0.69
隆两优1988 Longliangyou 1988 ≤30—45 9.11 3.08
Y两优800 Yliangyou 800 ≤30—45 9.11 0.44
甬优4949 Yongyou 4949 <30 5.93 0.69
韵两优332 Yunliangyou 332 ≤30—45 9.02 0.63
Y两优372 Yliangyou 372 ≤30—45 9.75 0.04
一季晚稻
Single-cropping late rice
C两优258 C liangyou 258 ≤30—45 4.99 5.24
C两优755 Cliangyou755 ≤30—45 3.37 0.25
金两优华占 Jingliangyouhuazhan ≤30—45 9.15 2.28
晶两优641 Jingliangyou 641 ≤30—45 7.15 1.19
隆两优1212 Longliangyou 1212 ≤30—45 9.43 2.17
甬优1538 Yongyou 1583 <30 5.11 0.71
甬优4149 Yongyou 4149 <30 8.25 0.04
黄华占 Huanghuazhan ≤30—45 7.41 0.27
晚稻迟熟 Late-maturing late rice 玖两优1212 Jiuliangyou 1212 ≤30—45 9.13 2.94
晚稻中熟
Middle-maturing late rice
玖两优黄华占 Jiuliangyouhuanghuazhan ≤30—45 6.96 4.17
桃优香占Taoyouxiangzhan <30 3.06 3.55
农香42 Nongxiang 42 <30 7.51 4.30
板仓粳糯Bancanggengnuo <30 3.09 0.00

Table 6

Yield of PMS rice varieties by mechanical harvest in 2019"

品种
Variety
灌溉管理
Irrigation management
实测面积
Area (m2)
实收毛谷重量
Grain weight (kg)
实测含水量
Water content (%)
折合产量
Yield (t·hm-2)
桃优香占
Taoyouxiangzhan
干-湿交替Dry-wet 479.78 364.10 22.77 6.78
淹水Flooding 572.70 472.60 24.57 7.20 NS
玖两优黄华占
Jiuliangyouhuanghuazhan
干-湿交替Dry-wet 579.80 506.80 22.23 7.76
淹水Flooding 470.29 409.10 24.83 7.56NS

Table 7

Cadmium content of PMS rice varieties in demonstration paddy field in 2019"

地点
Site
土壤pH
Soil pH
土壤镉含量
Soil cadmium content (mg·kg-1)
播种期
Seeding time (M/D)
品种
Variety
灌溉管理 Irrigation management
淹水Flooding 干-湿交替Dry-wet
双江口镇
Shuangjiangkou
5.3—6.9 0.21—0.46 06/04 桃优香占Taoyouxiangzhan 0.05* 0.33
玖两优黄华占Jiuliangyouhuanghuazhan 0.01** 0.26
农香42 NongXiang42 0.09* 0.79
新市镇
Xinshi
5.0—5.2 0.35—0.41 06/20 桃优香占Taoyouxiangzhan 0.06* 0.49
玖两优黄华占Jiuliangyouhuanghuazhan 0.03** 0.49
农香42Nongxiang42 0.05* 0.35
青山桥镇
Qingshanqiao
5.0—6.6 0.40—0.62 06/10 桃优香占Taoyouxiangzhan <0.01** 0.34
玖两优黄华占Jiuliangyouhuanghuazhan <0.01** 0.33
农香42 Nongxiang42 <0.01** 0.44
[1] KUBIER A, WILKIN R T, PICHLER T. Cadmium in soils and groundwater: A review. Applied Geochemistry, 2019, 108: 1-16.
[2] 马艳杰. 水稻机械收割存在的问题与建议. 现代农业, 2018, 7: 36-37.
MA Y J. The problems and suggestion existing in rice harvest machinery. Modern Agriculture, 2018, 7: 36-37. (in Chinese)
[3] 沈欣, 朱奇宏, 朱捍华, 许超, 何演兵, 黄道友. 农艺调控措施对水稻镉积累的影响及其机理研究. 农业环境科学学报, 2015, 34(8): 1449-1454.
