Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 625-640.doi: 10.3864/j.issn.0578-1752.2022.04.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province

ZHANG YaLing(),GAO Qing,ZHAO Yuhan,LIU Rui,FU Zhongju,LI Xue,SUN Yujia,JIN XueHui()   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University/Heilongjiang Plant Resistance Research Center, Daqing 163000, Heilongjiang
  • Received:2021-08-11 Accepted:2021-11-15 Online:2022-02-16 Published:2022-02-23
  • Contact: XueHui JIN E-mail:byndzyl@163.com;jxh2686@163.com

Abstract:

【Objective】Rice blast seriously threatens rice production in Heilongjiang Province and the breeding and utilization of anti-blast varieties are the most economical, safe and effective measures to control it. This study explored the resistance of rice varieties in Heilongjiang Province; clarified the resistance effect of disease resistance genes, and provided a basis for the selection and utilization of germplasm resources of rice blast in Heilongjiang Province. 【Method】 In the autumn of 2018, 134 rice strains were collected from the main rice area in Heilongjiang Province, and the resistance of 50 dominant rice varieties was analyzed. For the reported 35 rice blast resistance genes, a comparison was made between the varieties and positive control varieties. Sequencing results of some positive control varieties were compared with the reference sequence published in the National Centre for Biotechnology Information to analyze the existence of rice blast resistance genes in the corresponding varieties. Through the correlation analysis of gene aggregation type and breed resistance performance, the genotypes related to the resistance performance of rice varieties in Heilongjiang Province were clarified. 【Result】 Among 50 rice varieties in Heilongjiang Province, Longgeng 20 had the best resistance (R). Longgeng 67, Longken 202, Longgeng 40, Longgeng 31, Longgeng 57 and Longgeng 43 had moderate disease resistance; whereas, 43 varieties such as Jiahe 1 had relatively low resistance. Through the analysis of variety combination resistance, we found that 33 pairs of Longgeng 20 + Longgeng 67 had a high RAC(resistance association coefficient) value, low VAC (virulence association coefficient) value and good combined disease resistance. The matching structure showed potential for application. The identification of resistance genes carried by specific primers showed that Pish, Pi36, Pi33 and Pi-CO39 were detected, and Pi63, Ptr, Pi37, Pi64, pi21, Pi9, Pi54, Pikh, Pia, Pikp, Pi35, Pikm and Pik were between 50%-100% of occurences frequency, indicating that such genes were widely used in rice breeding in Heilongjiang Province. The detection rate of Pita, Pib, Pii, Pi5, Piz-t, Pi50 and Pi2 was between 10% and 50%; Pid2 was detected in in two varieties, and Pigm was detected in Jigeng 88. However, Pit, Pid3, Bsr-d1, Pi25, Pid3-A4, Pi56, Pi1, Pike and Pb1 were not detected in the cultivars, indicating that such genes are less distributed in rice varieties in Heilongjiang Province. The variety genotype analysis found that the varieties carried 12-19 resistant genes, with a total of 58 genotypes, indicating that the test varieties had rich blast resistance gene combination types. By analysis, the single gene and gene polymerization with disease resistance showed that the distribution frequency of Pi2, Piz-t, Pi50, Pi5 and Pii corresponded to frequency of resistance. We found that the more varieties carrying resistance genes, the higher the frequency resistance, and six varieties that carrying Pi2+Piz-t+Pi50+α polymerization types showed resistance. 【Conclusion】 Our results have demonstrated the following: the resistance of rice germplasm resources in Heilongjiang province is low; combination planting of different varieties could be usefully applied; the distribution of blast resistance genes is different in the participating varieties; Pi2, Piz-t, Pi50, Pi5 and Pii play a leading role in disease resistance, and Pi2+Piz-t+Pi50+α gene polymerization type could contribute to improving rice blast resistance.

Key words: rice, rice blast, resistance frequency, blast resistance evaluation, blast resistance gene

Schedule 1

The primers for Resistance genes amplification"

抗瘟基因
Resistance genes
引物
Primers
引物序列
Primer sequence (5′-3′)
片段大小
Length of targeted fragments (bp)

