Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2843-2857.doi: 10.3864/j.issn.0578-1752.2021.13.013

• HORTICULTURE • Previous Articles     Next Articles

Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume

LI YanLin1(),SHAHID Iqbal1,SHI Ting1,SONG Juan2,NI ZhaoJun1,GAO ZhiHong1()   

  1. 1College of Horticulture, Nanjing Agricultural University, Nanjing 210095
    2Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2020-08-27 Revised:2020-10-14 Online:2021-07-01 Published:2021-07-12
  • Contact: ZhiHong GAO E-mail:lisaltp@qq.com;gaozhihong@njau.edu.cn

Abstract:

【Objective】The purposes of this study were to analyze the biological functions of PmARF17gene and to explore the regulation pattern between the expression of PmARF17 and plant endogenous hormones, which could provide the basis for studying the regulatory mechanism of pistil abortion inPrunus mume. 【Method】 PmARF17 gene was isolated from the cultivar Daqiandi of Prunus mume, and the gene structure, phylogeny and homology with other species were analyzed by bioinformatics software. Subcellular localization determined the position of PmARF17 protein in the cell. qRT-PCR was used to detect the spatiotemporal expression pattern of PmARF17in different stages of flower buds, leaf buds, flower buds with different pistil morphology, and different mature floral organs of the varieties Daqiandi and Longyan. The contents of IAA, GA3, ABA and ZT in flower buds, leaf buds, pistil morphology flower buds and different mature flower organs of Daqiandi and Longyan were determined by UPLC method, and the correlation analysis was conducted with the qRT-PCR expression ofPmARF17.Cloning, element analysis and transient expression of PmARF17 promoter were performed to study the regulation pattern between PmARF17 and GA3. 【Result】Phylogenetic tree analysis showed PmARF17 protein sequence was highly conserved with ARF protein of other plants. Subcellular localization experiment showed PmARF17 protein was located on the nucleus and cell membrane. The correlation analysis between qRT-PCR expression and endogenous hormone content showed the expression of PmARF17 had no obvious similarity with the change trend of IAA content in different flower samples. The expression of PmARF17 in complete pistil was significantly up-regulated compared to incomplete pistil, and GA3 content was consistent with the expression trend ofPmARF17. The content of ABA and ZT in different flower samples and the expression of PmARF17 showed an overall opposite trend, indicating that they might inhibit the expression of PmARF17. The PmARF17promoter contained GAcis-element and had promoter activity and tissue expression specificity, specifically expressed in petals, stamens and roots. 【Conclusion】PmARF17 might be a positive regulation gene of flower development, and it might promote pistil development of Prunus mume. The expression of PmARF17 might be positively regulated by GA3, which affected the pistil development of Prunus mume by acting on stamens and petals.

Key words: Prunus mume, auxin response factor, pistil development, gene expression, endogenous hormones, transient expression

Table 1

Sequence and use of primers"

引物名称Primer name 引物序列 Primer Sequence (5′-3′) 引物用途 Primer use
PmARF17gene-F GCAGACATGAAACCTCCTCCTATGC PmARF17基因扩增
Amplification of PmARF17 gene
PmARF17gene-R CAAGCCATTGTATCATTGCTATCC
PmARF17 GFP-F GGAAGATCTATGGGGGGTCTAATCGATC 亚细胞定位
Subcellular localization
PmARF17 GFP-R GGAAGATCTTCCTTGTAAGCAGCTTTCC
PmARF17qPCR-F TTAGTGGCAGTCAGGATG 实时荧光定量PCR
qRT-PCR
PmARF17qPCR-R GCAGTTGAGGTTGAGTTG
Actin-F TGAAGCATACACCTATGATGATGAAG 内参引物
Actin primer
Actin-R CTTTGACAGCACCAGTAGATTCC
PmARF17 promoter-F GAGATGCCTAACACTCTAAAGTC PmARF17启动子扩增
Amplification of PmARF17promoter
PmARF17 promoter-R CCTCCGTTGCACTGTTCAGATCG
Promoter-ApaI-F GGGGCCCGAGATGCCTAACACTCTAAAGTC 瞬时表达试验
Transient expression
Promoter-SmaI-R CCCCCGGGGTGGAAATAAACAAAAATTGTA