SHEN X, ZHU Q H, ZHU H H, XU C, HE Y B, HUANG D Y. Effects of agronomic measures on accumulation of Cd in rice. Journal of Agro-Environment Science, 2015, 34(8): 1449-1454. (in Chinese)
[4] HU Y N, CHENG H F, TAO S. The challenges and solutions for cadmium-contaminated rice in China: A critical review. Environment International, 2016(92/93): 515-532.
[5] SUN L M, ZHENG M M, LIU H Y, PENG S B, HUANG J L, CUI K H, NIE L X. Water management practices affect arsenic and cadmium accumulation in rice grains. The Scientific World Journal, 2014(2014): 1-6.
[6] YAMAGATA N, SHIGEMATSU I. Cadmium pollution in perspective. Koshu Eisei in Kenkyu Hokoku, 1970, 19(1): 1-27.
[7] MASUI M, KANAMARU N, TAKESAKO H, TAKESAKO H, MIYAKODA H, NANBA I, TAKAHASHI H. Annual surveys on correlation between the degree of cadmium contamination of paddy field rice grain and the number of dry-paddyfifield days in the cadmium contaminated area in Tama region of Tokyo. Bulletin of Tokyo-To Agricultural Experiment Station, 1971, 5: 1-5.
[8] LI H, LUO N, LI Y W, CAI Q Y, LI H Y, MO C H, WONG M H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environmental Pollution, 2017, 224(5): 622-630.
doi: 10.1016/j.envpol.2017.01.087
[9] WANG P, CHEN H, KOPITTKE P M, ZHAO F J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution, 2019, 249: 1038-1048.
doi: 10.1016/j.envpol.2019.03.063
[10] HORIGUCHI H, TERANISHI H, NIIYA K, AOSHIMA K, KASUYA M. Hypoproduction of erythropoietin contributes to anemia in chromic cadmium intoxication: Clinical study on Itai-itai disease in Japan. Archives of Toxicology, 1994, 68(10): 632-636.
doi: 10.1007/BF03208342
[11] WANG M, CHEN W, PENG C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere, 2016, 144: 346-351.
doi: 10.1016/j.chemosphere.2015.09.001
[12] ARAO T, ISHIKAWA S, MURAKAMI M, ABE K, MAEJIMA Y, MAKINO T. Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy and Water Environment, 2010, 8(3): 247-257.
doi: 10.1007/s10333-010-0205-7
[13] OGAWA B. Studies on the actual situation of cadmium pollution to paddy rice in Akita prefecture and its control. Bulletin of the Akita Agricultural Experiment Station, 1994, 35: 1-64.
[14] OTAKE T. Absorption of cadmium by rice plants and its control in cadmium-contaminated paddy soils. Special Bulletin of the Yamagata Prefectural Agricultural Experiment Station, 1992, 20: 1-77.
[15] 刘昭兵, 纪雄辉, 官迪, 谢运河, 朱坚, 彭建伟. 镉胁迫条件下淹水时间对水稻吸收累积镉的影响. 生态与农村环境学报, 2017, 33(12): 1125-1131.
LIU S B, JI X H, GUAN D, XIE Y H, ZHU J, PENG J W. Effects of timing and duration of waterlogging on Cd absorption and accumulation by rice under cadmium stress. Journal of Ecology and Rural Environment, 2017, 33(12): 1125-1131. (in Chinese)
[16] ALI A, KARIM M A, MAJID A, HASSAA G, ALI L, ALI S S, 廖伏明. 不同收获时期对稻米品质的影响. 杂交水稻, 1994, 2: 30-31.
ALI A, KARIM M A, MAJID A, HASSAA G, ALI L, ALI S S, LIAO F M. Grain quality of rice harvested at differed maturities. Hybrid Rice, 1994, 2: 30-31. (in Chinese)
[17] 苗得雨, 魏玉光, 贺海生. 不同收获时期和收获方式对水稻碾米品质和产量的影响. 北方水稻, 2007, 4: 25-27.
MIAO D Y, WEI Y G, HE H S. Effect of harvesting time and pattern on milling quality and yield rice. North Rice, 2007, 4: 25-27. (in Chinese)
[18] 顾帅娣, 于艳杰, 万波, 杭民仁, 许建华. 崇明区不同收获时期水稻种子发芽率比较试验初报. 上海农业科技, 2020, 2: 28-29.