Enzymes
参考文献
References
Pit Tn11 ATGATAACCTCATCCTCAATAAGT 733+530 (R) - [1]
tRn1 GTTGGAGCTACGGTTGTTCAG -
tRn2 CCAAGGGATTAGGTCCTAGTG -
Pi37 Pi37-F ATTCACGCAACCAGGGGGATA 716 (R) - [2]
Pi37-R TCGCAACTCATATCCCTTCTG -
Pish RM6648F GATCGATCATGGCCAGAGAG 207 (R) - [3]
RM6648R ACAGCAGGTTGATGAGGACC -
RM5811F TTCGCGCTCTCCAAGCTC 97 (R) -
RM5811R GGATTTGGTCGAACAGGTTG -
Pi35 Pi35-PF GCGTACAGCGTTCGCTCTATA 535+317 (R)/ - [4]
Pi35-PR CTTCAAAAGCTCACAACCA 535+266 (S) -
Pi35-NF CCGTCCTCCCTCCAGCATATATGTATAAGGGATGCAGGATAAAGAATGAA -
Pi35-NR CTGCAAAACAAAGGAAACGTG -
Pi64 YRT6-F TCCTGTGTTTCCTACCGAGTCCAGC 1016 (R) - [5]
YRT6-R AGAGGAGTGCAAGGTTACCAGAGCC -
Pib Pibdom-F GAACAATGCCCAAACTTGAGA 365 (R) - [6]
Pibdom-R GGGTCCACATGTCAGTGAGC -
Lys145-F TCGGTGCCTCGGTAGTCAGT 803 (S) -
Lys145-R GGGAAGCGGATCCTAGGTCT -
Bsr-d1 Bsr-d1-F TGTGAATTCCCTCCATCCACAG 750 - [7]
Bsr-d1-R TCGTGTACGTGTGCGTAGTC -
pi21 Pi21-F AGGAGTACTGCATCGAGAAG 342 (R)/411 (S) - [8]
Pi21-R TACGGCACCAGCTTGCAC -
Pi63 Pi63-F TGGCTATCTGGTCTCCGTG 614 (R) - [9]
Pi63-R TCCAGATCAGGGCAGTTAGA -
Pi2 Pi2-F CAGCGATGGTATGAGCACAA 450 (R)/282 (S) - [10]
Pi2-R CGTTCCTATACTGCCACATCG -
Pi9 Pi9-F GCTGTGCTCCAAATGAGGAT 291 (R)/397 (S) - [10]
Pi9-R GCGATCTCACATCCTTTGCT -
Piz-t Pizt-F ATGTGGATGCTGTGTTAT 176 (R) - [11]
Pizt-R TAGTTTGCTGCTCAATAAGTA -
Pigm GMR-3-F AGTTCTACTTACGGAGGAGC 146+98 (R)/ - [12]
GMR-3-R AGAATTATGATAAAGAGAAAGGAA 146 (S) -
Actin1-1-F ACAAAGTTTTCAACCGGCCTA -
Actin1-1-R CTGGTACCCTCATCAGGCATC -
Pid2 D2-F TTGGCTATCATAGGCGTCC 1057/662+395 Mlu [13]
D2-R ATTTGAAGGCGTTTGCGTAGA -
Pid3 Pid3-F TACTACTCATGGAAGCTAGTTCTC 658 BamHⅠ [14]
Pid3-R ACGTCACAAATCATTCGCTC -
Pi25 CAP1-F TGAAATGGGTGAAAGATGAG 406 Hinc [15]
CAP1-R GCCACATCATAATTCCTTGA -
Pid3-A4 PA4C-F CACATGTGCTAATGGTGGATTAA 212 (R)/221 (S) - [16]
PA4C-R AGCCGTGTAATTAGGTAGGTCA -
Pi50 RX-F3 TTGCACATGGTGCTGGATGG 1260 (R) - [17]
RX-R3 GATCTTCCTCGAAAGAGCTG -
Pi36 Pi36-F ATCATGGCAAATACTCGAAAG 628 (R) - [18]
Pi36-R CATATCATGAACACGACAACC -
Pi33 C30376-F AGCTGACCAACCAGGCGATG 198 (R) - [19]
C30376-R GGGTTGGATCGAATGTTGCA -
Pi5 Pi5-F ATAGATCATGCGCCCTCTTG 206 (R)/307 (S) - [10]
Pi5-R TCATACCCCATTCGGTCATT -
Pii Pii4SNP-F TCCAATGCTTCTGAAAGGTAGC 355/240+113 Pvu [20]
Pii4SNP-R TGGAAACATGAACCCATATCC -
Pi56 CRG4-1-F TCTACGAGCTGGAGGATCTG 2000(R)/1521(S) - [21]
CRG4-1-R CTGCAGCAAGCCAAGTTTCC -
CRG4-3-F TGCAAGAACCCTCCTCCTAC - (R)/725 (S) -
CRG4-3-R CCTGCCATCTCAAGACTCTC -
Pia Pia-F CTTTTGAGCTTGATTGGTCTGC 116 (R)/125 (S) - [22]
Pia-R CTATTGCACCAGAGGGACCAG -
Pi-CO39 RGA8-F GGATGGTCGTGTCTCAAACC 300 (R) - [23]
RGA8-R AAGGCGACATGTTGAGGAAG -
Pi54 Pi54MAS-F CAATCTCCAAAGTTTTCAGG 216 (R)/359 (S) - [24]
Pi54MAS-R GCTTCAATCACTGCTAGACC -
Pik RGA4-F GGAAAGCTGATATGTTGTCG 1650 (R) - [25]
RGA4-R ACTCGGAGTCGGAGAGTCAG -
Pi1 MPi1-F GTGCTGCTGTGGCTAGTTTG 460 (R) - [26]
MPi1-R AGTCCCCGCTCAATTTTTCT -
Pikh FMl43-F CCCAACATTGGTAGTAGTGC 258 (R)/401 (S) - [27]
FM143-R TCCTTCATACGCAACAATCT -
Pikm Ckm1-F TGAGCTCAAGGCAAGAGTTGAGGA 174 (R)/213 (S) - [28]
Ckm1-R TGTTCCAGCAACTCGATGAG -
Ckm2-F CAGTAGCTGTGTCTCAGAACTATG 290 (R)/332 (S) -
Ckm2-R AAGGTACCTCTTTTCGGCCAG -
Pikp Pikp-SNP-F ATAGTTGAATGTATGGAATGGAAT 148 (R) - [29]
Pikp-SNP-R CTGCGCCAAGCAATAAAGTC -
Pike Pik-F GAAGAATGGGAAGTCATCAGA 558+423 (R)/ - [30]
Pik-R ACCTTCTGCTGCTTTCTCTTC 558+179 (S) -
G-F GATCTAGATAATAATGATGCTTTGTG -
C-R GCTATCCTCCAAGACATCGA -
Pb1 Pb1-1-F ATCAACGCTACCTTCCC 160 (R) - [31]
Pb1-1-R GTGCCATCACAATTTCTTC -
Pita YL155-F AGCAGGTTATAAGCTAGGCC 1042 (R) - [32]
YL87-R CTACCAACAAGTTCATCAAA -
YL183-F AGCAGGTTATAAGCTAGCTAT 1042 (S) -
YL87-R CTACCAACAAGTTCATCAAA -
Ptr Z12-F TGCAGATTTGACTGCTCGGT 200 (R) - [33]
Z12-R GGGATCTTCCTCGCCCAAA -