Fig. 3

Structure of pCAMBIA1302-PmARF17-GFP vector and the subcellular localization of PmARF17 protein A: Structure of pCAMBIA1302-PmARF17-GFP recombinant vector; B: pCAMBIA1302-GFP alone; C: fusion plasmid pCAMBIA1302-PmARF17-GFP. Images under blight field (middle), fluorescence (left) and the merged images were shown on the right (bars=20 000 nm) "

Fig. 1

The gene structure of PmARF17and the phylogenetic tree and homology comparison of PmARF17 protein with other plants A: cDNA and deduced amino acid sequence of PmARF17 (The maximum ORF was underlined and the shaded areas were conservative); B: Phylogenetic tree of PmARF17 protein with other plants; C: The gene structure of PmARF17; D: Homology comparison of PmARF17 protein with other plants [The blue boxes are B3 DNA binding domain, red boxes are Auxin response factor. 1.seq: Prunus mume; 2.seq: Prunus sibirica ; 3.seq: Prunus persica ; 4.seq: Prunus avium ; 5.seq: Malus domestica; 6.seq: Pyrus x bretschneideri ; 7.seq: Vitis vinifera; 8.seq: Fragaria vesca; 9.seq: Populus trichocarpa; 10.seq: A. thaliana; 11.seq: N. tabacum ; 12.seq: Solanum lycopersicum]"

Fig. 2

Analysis of cis-acting elements of PmARF17 promoter A: Plant hormone response elements of PmARF17 promoter; B: Cis-acting elements of PmARF17 promoter "

Fig. 4

Expression analysis of PmARF17in flower development of Prunus mume A: PmARF17 expression in flower buds and leaf buds of Daqiandi from September to January; B: PmARF17 expression in flower buds and leaf buds of Longyan from September to January; C: PmARF17 expression in flower buds of different pistil morphologies of Daqiandi; D: PmARF17 expression in different mature flower organs of Daqiandi "

Fig. 5

Correlation analysis between hormones and PmARF17 expression of flower buds and leaf buds at different periods of Daqiandi and Longyan A: IAA, GA3, ABA, ZT contents and the PmARF17 expression of flower buds and leaf buds at different periods of the aborted Daqiandi; B: IAA, GA3, ABA, ZT contents and the PmARF17 expression of flower buds and leaf buds at different periods of well-developed Longyan. * indicate significant difference ( P<0.05), and ** indicate extremely significant difference (P<0.01). The same as below "

Fig. 6

Analysis of endogenous hormone contents and PmARF17 expression in flower buds of different pistil morphologies and different mature flower organs of ‘Daqiandi’ A: IAA, GA3, ABA, ZT contents and the PmARF17 expression in flower buds of different pistil morphologies of Daqiandi; B: IAA, GA3, ABA, ZT contents and the PmARF17 expression in different mature flower organs of Daqiandi "

Fig. 7

The structure of PmARF17 promoter-GUS vector and transient expression experiment of PmARF17promoter A: The structure of pBI121-PmARF17 promoter-GUS vector; B: GUS staining results of Arabidopsis thaliana seedlings infected by pBI121-PmARF17 promoter-GUS vector; C: Negative control GUS staining results (without bacterial infection); D: Positive control GUS staining results (infected by bacterial fluid of pBI121 alone); E: Enlarged view of the root in B; F, G: GUS staining results of pBI121-PmARF17 promoter-GUS in petals; H: GUS staining results of pBI121-PmARF17 promoter-GUS in stamens; I: High magnification image of blue area separated from H; J: GUS staining results of floral organ in the negative control, and its stamens have the same components as those in I; K, L: GUS staining results of different roots, flower organs and leaves in the positive control "