GU S T, YU Y J, WAN B, HANG M R, XU J H. Rice seed germination rate comparison test of different harvest period in Chongming area. Shanghai Agricultural Science and Technology, 2020, 2: 28-29. (in Chinese)
[19] 王桂民, 易中懿, 陈聪, 曹光乔. 收获时期对稻麦轮作水稻机收损失构成的影响. 农业工程学报, 2016, 32(2): 36-42.
WANG G M, YI Z Y, CHEN C, CAO G Q. Effect of harvesting date on loss component characteristic of rice mechanical harvested in rice and wheat rotation area. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 36-42. (in Chinese)
[20] 康洪灿, 李国生, 钏兴宽, 王锦艳. 水稻生产全程机械化对品种的要求. 中国稻米, 2015, 21(4): 191-192.
KANG H C, LI G S, CHUAN X K, WANG J Y. Variety selection in rice production with full mechanization. China Rice, 2015, 21(4): 191-192. (in Chinese)
[21] 曾勇军, 吕伟生, 石庆华, 谭雪明, 潘晓华, 黄山, 商庆银. 水稻机收减损技术研究. 作物杂志, 2014, 6: 131-134.
ZENG Y J, LÜ W S, SHI Q H, TAN X M, PAN X H, HUANG S, SHANG Q Y. Study on mechanical harvesting technique for loss reducing of rice. Crops, 2014, 6: 131-134. (in Chinese)
[22] 冷雪. 久保田水稻收割机的使用与调整. 农民致富之友, 2015, 13: 128.
LENG X. The use and adjustment of Kubota rice harvester. Nongmin Zhifu Zhiyou, 2015, 13: 128. (in Chinese)
[23] 谭丁勇. 水稻收割机操作要点. 湖南农机, 2014, 10: 100.
TAN D Y. Rice harvester operation point. Hunan Agricultural Machine, 2014, 10: 100. (in Chinese)
[24] 江玲, 张文伟, 翟虎渠, 万建民. 水稻种子休眠性基因座的定位和分析. 中国农业科学, 2005, 38(4): 650-656.
JIANG L, ZHANG W W, ZHAI H Q, WAN J M. Mapping and analysis of quantitative trait loci controlling seed dormancy in rice. Scientia Agricultura Sinica, 2005, 38(4): 650-656. (in Chinese)
[25] 唐九友, 江玲, 王春明, 刘世家, 陈亮明, 翟虎渠, 吉村醇, 万建民. 水稻种子休眠性QTL定位及其对干热处理的响应. 中国农业科学, 2004, 37(12): 1791-1796.
TANG J Y, JIANG L, WANG C M, LIU S J, CHEN L M, ZHAI H Q, YOSHIMURA A, WAN J M. Analysis of QTL for seed dormancy and their response to dry heat treatment in rice (Oryza sativa L.). Scientia Agricultura Sinica, 2004, 37(12): 1791-1796. (in Chinese)
[26] 张忠旭, 陈温福. 水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响. 沈阳农业大学学报, 1999, 30(2): 81-85.
ZHANG Z X, CHEN W F. Effect of lodging resistance on yield and its relationship with stalk physical characteristics. Journal of Shenyang Agricultural University, 1999, 30(2): 81-85. (in Chinese)
[27] 王文霞, 周燕芝, 曾勇军, 吴自明, 谭雪明, 潘晓华, 石庆华, 曾研华. 不同机直播方式对南方优质晚籼稻产量及抗倒伏特性的影响. 中国水稻科学, 2020, 34(1): 46-56.
WANG W X, ZHOU Y Z, ZENG Y J, WU Z M, TAN X M, PAN X H, SHI Q H, ZENG Y H. Effects of different mechanical direct seeding patterns on yield and lodging resistance of high-quality late indica rice in south China. Chinese Journal of Rice Science, 2020, 34(1): 46-56. (in Chinese)
[28] 彭世彰, 张正良, 庞桂斌. 控制灌溉条件下寒区水稻茎秆抗倒伏力学评价及成因分析. 农业工程学报, 2009, 25(1): 6-10.