Table 1

Resistance frequency and resistance evaluation of the tested rice varieties"

抗性评价(占比a)Resistance evaluation(Percentage, %) 品种
Varieties
抗性频率b
Resistance frequency (%)
抗性评价(占比a
Resistance evaluation
(Percentage, %)
品种
Varieties
抗性频率b
Resistance frequency (%)
R(2) 龙粳20 Longgeng 20 82.84 龙糯3号 Longnuo 3 18.66
MR(12) 龙粳67 Longgeng 67 74.63 龙粳50 Longgeng 50 18.66
龙垦202 Longken 202 71.64 龙粳59 Longgeng 59 17.91
龙粳40 Longgeng 40 70.90 龙粳51 Longgeng 51 16.42
龙粳31 Longgeng 31 68.66 龙粳58 Longgeng 58 14.93
龙粳57 Longgeng 57 64.93 沙沙尼 Shashani 13.43
龙粳43 Longgeng 43 64.18 龙粳66 Longgeng 66 13.43
MS(16) 粳花香 Genghuaxiang 58.21 龙粳47 Longgeng 47 11.94
鸿源5290 Hongyuan 5290 57.46 谷润田香2 Guruntianxiang 2 11.94
垦稻34 Kendao 34 56.72 龙垦201 Longken 201 11.19
稻花香7号 Daohuaxiang 7 44.78 垦稻31 Kendao 31 10.45
水粳香 Shuigengxiang 43.28 哈香稻3号 Haxiangdao 3 9.70
龙粳62 Longgeng 62 43.28 龙粳65 Longgeng 65 8.96
中龙香粳1号 Zhonglongxianggeng 1 41.04 谷润田香 Guruntianxiang 8.21
垦稻41 Kendao 41 41.04 普粳稻 Pugengdao 8.21
S(70) 龙广优13 Longguangyou 13 38.81 垦稻30 Kendao 30 6.72
富粳188 Fugeng 188 36.57 小粒香 Xiaolixiang 5.97
龙粳29 Longgeng 29 29.10 北稻6号 Beidao 6 5.22
龙粳63 Longgeng 63 29.10 龙粳26 Longgeng 26 4.48
龙洋11 Longyang 11 28.36 润香稻 runxiangdao 4.48
龙粳46 Longgeng 46 24.63 绥粳23 Suigeng 23 3.73
龙垦227 Longken 227 23.13 龙庆稻5号 Longqingdao 5 3.73
龙垦257 Longken 257 23.13 绥粳18 Suigeng18 2.99
龙粳21 Longgeng 21 22.39 龙粳52 Longgeng 52 2.99
合1045 He 1045 19.40 稼禾1号 Jiahe 1 1.49

Table 2

The resistance association coefficient and virulence association coefficient of some rice varieties"