[1] 孙海龙, 宋娟, 高志红, 倪照君, 章镇. 果梅PmKNAT2基因全长cDNA克隆及表达分析. 中国农业科学, 2014, 47(17):3444-3452.
SUN H L, SONG J, GAO Z H, NI ZJ, ZHANG Z. Isolation and expression analysis of PmKNAT2 gene from Japanese apricot. Scientia Agricultura Sinica, 2014, 47(17):3444-3452. (in Chinese)
[2] BOAVIDA L C, BORGES F, BECKER J D, FEIJO J A. Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis. Plant Physiology, 2011, 155(4):2066-2080.
doi: 10.1104/pp.110.169813
[3] ORI N. Dissecting the biological functions of ARF and Aux/IAA genes. Plant Cell, 2019, 31(6):1210-1211.
doi: 10.1105/tpc.19.00330
[4] CAI H Y, CHAI M N, CHEN F Q, HUANG Y M, ZAHNG M, HE Q, LIU L P, YAN M K, QIN Y. HBI1 acts downstream of ERECTA and SWR1 in regulating inflorescence architecture through the activation of the brassinosteroid and auxin signaling pathways. New Phytologist, 2020. doi: 10.1111/nph.16840.
[5] HASSANKHAH A, RAHEMI M, MOZAFARI M R, VAHDATI K. Flower development in walnut: Altering the flowering pattern by gibberellic acid application. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 46(2):700-706.
doi: 10.15835/nbha46211183
[6] HUANG Y M, ZENG X C, CAO H P. Hormonal regulation of floret closure of rice (Oryza sativa). PLoS ONE, 2018, 13(6):e0198828.
doi: 10.1371/journal.pone.0198828
[7] MARZEC M, ALQUDAH A M. Key hormonal components regulate agronomically important traits in barley. International Journal of Molecular Sciences, 2018, 19(3):795.
doi: 10.3390/ijms19030795
[8] REZAUL I M, FENG B H, CHEN T T, FU W M, ZHANG C X, TAO L X, FU G F. Abscisic acid prevents pollen abortion under high temperature stress by mediating sugar metabolism in rice spikelets. Physiologia Plantarum, 2019, 165:644-663.
doi: 10.1111/ppl.2019.165.issue-3
[9] ULMASOV T, HAGEN G, GUILFOYLE T J. ARF1, a transcription factor that binds to auxin response elements. Science, 1997, 276(5320):1864-1868.
[10] 马军, 徐通达. 植物非经典生长素信号转导通路解析. 生物技术通报, 2020, 36(7):15-22.
MA J, XU T D. Non-canonical auxin signaling pathway in plants. Biotechnology Bulletin, 2020, 36(7):15-22. (in Chinese)
[11] VERNOUX T, ROBERT S. Auxin 2016: A burst of auxin in the warm south of China. Development, 2017, 144:533-540.
doi: 10.1242/dev.144790
[12] SONG J, GAO Z H, HUO X M, SUN H L, XU Y S, SHI T, NI Z J. Genome-wide identification of the auxin response factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc). Acta Physiological Plantarum, 2015, 37:145.
doi: 10.1007/s11738-015-1882-z
[13] SESSIONS A, NEMHAUSER J L, MCCALL A, ROE J L, FELDMANN K A, ZAMBRYSKI P C. ETTIN patterns the Arabidopsis flower meristem and reproductive organs. Development, 1997, 124:4481-4491.
doi: 10.1242/dev.124.22.4481
[14] LIU X G, DINH T T, LI D M, SHI B H, LI Y P, CAO X W, GUO L, PAN Y Y, JIAO Y L, CHEN X M. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. Plant Journal, 2014, 80:629-641.
doi: 10.1111/tpj.12658
[15] ZHANG K, WANG R Z, ZI H L, LI Y P, CAO X W, LI D M, GUO L, TONG J H, PAN Y Y, JIAO Y L, LIU R Y, XIAO L T, LIU X G. AUXIN RESPONSE FACTOR3 regulates flower meristem determinacy by repressing ctokinin biosynthesis and signaling. The Plant Cell, 2018, 30:324-346.