PENG S Z, ZHANG Z L, PANG G B. Mechanical evaluation and cause analysis of rice-stem lodging resistance under controlled irrigation in cold region. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(1): 6-10. (in Chinese)
[29] 郭相平, 黄双双, 王振昌, 王甫, 陈斌. 不同灌溉模式对水稻抗倒伏能力影响的试验研究. 灌溉排水学报, 2017, 36(5): 1-5.
GUO X P, HUANG S S, WANG Z C, WANG F, CHEN B. Impact of different irrigation methods on resistance of rice against bending and breaking. Journal of Irrigation and Drainage, 2017, 36(5): 1-5. (in Chinese)
[30] 陈兵先, 刘军. 水稻穗萌及调控的研究进展. 种子, 2017, 36(2): 49-55.
CHEN B X, LIU J. Research progress of rice vivipary and its regulation. Seed, 2017, 36(2): 49-55. (in Chinese)
[31] 宋松泉, 龙春林, 殷寿华, 兰芹英. 种子的脱水行为及其分子机制. 云南植物研究, 2003, 25(4): 465-479.
SONG S Q, LONG C L, YIN S H, LAN Q Y. Desiccation behavior of seeds and their molecular mechanisms. Acta Botanica Yunnanica, 2003, 25(4): 465-479. (in Chinese)
[32] CHEN M, XIE S, OUYANG Y, YAO J. Rice PcG gene OsEMF2b controls seed dormancy and seedling growth by regulating the expression of OsVP1. Plant Science, 2017, 260: 80-89.
doi: 10.1016/j.plantsci.2017.04.005
[33] CHEN B X, PENG Y X, GAO J D, ZHANG Q, LIU Q J, FU H, LIU J. Coumarin-induced delay of rice seed germination is mediated by suppression of abscisic acid catabolism and reactive oxygen species production. Frontiers in Plant Science, 2019, 10: 828.
doi: 10.3389/fpls.2019.00828
[34] SUGIMOTO K, TAKEUCHI Y, EBANA K, MIYAO A, HIROCHIKA H, HARA N, ISHIYAMA K, KOBAYASHI M, BAN Y, HATTORI T, YANO M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5792-5797.
[35] WANG M, LI W, FANG C, XU F, LIU Y, WANG Z, YANG R, ZHANG M, LIU S, LU S, LIN T, TANG J, WANG Y, WANG H, LIN H, ZHU B, CHEN M, KONG F, LIU B, ZENG D, JACKSON S A, CHU C, TIAN Z. Parallel selection on dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50(10): 1435-1441.
doi: 10.1038/s41588-018-0229-2
[36] HORI K, SUGIMOTO K, NONOUE Y, ONO N, MATSUBARA K, YAMANOUCHI U, ABE A, TAKEUCHI Y, YANO M. Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars. Theoretical and Applied Genetics, 2010, 120(8): 1547-1557.
doi: 10.1007/s00122-010-1275-z
[37] WAN J, NAKAZAKI T, KAWAURA K, IKEHASHI H. Identification of marker loci for seed dormancy in rice (Oryza sativa L.). Crop Science, 1997, 37: 1759-1763.
doi: 10.2135/cropsci1997.0011183X003700060015x
[38] SHI H, SHEN X, LIU R L, XUE C, WEI N, DENG X W, ZHONG S W. The red light receptor phytochrome B directly enhances substrate-E3 Ligase interactions to attenuate ethylene responses. Developmental Cell, 2016, 39(5): 597-610.
doi: 10.1016/j.devcel.2016.10.020
[39] ROBERTS E H. Dormancy in rice seed: Ⅲ. The influence of temperature, moisture, and gaseous environment. Journal of Experimental Botany, 1962, 13(1): 75-94.
doi: 10.1093/jxb/13.1.75
[40] FINCH-SAVAGE W E, LEUBNER-METZGER G. Seed dormancy and the control of germination. New Phytologist, 2006, 171(3): 501-523.
doi: 10.1111/nph.2006.171.issue-3
[41] 韦飞严, 田继微, 孟祥伦, 武小金. 水稻穗萌抗性与OsVP1基因启动子序列及其表达水平的关系. 杂交水稻, 2015, 6: 59-63.