品种
Varieties
龙粳20
Longgeng
20
龙粳67
Longgeng
67
龙垦202
Longken
202
龙粳40
Longgeng
40
龙粳31
Longgeng
31
龙粳57
Longgeng
57
龙粳43
Longgeng
43
粳花香
Genghua-
xiang
鸿源5290
Hongyuan
5290
垦稻34
Kendao
34
稻花香7号
Daohuaxiang
7
水粳香
Shuigeng-
xiang
龙粳62
Longgeng
62
中龙香粳1号
Zhonglong-
xianggeng 1
垦稻41
Kendao
41
龙粳20
Longgeng 20
0.13 0.11 0.14 0.14 0.08 0.10 0.10 0.09 0.08 0.11 0.11 0.12 0.10 0.11
龙粳67
Longgeng 67
0.70 0.16 0.18 0.17 0.11 0.14 0.13 0.10 0.15 0.13 0.16 0.15 0.16 0.17
龙垦202
Longken 202
0.65 0.62 0.19 0.16 0.12 0.15 0.20 0.11 0.19 0.19 0.19 0.16 0.19 0.17
龙粳40
Longgeng 40
0.68 0.63 0.62 0.21 0.16 0.18 0.19 0.13 0.18 0.22 0.20 0.19 0.20 0.19
龙粳31
Longgeng 31
0.66 0.60 0.56 0.60 0.13 0.18 0.15 0.15 0.18 0.20 0.19 0.20 0.19 0.20
龙粳57
Longgen 57
0.56 0.50 0.49 0.51 0.46 0.18 0.19 0.21 0.22 0.27 0.25 0.28 0.27 0.17
龙粳43
Longgeng 43
0.57 0.53 0.51 0.53 0.51 0.47 0.25 0.22 0.20 0.31 0.29 0.27 0.31 0.19
粳花香
Genghuaxiang
0.51 0.46 0.50 0.48 0.42 0.43 0.48 0.27 0.22 0.34 0.34 0.28 0.35 0.20
鸿源5290
Hongyuan 5290
0.49 0.43 0.40 0.42 0.41 0.43 0.44 0.43 0.19 0.35 0.37 0.30 0.37 0.25
垦稻34
Kendao 34
0.46 0.46 0.47 0.46 0.43 0.43 0.41 0.37 0.34 0.31 0.24 0.34 0.31 0.29
稻花香7号
Daohuaxiang 7
0.39 0.32 0.36 0.38 0.36 0.37 0.40 0.37 0.37 0.32 0.40 0.38 0.44 0.30
水粳香
Shuigengxiang
0.37 0.36 0.36 0.34 0.31 0.36 0.37 0.36 0.37 0.24 0.28 0.36 0.45 0.32
龙粳62
Longgeng 62
0.38 0.33 0.31 0.34 0.32 0.13 0.34 0.30 0.31 0.34 0.26 0.22 0.43 0.34
中龙香粳1号
Zhonglongxiangeng 1
0.34 0.32 0.31 0.32 0.28 0.33 0.36 0.34 0.35 0.28 0.30 0.29 0.27 0.36
垦稻41
Kendao 41
0.35 0.33 0.30 0.31 0.34 0.23 0.24 0.19 0.24 0.27 0.16 0.16 0.19 0.18

Fig. 1

The amplification results of some varieties of blast resistance genes A: Pit; B: Pib; C: Pi2; D: Pi9; E: Piz-t; F: Pi5; G: Pi54; H: Pik; I: Pi1; J: Pikh; K: Pikm; L: Pita; M: Pish; N: Pi33; O: Pia; P: Pi-CO39; Q: Pikp; R: Pid2; S: Pid3; T: Pii. M: DL2000 DNA Marker, +: Disease resistance control materials for each gene, -: Sensitive control material (LTH) or ddH2O, a: Disease resistance control materials PCR product; b: Disease resistance control materials digestion product; c: LTH PCR product; d: LTH digestion product. 1: Longgeng 21, 2: Longgeng 62, 3: Longnuo 3, 4: Kendao 30, 5: Kendao 34, 6: Suigeng 18, 7: Suigeng 23, 8: Xiaolixiang, 9: Beidao 6, 10: Shashani"

Fig. 2

The amplification results of to sequence blast resistance genes a: Pi37; b: Pi64; c: Bsr-d1; d: Pi63; e: Pi50; f: Pi36; g: Pi56; h: Pike; i: Pb1; j: Pi25; k: Pi35; l: pi21; m: Pigm; n: Pid3-A4; o: Ptr. M: DL500/2000 DNA Marker, 1: Longgeng 21, 2: Longgeng 62, 3: Longnuo 3, 4: Kendao 30, 5: Kendao 34, 6: Suigeng 18, 7: Suigeng 23, 8: Xiaolixiang, 9: Beidao 6, 10: Shashani, 11: Longgeng 20, 12: Longgeng 26, 13: Longgeng 29, 14: Longgeng 31, 15: Longgeng 40"