doi: 10.1105/tpc.17.00705
[16] ZHENG Y, ZHANG K, GUO L, LIU X G. AUXIN RESPONSE FACTOR3 plays distinct role during early flower development. Plant Signaling & Behavior, 2018, 13(5):1559-2324.
[17] 褚孟嫄, 黄金城. 梅树花芽形态分化及其物质代谢的研究. 北京林业大学学报, 1995, 17(S1):68-74.
CHU M Y, HUANG J C. Studies on the morphological differentiation and the substanee metabolism in Meizi (Prunus mumeSieb. et Zucc.) . Journal of Beijing Forestry University, 1995, 17(S1):68-74. (in Chinese)
[18] DE JONG M, WOLTERS-ARTS M, FERON R, MARIANI C, VRIEZEN W H. The Solanum lycopersicum AUXIN RESPONSE FACTOR7 (S1ARF7) mediates cross-talk between auxin and gibberellins signaling during tomato fruit set and development. Journal of Experimental Botany, 2011, 62(2):617-626.
doi: 10.1093/jxb/erq293
[19] DE JONG M, MARIANI C, VRIEZEN W H. The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 2009, 60(5):1523-1532.
doi: 10.1093/jxb/erp094
[20] 张文颖, 王晨, 朱旭东, 马超, 王文然, 冷翔鹏, 郑婷, 房经贵. 葡萄全基因组DELLA蛋白基因家族鉴定及其应答外源赤霉素调控葡萄果实发育的特征. 中国农业科学, 2018, 51(16):3130-3146.
ZHANG W Y, WANG C, ZHU X D, MA C, WANG W R, LENG X P, ZHENG T, FANG J G. Genome-wide identification and expression of DELLA protein gene family during the development of grape berry induced by exogenous GA. Scientia Agricultura Sinica, 2018, 51(16):3130-3146. (in Chinese)
[21] FU X D, HARBERD N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 2003, 421:740-743.
doi: 10.1038/nature01387
[22] NEMHAUSER J L, HONG F X, CHORY J. Different plant hormones regulate similar processes through largely non-overlapping transcriptional responses. Cell, 2006, 126:467-475.
doi: 10.1016/j.cell.2006.05.050
[23] BAO S J, HUA C M, SHEN L S, YU H. New insights into gibberellin signaling in regulating flowering inArabidopsis. Journal of Integrative Plant Biology, 2020, 62:118-131.
doi: 10.1111/jipb.v62.1
[24] WEISS D, ORI N. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiology, 2007, 144:1240-1246.
doi: 10.1104/pp.107.100370
[25] XIAO T, LIU J L. Study on the relation between auxin, zeatin, cytoplasmic male sterility in Maize (Zea mays L.). Acta Agronomica Sinica, 1994, 20(1):26-31.
[26] 李英贤, 张爱民, 黄铁城. 小麦细胞质雄性不育与花药组织内源激素的关系. 农业生物技术学报, 1996, 4(4):307-313.
LI Y X, ZHANG A M, HUANG T C. Relationship between wheat cytoplasmic male sterility and the content of endogenous hormones in the anther. Journal of Agricultural Biotechnology, 1996, 4(4):307-313. (in Chinese)
[27] 张明方, 陈竹君, 汪炳良, 董伟敏. 榨菜胞质雄性不育系和保持系花器发育过程中内源激素变化. 浙江农业大学学报, 1997, 23(2):154-157.
ZHANG M F, CHEN Z J, WANG B L, DONG W M. Hormonal changes in flower organs of cytoplasmic male-sterile line and its maintainance line of tsatsai (tuber mustard). Journal of Zhejiang Agricultural University, 1997, 23(2):154-157. (in Chinese)
[28] 田长恩, 张明永, 段俊, 黄毓文, 刘鸿先, 梁承邺. 油菜细胞质雄性不育系及其保持系不同发育阶段内源激素动态变化初探. 中国农业科学, 1998, 31(4):20-25.
TIAN C E, ZHANG M Y, DUAN J, HUANG Y W, LIU H X, LIANG C Y. Preliminary study on the changes of phytohormones at different development stage in cytoplamic male sterility line and its maintainer of rape. Scientia Agricultura Sinica, 1998, 31(4):20-25. (in Chinese)