WEI F Y, TIAN J W, MENG X L, WU X J. Relation of pre-harvest sprouting resistance in rice to the promoter sequence and expression of gene OsVP1. Hybrid Rice, 2015, 6: 59-63. (in Chinese)
[42] MARTÍNEZ-BERDEJA A, STITZER M C, TAYLOR M A, OKADA M, EZCURRA E, RUNCIE D E, SCHMITT J. Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA, 2020, 117(5): 2526-2534.
[43] CAI H, MORISHIMA H. QTL clusters reflect character associations in wild and cultivated rice. Theoretical and Applied Genetics, 2002, 104(8): 1217-1228.
doi: 10.1007/s00122-001-0819-7
[44] GU X Y, KIANIAN S F, FOLEY M E. Multiple loci and epistasis control genetic variation for seed dormancy in weedy rice (Oryza sativa L.). Genetics, 2004, 166(3): 1503-1516.
doi: 10.1534/genetics.166.3.1503
[45] DONG Y, TSUZUKI E, KAMIUNTEN H, TERAO H, LIN D Z, MATSUO M, ZHENG Y F. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crop Research, 2003, 81(2/3): 133-139.
doi: 10.1016/S0378-4290(02)00217-4
[46] CAI H W, MORISHIMA H. Genomic regions affecting seed shattering and seed dormancy in rice. Theoretical and Applied Genetics, 2000, 100(6): 840-846.
doi: 10.1007/s001220051360
[47] JIANG L, LIU S, HOU M Y, TANG J Y, CHEN L M, ZHAI H Q, WAN J M. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crop Research, 2006, 98(1): 68-75.
doi: 10.1016/j.fcr.2005.12.015
[48] 李玉清, 周雪梅, 姜国辉, 苏瑛, 于东洋. 含镉水灌溉对水稻产量和品质的影响. 灌溉排水学报, 2012, 31(4): 120-123.
LI Y Q, ZHOU X M, JIANG G H, SU Y, YU D Y. Influence of irrigation with different concentrations of cadmium solution on rice yield and quality. Journal of Irrigation and Drainage, 2012, 31(4): 120-123. (in Chinese)
[49] 陈江民, 杨永杰, 黄奇娜, 胡培松, 唐绍清, 吴立群, 王建龙, 邵国胜. 持续淹水对水稻镉吸收的影响及其调控机理. 中国农业科学, 2017, 50(17): 3300-3310.
CHEN J M, YANG Y J, HUANG Q N, HU P S, TANG S Q, WU L Q, WANG J L, SHAO G S. Effects of continuous flooding on cadmium absorption and its regulation mechanisms in rice. Scientia Agricultura Sinica, 2017, 50(17): 3300-3310. (in Chinese)
[50] 刘仲齐, 张长波, 黄永春. 水稻各器官镉阻控功能的研究进展. 农业环境科学学报, 2019, 38(4): 721-727.
LIU Z Q, ZHANG C B, HUANG Y C. Research advance on the functions of rice organs in cadmium inhibition: A review. Journal of Agro-Environment Science, 2019, 38(4): 721-727. (in Chinese)
[51] ADIL M F, SEHAR S, CHEN G, CHEN Z H, JILANI G, CHAUDHRY A N, SHAMSI I H. Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological/ ultrastructural adjustments. Ecotoxicology and Environmental Safety, 2019, 190(110076): 1-12.
[52] TIAN S, LIANG S, QIAO K, WANG F, ZHANG Y, CHAI T. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). Journal of Hazardous Materials, 2019, 380(120853): 1-8.
[53] TREESUBSUNTORN C, THIRAVETYAN P. Calcium acetate-induced reduction of cadmium accumulation in Oryza sativa: Expression of auto-inhibited calcium-ATPase and cadmium transporters. Plant Biology, 2019, 1: 862-872.
[54] XU D, YANG Q, CUI M, ZHANG Q. The novel transcriptional factor HP1BP3 negatively regulates Hsp70 transcription in Crassostrea hongkongensis. Scientific Reports, 2017, 7(1): 1401-1404.
doi: 10.1038/s41598-017-01573-y
[55] MARESCA V, LETTIERI G, SORBO S, PISCOPO M, BASILE A. Biological responses to cadmium stress in liverwort Conocephalum conicum (Marchantiales). International Journal of Molecular Sciences, 2020, 21(18): 6485.
doi: 10.3390/ijms21186485
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[14] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!