Fig. 3

Base sequence comparison results of some varieties of Pid3-A4 and Bsr-d1 0 represents the functional site of persistent resistance gene; A: Base sequence comparison of Pid3-A4; B: Base sequence of Bsr-d1"

Fig. 4

Base sequence comparison results of some blast resistance genes"

Fig. 5

Detection status of blast resistance genes"

Table 3

Statistics of the number of blast resistance genes carried by the tested varieties"

携带抗瘟基因数
No. of resistance
genes
对应品种数
No. of corresponding
varieties
比率
Ratio
(%)
基因组合类型
No. of gene
combination types
12 4 5.97 4
13 7 10.45 6
14 9 13.43 6
15 19 28.36 17
16 10 14.93 8
17 13 19.40 12
18 3 4.48 3
19 2 2.99 2

Fig. 6

Contribution of rice blast resistance genes to disease resistance"

Table 4

Disease resistance performance of different rice blast resistance genotypes"

携带抗瘟基因数
No. of resistance genes
抗瘟基因组合类型
Gene combination types
携带该基因型品种
Varieties carrying corresponding genotype
抗病表型
Resistant phenotype
12 Pi37+Pish+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pikp+Pita+Ptr 绥粳23 Suigeng 23 S
12 Pi37+Pish+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pi-CO39+Pik+Pikm+Ptr 龙垦257 Longken 257 S
12 Pi37+Pish+Pi64+Pib+pi21+Pi63+Pi36+Pi33+Pia+Pi-CO39+Pikp+Ptr 普粳稻 Pugengdao S
13 Pi37+Pish+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pik+Pikm+Ptr 龙糯3号 Longnuo 3 MS/S
13 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pikp+Ptr 小粒香 Xiaolixiang S
13 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi36+Pi33+Pia+Pi-CO39+Pik+Pikm+Ptr 龙粳26 Longgeng 26 S
13 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pi-CO39+Pik+Pikm+Ptr 龙垦227 Longken 227 S
13 Pish+Pi64+Pib+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pikh+Pikp+Ptr 水粳香 Shuigengxiang MS
14 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi36+Pi33+Pi-CO39+Pi54+Pikh+Pikp+Pita+Ptr 垦稻30 Kendao 30 S
14 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pi-CO39+Pi54+Pikh+Pikp+Ptr 绥粳18、龙粳63、润香稻
Suigeng 18, Longgeng 63, Runxiangdao
S
14 Pi37+Pish+Pi35+Pi64+Pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pik+Pikm+Ptr 龙粳46 Longgeng 46 S
14 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pi-CO39+Pik+Pikm+Pita+Ptr 垦稻31 Kendao 31 S
14 Pi37+Pish+Pi64+Pib+pi21+Pi63+Pi36+Pi33+Pia+Pi-CO39+Pik+Pikm+Pikp+Ptr 谷润田香2 Guruntianxiang 2 S
15 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pi-CO39+Pi54+Pik+Pikh+Pikm+Ptr 龙粳21 Longgeng 21 S
15 Pi37+Pish+Pi64+Pib+pi21+Pi63+Pi9+Pid2+Pi36+Pi33+Pia+Pi-CO39+Pik+Pikm+Ptr 龙粳62 Longgeng 62 MS
15 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi36+Pi33+Pii+Pi-CO39+Pi54+Pikh+Pikp+Pita+Ptr 北稻6号 Beidao 6 S
15 Pi37+Pish+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pi-CO39+Pi54+Pik+Pikh+Pikm+Pikp+Ptr 沙沙尼 Shashani S
15 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pikh+Pikp+Pita 龙粳29 Longgeng 29 S
15 Pi37+Pish+Pi35+Pi64+Pi21+Pi63+Pi9+Pi36+Pi33+Pi-CO39+Pi54+Pikh+Pikp+Pita+Ptr 龙粳50、龙庆稻5号
Longgeng 50, Longqingdao 5
S
15 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pi5+Pii+Pia+Pi-CO39+Pikm+Ptr 龙粳58 Longgeng 58 S
15 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pikh+Pikp+Ptr 龙粳65 Longgeng 65 S
15 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pik+Pikp+Pita+Ptr 稼禾1号 Jiahe 1 S