[29] 肖华山, 吕柳新, 陈志彤. 荔枝花发育过程中雌雄蕊内源激素的动态变化. 应用与环境生物学报, 2003, 9(1):11-15.
XIAO H S, LV L X, CHEN Z T. Dynamic changes of endogenous hormone in litchi (Litchi chinensis Sonn.) pistil and stamen during flower development . Chinese Journal of Applied & Environmental Biology, 2003, 9(1):11-15. (in Chinese)
[30] 胡香英. ‘紫娘喜’和‘妃子笑’荔枝花期调控效应研究[D]. 海口: 海南大学, 2016.
HU X Y. Regulation of flower time in ‘Ziniangxi’ and ‘Feizixiao’ Litchi[D]. Haikou: Hainan University, 2016. (in Chinese)
[31] 李同华. 白桦生殖发育中形态解剖学研究和内源激素的动态变化分析[D]. 哈尔滨: 东北林业大学, 2004.
LI T H. The morphological and anatomic study and analysis on change of endogenous hormones during birch reproductive development[D]. Harbin: Northeast Forestry University, 2004. (in Chinese).
[32] 莫长明, 涂冬萍, 黄杰, 马小军, 潘丽梅, 姚绍嫦, 冯世鑫, 白隆华. 罗汉果花芽分化过程中形态及其激素水平变化特征. 西北植物学报, 2015, 35(1):98-106.
MO C M, TU D P, HUANG J, MA X J, PAN L M, YAO S C, FENG S X, BAI L H. Morphological and endogenous hormones characteristics of flower budsof Siraitia grosvenoriiduring its differentiation . Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(1):98-106. (in Chinese).
[33] 聂丽娜, 夏兰琴, 徐兆师, 高东尧, 李琳, 于卓, 陈明, 李连城, 马有志. 植物基因启动子的克隆及其功能研究进展. 植物遗传资源学报, 2008, 9(3):385-391.
NIE L N, XIA L Q, XU Z S, GAO D Y, LI L, YU Z, CHEN M, LI L C, MA Y Z. Progress on cloning and functional study of plant gene promoters. Journal of Plant Genetic Resources, 2008, 9(3):385-391. (in Chinese)
[34] 侍婷, 张其林, 高志红, 章镇, 庄维兵. 2个果梅品种雌蕊分化进程及相关生化指标分析. 植物资源与环境学报, 2011, 20(4):35-41.
SHI T, ZHANG Q L, GAO Z H, ZHANG Z, ZHUANG W B. Analyses on pistil differentiation process and related biochemical indexes of two cultivars of Prunus mume . Journal of Plant Resources and Environment, 2011, 20(4):35-41. (in Chinese)
[35] TONG Z G, GAO Z H, WANG F, ZHOU J, ZHANG Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 2009, 10:71.
doi: 10.1186/1471-2199-10-71
[36] ZHANG F P, SUSSMILCH F, NICHOLS D S, CARDOSO A A, BRODRIBB T J, MCADAM S A M. Leaves, not roots or floral tissue, are the main site of rapid, external pressure-induced ABA biosynthesis in angiosperms. Journal of Experimental Botany, 2018, 69(5):1261-1267.
doi: 10.1093/jxb/erx480
[37] RAHEEM A, SHAPOSHNIKOV A, BELIMOV A A, DODD I C, ALI B. Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Archives of Agronomy and Soil Science, 2018, 64(4):574-587.
doi: 10.1080/03650340.2017.1362105
[38] REDDY K E, LEE W, JEONG J Y, LEE Y, LEE H J, KIM M S, KIM D W, YU D, CHO A, OH Y K, LEE S D. Effects of deoxynivalenol and zearalenone-contaminated feed on the gene expression profles in the kidneys of piglets. Asian-Australasian Journal of Animal Sciences, 2018, 31(1):138-148.
[39] 陈远平, 杨文钰. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. 四川农业大学学报, 2005, 23(4):498-500.
CHEN Y P, YANG W Y. Determination of GA3, IAA, ABA and ZT in dormant buds of Allium ovalifolium by HPLC . Journal of Sichuan Agricultural University, 2005, 23(4):498-500. (in Chinese).