15 Pi37+Pish+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pik+Pikm+Pikp+Pita+Ptr 谷润田香 Guruntianxiang S
15 Pi37+Pish+Pi64+Pib+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pikh+Pikp+Ptr 龙广优13、富粳188
Longguangyou 13, Fujing 188
S
15 Pi37+Pish+Pi64+Pib+pi21+Pi63+Pi9+Pi36+Pi33+Pi-CO39+Pi54+Pik+Pikh+Pikm+Ptr 粳花香 Jinghuaxiang MS
16 Pi37+Pish+Pi35+Pi64+Pib+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pikh+Pikp+Ptr 龙粳57 Longjing 57 MR
16 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pikh+Pikp+Pita+Ptr 龙粳59、龙粳66
Longgeng 59, Longgeng 66
S
16 Pi37+Pish+Pi64+Pib+pi21+Pi63+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pik+Pikh+Pikm+Pikp+Ptr 中龙香粳1号
Zhonglongxianggeng 1
MS
16 Pish+Pib+pi21+Pi9+Pi36+Pi33+Pi5+Pii+Pia+Pi-CO39+Pi54+Pik+Pikh+Pikm+Pita+Ptr 稻花香7号 Daohuaxiang 7 MS
17 Pi37+Pish+Pi64+pi21+Pi63+Pi2+Piz-t+Pi50+Pi36+Pi33+Pia+Pi-CO39+Pik+Pikm+Pikp+Pita+Ptr 龙粳31 Longgeng 31 MR
17 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi2+Piz-t+Pi50+Pi36+Pi33+Pi-CO39+Pi54+Pik+Pikh+Pikp+Ptr 龙粳40 Longgeng 40 MR
17 Pi37+Pish+Pi35+Pi64+Pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pik+Pikh+Pikm+Pita+Ptr 龙粳51、龙洋11
Longgeng 51, Longyang 11
S
17 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pi5+Pii+Pia+Pi-CO39+Pik+Pikm+Pikp+Ptr 龙粳52 Longgeng 52 S
17 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi2+Piz-t+Pi50+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pikh+Pikp+Ptr 龙垦202 Longken 202 MR
17 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Pi36+Pi33+Pii+Pia+Pi-CO39+Pik+Pikm+Pikp+Pita+Ptr 龙粳47 Longgeng 47 S
17 Pi37+Pish+Pi35+Pi64+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pik+Pikh+Pikm+Pikp+Pita+Ptr 合1045 He1045 S
17 Pi37+Pish+Pi64+Pib+pi21+Pi63+Pi9+Pi36+Pi33+Pi-CO39+Pi54+Pik+Pikh+Pikm+Pikp+Pita+Ptr 哈香稻3号 Haxiangdao 3 S
17 Pi37+Pish+Pi64+Pib+pi21+Pi63+Pi9+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pik+Pikh+Pikm+Pikp+Ptr 鸿源5290 Hongyuan 5290 MS
18 Pi37+Pish+Pi64+Pib+pi21+Pi63+Pi36+Pi33+Pi5+Pii+Pia+Pi-CO39+Pi54+Pik+Pikh+Pikm+Pita+Ptr 垦稻34 Kendao 34 MS
18 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi2+Piz-t+Pi50+Pi36+Pi33+Pi5+Pii+Pi-CO39+Pi54+Pikh+Pikp+Ptr 龙粳20 Longgeng 20 R
18 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi9+Piz-t+Pi50+Pi36+Pi33+Pia+Pi-CO39+Pi54+Pikh+Pikp+Pita+Ptr 龙垦201 Longken 201 S
19 Pi37+Pish+Pi35+Pi64+Pib+pi21+Pi63+Pi2+Pi9+Piz-t+Pi50+Pi36+Pi33+Pi5+Pii+Pia+Pi-CO39+Pikp+Ptr 龙粳43 Longgeng 43 MR
19 Pi37+Pish+Pi35+Pi64+pi21+Pi63+Pi2+Piz-t+Pi50+Pi36+Pi33+Pi5+Pii+Pia+Pi-CO39+Pi54+Pikh+Pikp+Ptr 龙粳67 Longgeng 67 MR
[1] COUCH B C, KOHN L M. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia, 2002, 94(4):683-693.
doi: 10.2307/3761719
[2] DENG Y W, ZHAI K R, XIE Z, YANG D Y, ZHU X D, LIU J Z, WANG X, QIN P, YANG Y Z, ZHANG G M, LI Q, ZHANG J F, WU S Q, JOËLLE M, MAO B, WNAG E T, XIE H A, DIDIER T, HE Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355(6328):962-965.
doi: 10.1126/science.aai8898
[3] ZHANG Y L, ZHU Q L, YAO Y X, ZHAO Z H, CORRELL J C, WANG L, PAN Q H. The race structure of the rice blast pathogen across southern and northeastern China. Rice, 2017, 10(1):46.
doi: 10.1186/s12284-017-0185-y
[4] 田大刚. Piz-t介导稻瘟病抗性的蛋白质组学分析及抗病基因座的应用[D]. 福建: 福建农林大学, 2017.
TIAN D G. Proteomic analysis of Piz-t mediated rice blast resistance and application of the resistant locus[D]. Fujian: Fujian Agriculture and Forestry University, 2017. (in Chinese)
[5] 阎勇, 马增凤, 秦钢, 陈远孟, 秦媛媛, 颜群, 刘驰, 张月雄, 黄大辉. 华南常用籼稻亲本稻瘟病抗性评价及抗性基因鉴定. 南方农业学报, 2017, 48(4):587-593.
YAN Y, MA Z F, QIN G, CHEN Y M, QIN Y Y, YAN Q, LIU C, ZHANG Y X, HUANG D H. Evaluation of blast resistance and identification of resistance genes in main indica rice patent materials in South China. Journal of Southern Agriculture, 2017, 48(4):587-593. (in Chinese)
[6] 王桂玲, 宋成艳, 刘乃生, 周雪松. 黑龙江省水稻区(生)试品种(系)对稻瘟病抗性评价与推广. 黑龙江农业科学, 2012(12):1-4.
WANG G L, SONG C Y, LIU N S, ZHOU X S. Evaluation and extension of rice varieties(lines) in regional(performance)test resistant to blast in Heilongjiang province. Heilongjiang Agricultural Sciences, 2012(12):1-4. (in Chinese)
[7] 郭丽颖, 赵宏伟, 王敬国, 刘化龙, 孙健, 宋微, 姜思达, 兴旺, 邹德堂. 黑龙江省稻瘟病菌生理小种鉴定和主栽水稻品种抗病性及遗传多样性分析. 核农学报, 2015, 29(8):1444-1454.
GUO L Y, ZHAO H W, WANG J G, LIU H L, SUN J, SONG W, JIANG S D, XING W, ZOU D T. Identification of physiological race of rice blast fungus and disease resistance and genetic diversity a analysis on major cultivars in Heilongjiang province. Journal of Nuclear Agricultural Sciences, 2015, 29(8):1444-1454. (in Chinese)
[8] 张亚玲, 赵宏森, 曹有鑫, 付天恒, 杨树, 靳学慧. 抗性频率、联合致病性系数和联合抗病性系数在水稻品种抗瘟性评价中的应用. 江苏农业科学, 2016, 44(7):158-161.
ZHANG Y L, ZHAO H S, CAO Y X, FU T H, YANG S, JIN X H. Application of resistance frequency, joint pathogenic coefficient and joint disease resistance coefficient in the evaluation of blast resistance of rice varieties. Jiangsu Agricultural Science, 2016, 44(7):158-161. (in Chinese)
[9] 韩笑, 贺叶晨星, 张梅, 雷子伊, 张涛, 李建粤. 利用分子标记分析22种水稻10个抗稻瘟病基因的基因型. 上海师范大学学报(自然科学版), 2017, 46(5):654-661.
HAN X, HE Y C X, ZHANG M, LEI Z Y, ZHANG T, LI J Y. Genotyping of 10 blast resistance genes in 22 rice varieties by molecular marker. Journal of Shanghai Normal University (Natural Sciences), 2017, 46(5):654-661. (in Chinese)
[10] 王亚, 陈献功, 尹海庆, 王越涛, 杨瑞芳, 臧之光, 王生轩. 河南主要水稻种质资源中抗稻瘟病基因的分子检测. 分子植物育种, 2018, 16(10):3203-3212.
WANG Y, CHEN X G, YIN H Q, WANG Y T, YANG R F, ZANG Z G, WANG S X. Molecular detection of rice blast resistance gene in the main rice germ plasms in Henan province. Molecular Plant Breeding, 2018, 16(10):3203-3212. (in Chinese)
[11] 辛威. 寒地粳稻种质资源稻瘟病抗性鉴定及基因定位[D]. 哈尔滨: 东北农业大学, 2017.
XIN W, Identification and genetic mapping of rice blast resistance in japonica rice germplasm resources in cold region[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese)
[12] 周弋力. 黑龙江省水稻主栽品种抗瘟性评价及稻瘟病菌无毒基因分析[D]. 大庆: 黑龙江八一农垦大学, 2019.
ZHOU Y L. Resistance evaluation of main rice varieties in Heilongjiang province and a virulence genotyping of Magnaporthe grisea[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019. (in Chinese)
[13] 相亚超, 王丽丽, 徐凡, 马殿荣. 抗稻瘟病基因在黑龙江水稻资源中的分布. 分子植物育种, 2018, 16(23):7705-7717.
XIANG Y C, WANG L L, XU F, MA D R. Study on the distribution of rice blast resistant genes in rice resources of Heilongjiang province. Molecular Plant Breeding, 2018, 16(23):7705-7717. (in Chinese)
[14] 蒋金芬, 韩红萍, 梁友方. 滤纸片法低温冷冻保存菌种的实验室应用. 中国公共卫生, 2006, 22(3):310.
JIANG J F, HAN H P, LIANG Y F. Laboratory application of filter paper method for cryopreservation. Chinese Journal of public health, 2006, 22(3):310. (in Chinese)