[40] 林绍艳, 张芳, 徐颖洁. 植物中多胺含量超高效液相色谱法的建立. 南京农业大学学报, 2016, 39(3):358-365.
LIN S Y, ZHANG F, XU Y J. The establishment of UPLC method for measuring polyamines content in plants. Journal of Nanjing Agricultural University, 2016, 39(3):358-365. (in Chinese)
[41] KUMAR R, TYAGI A K, SHARMA A K. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Molecular Genetics and Genomics, 2011, 285:245-260.
doi: 10.1007/s00438-011-0602-7
[42] WU J, WANG F Y, CHENG L, KONG F L, PENG Z, LIU S Y, YU X L, LU G. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Reports, 2011, 30(11):2059-2073.
doi: 10.1007/s00299-011-1113-z
[43] ROOSJEN M, PAQUE S, WEIJERS D. Auxin response factors: Output control in auxin biology. Journal of Experimental Botany, 2018, 69(2):179-188.
doi: 10.1093/jxb/erx237
[44] 李艳林, 高志红, 宋娟, 王万许, 侍婷. 植物生长素响应因子ARF与生长发育. 植物生理学报, 2017, 53(10):1842-1858.
LI Y L, GAO Z H, SONG J, WAGN W X, SHI T. Auxin response factor (ARF) and its functions in plant growth and development. Plant Physiology Journal, 2017, 53(10):1842-1858. (in Chinese)
[45] BLA´ZQUEZ MA, GREEN R, NILSSON O, SUSSMAN M R, WEIGEL D. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 1998, 10(5):791-800.
doi: 10.1105/tpc.10.5.791
[46] WAGNER D, SABLOWSKI R W M, MEYEROWITZ E M. Transcriptional activation of APETALA1 by LEAFY. Science, 1999, 285:582-584.
doi: 10.1126/science.285.5427.582
[47] BUSCH M A, BOMBLIES K, WEIGEL D. Activation of a flower homeotic gene in Arabidopsis. Science, 1999, 285:585-587.
doi: 10.1126/science.285.5427.585
[48] LAMB R S, HILL T A, TAN Q K, IRISH V F. Regulation of APETALA3 flower homeotic gene expression by meristem identity genes. Development, 2002, 129:2079-2086.
doi: 10.1242/dev.129.9.2079
[49] WILLIAM D A, SU Y H, SMITH M R, LU M, BALDWIN D A, WAGNER D. Genomic identification of direct target genes of LEAFY. Proceedings of the National Academy of Sciences, 2004, 101:1775-1780.
[50] YU H, ITO T, ZHAO Y X, PENG J R, KUMAR P, MEYEROWITZ E M. Floral homeotic genes are targets of gibberellin signaling in flower development. Proceedings of the National Academy of Sciences, 2004, 101:7827-7832.
[51] ZHANG W Y, ABDELRAHMAN M, JIU S T, GUAN L, HAN J, ZHENG T, JIA H F, SONG C N, FANG J G, WANG C. VvmiR160s/ VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC Plant Biology, 2019, 19:111.
doi: 10.1186/s12870-019-1719-9
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[4] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[5] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[6] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[7] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[8] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[9] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[10] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[11] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[12] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[13] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[14] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[15] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!