[15] 连兆煌. 无土栽培原理与技术. 北京: 农业出版社, 1994.
LIAN Z H. Principles and Techniques of Soilless Cultivation. Beijing: Agriculture Press, 1994. (in Chinese)
[16] 孟峰, 张亚玲, 靳学慧, 张晓玉, 姜军. 黑龙江省稻瘟病菌无毒基因AVR-PibAVR-PikAvrPiz-t的检测与分析. 中国农业科学, 2019, 52(23):4262-4273.
MENG F, ZHANG Y L, JIN X H, ZHANG X Y, JIANG J. Detection and analysis of Magnaporthe oryzae avirulence genes AVR-Pib, AVR-Pik and AvrPiz-t in Heilongjiang province. Scientia Agricultura Sinica, 2019, 52(23):4262-4273. (in Chinese)
[17] 靳学慧, 马汇泉. 农业植物病理学. 赤峰: 内蒙古科学技术出版社, 1999.
JIN X H, MA H Q. Agricultural Plant Pathology. Chifeng: Inner Mongolia Science and Technology Press, 1999. (in Chinese)
[18] 阮宏椿, 杨秀娟, 陈双龙, 董瑞霞, 陈福如, 王伟新, 杜宜新. 福建省水稻新品种对稻瘟病菌的抗性鉴定与评价. 福建农业学报, 2006(4):304-307.
RUAN H C, YANG X J, CHEN S L, DONG R X, CHEN F R, WANG W X, DU Y X, Identification and evaluation of rice new varieties resistant to Magnaporthe grisea in Fujian province. Fujian Journal of Agricultural Sciences, 2006(4):304-307. (in Chinese)
[19] 张亚玲, 王宝玉, 台莲梅, 郑雯, 邓本良, 靳学慧. 黑龙江省稻瘟病菌生理小种对水稻品种致病性分析. 中国植保导刊, 2014, 34(2):22-26.
ZHANG Y L, WANG B Y, TAI L M, ZHENG W, DENG B L, JING X H. Analysis on the pathogenic of rice blast fungus physiological race to rice varieties in Heilongjiang province. China Plant Protection, 2014, 34(2):22-26. (in Chinese)
[20] 李洪亮, 柴永山, 孙玉友, 高春艳, 魏才强, 解忠, 张巍巍, 刘丹, 程杜娟, 侯国强, 徐德海, 赵云彤. 寒地超级稻龙粳31祖先亲本追溯及遗传基础解析. 植物遗传资源学报, 2016, 17(3):433-437.
LI H L, CHAI Y S, SUN Y Y, GAO C Y, WEI C Q, XIE Z, ZHANG W W, LIU D, CHENG D J, HOU G Q, XU D H, ZHAO Y T. Ancestors tracking and analysis on genetic basis of super rice Longjing31 in cold region. Journal of Plant Genetic Resources, 2016, 17(3):433-437.
[21] YADAV M K, ARAVINDAN S, NGANGKHAM U, RAGHU S, PRABHUKARTHIKEYAN S R, KEERTHANA U, MANDI B C, ADAK T, MUNDA S, DESHMUKH R, PRAMESH D, SAMANTARAY S, RATH P C. Blast resistance in Indian rice landraces: Genetic dissection by gene specific markers. PloS ONE, 2019, 14(1):e0211061.
doi: 10.1371/journal.pone.0211061
[22] 汪文娟, 周继勇, 汪聪颖, 苏菁, 封金奇, 陈炳, 冯爱卿, 杨健源, 陈深, 朱小源. 八个抗稻瘟病基因在华南籼型杂交水稻中的分布. 中国水稻科学, 2017, 31(3):299-306.
WANG W J, ZHOU J Y, WANG C Y, SU J, FENG J Q, CHEN B, FENG A Q, YANG J Y, CHEN S, ZHU X Y. Distribution of eight rice blast resistance genes in indica hybrid rice in China. Chinese Journal of Rice Science, 2017, 31(3):299-306. (in Chinese)
[23] 李思博. 辽宁省稻瘟菌无毒基因及水稻抗瘟基因鉴定[D]. 沈阳: 沈阳农业大学, 2018.
LI S B. Identification of avirulent genes and resistance genes of Magnaporthe grisea in Liaoning province[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[24] 徐未未, 王兴, 黄永相, 蒋世河, 李伟, 郭建夫. 水稻抗稻瘟病基因的分子标记与标记辅助育种研究进展. 江苏农业学报, 2013, 29(4):898-906.
XU W W, WANG X, HUANG Y X, JIANG S H, LI W, GUO J F. Advances in molecular markers of blast resistance genes and marker-assisted breeding in rice. Jiangsu Agricultural Sciences, 2013, 29(4):898-906. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[14] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[15] HE Lei,LU Kai,ZHAO ChunFang,YAO Shu,ZHOU LiHui,ZHAO Ling,CHEN Tao,ZHU Zhen,ZHAO QingYong,LIANG WenHua,WANG CaiLin,ZHU Li,ZHANG YaDong. Phenotypic Analysis and Gene Cloning of Rice Panicle Apical Abortion Mutant paa21 [J]. Scientia Agricultura Sinica, 2022, 55(24): 4781-4792.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!